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Method 

 

 

Figure S1. Trial overview for all experiments. The figure shows the trial timeline, which 

was the identical for all three experiments (and all control experiments). Variable durations 

were drawn from a uniform distribution.  

 

Materials and stimuli 

The experiments were conducted in a sound attenuated experimental chamber on a PC 

connected to a 19” CRT monitor.  The aversive reinforcement was a monopolar 100 ms DC-

pulse electric stimulation (STM200; Biopac Systems Inc, www.biopac.com) applied to the 

participant’s non-dominant forearm. In all experiments, the electric stimulator was attached 

before the conditioning block. The intensity of the electric shock stimulation was adjusted 

individually for each participant in a thresholding procedure, based on the standard criterion 

“unpleasant but not painful”. In Experiments 2 & 3, the shock thresholding procedure was 

conducted after the conditioning block (see below), while in Experiment 1 (and Experiment 
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3C), the shock thresholding procedure occurred by necessity before conditioning. The CS+ 

color was counter balanced across participants. 

 Skin conductance during the conditioning block was measured by Ag-AgCL 

electrodes attached to the distal phalanges of the index and middle finger of the left hand. The 

physiological signals were amplified and filtered between 0.05 and 5Hz. Phasic skin 

conductance responses (SCRs) were scored as an increase in skin conductance within 0.5 to 

4.5 sec after stimulus onset (1). Responses below .02 µS were scored as zero and the raw SCR 

scores were z-transformed prior to analysis.  

 

Additional information about Task and procedure  

In Experiment 1, the participants were exposed to a standard protocol for Pavlovian (classical) 

threat/fear conditioning, in which they received mild electric shocks (US) to one (CS+, 4 out 

of 6 presentations) but not the other (CS-) of two stimuli (CS identity was counter-balanced 

across subjects in all experiments).  

In Experiment 2, the participants were exposed to a standard protocol for 

observational threat/fear learning (1), in which they viewed a video of an individual receiving 

mild electric shocks (US) to one (CS+, 4 out of 6 presentations) but not the other (CS-) of two 

stimuli.  

Experiment 3 used a modified procedure for instructed threat/fear conditioning 

(2), where the experimenter first instructed the participant that they could receive shocks to 

one (CS+), but never the other (CS-) cue. In addition, the same instruction was presented for 1 

s before every cue presentation during the conditioning block (12 presentations). In order to 

avoid extinction and maintain the instructed threat expectations in the absence of shocks 

during the conditioning block, which is crucial for the comparison with observational threat 

learning, the participants never observed the CS cues (see below “Experiment 3B” for a 

control experiment where the CS cues were displayed during the conditioning block). Instead, 

two control cues were displayed (red and green triangles, 6 times each) during the 

conditioning block. This design thereby allowed the instructed threat expectation for the CS+ 

cue to be maintained in the absence of shocks. 

During decision-making, the location of the stimuli varied randomly between 

the left and right position across trials to prevent spatial selection strategies. After 
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observational threat learning, the participants in Experiment 2 were asked to rate their 

experience of watching the Demonstrator receiving shocks. 

Power calculations and statistical analysis 

Sample size for Experiment 1 was determined using a power analysis, based on the effect size 

(Cohen’s D = .93) of the Transfer phase in Experiment 4 of ref. (3), which had a similar 

design. Forty participants gave a power of .80 to discover an equivalent effect size. We 

adopted the same sample size for Experiments 2-3. 

Reported main and interaction effects were evaluated with “Type III” analysis of 

deviance (i.e., analogous to Type III Sum of Squares ANOVA) tests based on the Wald 

statistic. We report unstandardized parameter estimates as effect sizes for GLMMs, and 95% 

confidence intervals based on the normal distribution. In all analyses of average differences 

between groups, we included a logarithmic term for trial number (by phase, i.e., ln[1-35]) as a 

nuisance regressor to account for non-linear individual differences in learning curves 

(Including this regressor improves statistical model fit in all analyses. All results are 

qualitatively identical without this regressor). For consistency with these analyses, all figures 

depicting effects averaged across trials (e.g., Fig. 3-5 A, main text) show estimates adjusted 

for learning curves.  

 

Competing Systems Model 

The competing systems – model was based on two independent, basic reinforcement learning 

algorithms. During conditioning, the Pavlovian controller learned to predict aversive 

outcomes:  

𝑉𝑃𝑎𝑣𝑙𝑜𝑣𝑖𝑎𝑛 
𝑖 (𝑡 + 1) =  𝑉𝑃𝑎𝑣𝑙𝑜𝑣𝑖𝑎𝑛 

𝑖 (𝑡) + 𝛼 (𝑅(𝑡) − 𝑉𝑃𝑎𝑣𝑙𝑜𝑣𝑖𝑎𝑛 
𝑖 (𝑡))                   [1] 

where R = [-1,0], and α is the learning rate. During decision-making, the instrumental 

controller learned the expected value of actions in an identical manner: 

𝑄𝐼𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡𝑎𝑙 
𝑖 (𝑡 + 1) =  𝑄𝐼𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡𝑎𝑙 

𝑖 (𝑡) + 𝛼 (𝑅(𝑡) − 𝑄𝐼𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡𝑎𝑙 
𝑖 (𝑡))                 [2] 

where R = [-1,1] (4, 5), and α is, for simplicity, the same learning rate as used by the 

Pavlovian controller. In contrast, the Pavlovian controller learned about the compound 
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stimulus ij during decision-making because the two cues were presented together and co-

terminated with the decision (Figure S1): 

𝑉𝑃𝑎𝑣𝑙𝑜𝑣𝑖𝑎𝑛 
𝑖 (𝑡 + 1) =  𝑉𝑃𝑎𝑣𝑙𝑜𝑣𝑖𝑎𝑛 

𝑖 (𝑡) + 𝛼(𝑅(𝑡) − (𝑉𝑃𝑎𝑣𝑙𝑜𝑣𝑖𝑎𝑛 
𝑖 (𝑡) + 𝑉𝑃𝑎𝑣𝑙𝑜𝑣𝑖𝑎𝑛 

𝑗 (𝑡)))                 

[3] 

As expressed in the Rescorla-Wagner rule (6), the consequence of this is that no differential 

Pavlovian learning occurs during decision-making. In other words, the Pavlovian influence 

was constant during decision-making (assuming no Pavlovian updating at all during decision-

making gives almost identical predictions). Finally, the learned cue values (VPavlovian and 

QInstrumental) from both systems are multiplied to compute the probability of choice i at time t. 

We express competition between controllers in a standard Softmax function:  

𝑃(𝑖) =
𝑒

(1−𝜔)𝑄𝐼𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡𝑎𝑙
𝑖 +𝜔𝑉𝑃𝑎𝑣𝑙𝑜𝑣𝑖𝑎𝑛

𝑖 /𝛽 

∑ 𝑒
(1−𝜔)𝑄

𝐼𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡𝑎𝑙
𝑗

+𝜔𝑉
𝑃𝑎𝑣𝑙𝑜𝑣𝑖𝑎𝑛
𝑗

/𝛽
 𝑛

𝑗=1

                   [4] 

where β (0< β ≤ 1) regulates how deterministically the action with the highest value will be 

chosen, n refers to cues A & B, and ω is the relative weight on the Pavlovian system.  

Model simulations 

The simulations of the competing systems - model were conducted using the same 

reinforcement probabilities and number of trials as in the experiment, but independent of the 

experimental time-series (i.e., simulated participants). We refer to these as the a priori 

predictions of the model. These were derived from the mean performance across 100 model 

runs for each parameter combination (0.01≤ α ≤ 1, 0.01 ≤ β ≤ 1, in steps of 0.1. ω was set to 

0.5), and are displayed in Figure 2C of the main text. 

 We also we investigated the predictions of the competing systems – model in 

more detail. We first asked how the Pavlovian weight normatively should be set to promote 

adaptive behavior. To address this, we simulated the model to find the weight that maximized 

decision-making performance (i.e., minimized punishment) for different probabilities of 

environmental change (C parameter). The simulations showed that if the environment on 

average is stable, a positive weight (with the optimum at ω = .5) on the Pavlovian controller is 

adaptive (Figure S2). As we describe in the main text, ω was not different from 0.5 in either 

Exp. 1 or 2, suggesting that behavior well-adjusted under the assumption of a stable 

environment. What happens if Pavlovian weight is positive and the environment in fact does 
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change? As we describe in the main text (Figure 2), this results in strictly maladaptive 

decision-making. 

 To assess how the generality of prediction of maladaptive decision-making after 

an environmental change, we plot the average difference in decision-making performance 

between No Change and Change groups (for ω = .5) across the parameter space for the 

learning rate α and temperature β (Figure S4). The figure shows that the prediction that 

changing the environment will lead to maladaptive decision making is a general feature of the 

model. Similarly, we plot (Figure S5) predicted difference in behavior if the environment is 

unstable also during decision—making, as in the Reversal phase of our experimental task (see 

Figure 2, main text). As seen, the reversal of the Pavlovian influence generalizes across the 

parameter space. 

 

Figure S2. Consequences of Pavlovian weighting for adaptive behavior (A) Decision-

making performance as a function of the weight, ω, on the Pavlovian controller and the 

probability (parameter C) that the environment changes from fear conditioning to decision-

making (averaged across 100 runs for parameter combination of α and β). The horizontal 

dotted line indicates for reference the average performance if the Pavlovian influence is null 

(ω = 0). For a stable environment, ω = 0.5 is optimal.   
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Figure S3. A one-system model where a single controller system learns during both 

conditioning and decision-making does not predict a difference between groups after the 

reversal.  A priori asymptotic model predictions (by simulating across the range of the model 

parameters and taking the mean as expectation, see Methods) for the No-change (turquoise 

line) and Change (magenta line) condition derived from a one system – model where the same 

expected values were updated in both condition and decision-making (i.e., a basic Q-learning 

model). See Table S1-S2 for quantitative evaluation of this model. 

 

 

 

Figure S4. Simulation of the competing systems - model across the parameter space of the 

prediction that an environmental change results in maladaptive decision-making (i.e., 

P(Optimal) No Change > P(Optimal) Change) during Transfer (for ω = 0.5). Empirical values 
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were within the range of predictions (Exp. 1 = 0.11, Exp. 2 = 0.23). Each cell is the average of 

100 simulation runs. 

 

 

Figure S5. Simulation of the competing systems - model across the across parameter space of 

the prediction that the difference between the groups would reverse in the Reversal phase (i.e., 

P(Optimal) Change > P(Optimal) No Change) (for ω = 0.5). Empirical values were within the 

range of predictions (Exp. 1 = 0.13, Exp. 2 = 0.24). Each cell is the average of 100 simulation 

runs. 

 

Parameter estimation 

Parameter estimation was conducted using the maximum-likelihood approach, which finds the 

set of parameters that maximize the probability of the participant´s trial-by-trial choices given 

the model. Optimization was done by to minimizing the negative log-likelihood, -L, computed 

by: 

−𝐿 = − ∑ 𝑙𝑛 (𝑃𝑐ℎ𝑜𝑖𝑐𝑒(𝑡))

𝑇

𝑡=1

, 

where T denotes the total number of trials. Parameters were independently fitted to each 

subject using the BFGS optimization method. To avoid local minima in parameter fitting, 

optimization was initiated with 10 randomly selected start values. Model implementations and 

parameter fitting was done in R (R Development Core Team, 2012).  

Model comparison 
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Model comparison was primarily based on the Akaike Information Criterion (AIC), a measure 

of goodness of fit of a model that penalizes complexity (7):  

𝐵𝐼𝐶 = −2 ln(𝐿) +  2𝑘     

where –ln(L) is the negative log-likelihood and k is the number of model parameters. A 

smaller AIC hence indicates a better model fit.  

We summed the AIC across participants, and calculated AIC weights (wAIC) 

from the summed AIC, to derive a group-level measure of model fit. The wAIC can be 

interpreted as the probability that a given model has the lowest AIC, and thus best fit, in the 

set of candidate models (8). 

 

 

Results 

 

 Competing systems One system 1 One System 2 

AIC (sum) 2373.1 2451.77 2394.81 

wAIC 0.99998 0 0.00002 

α 0.46 (0.35) 0.4 (0.29) 0.39 (0.33) 

β 0.28 (0.35) 0.5 (0.32) 0.44 (0.34) 

ω 0.5 (0.39) - - 

αDirect - - 0.3 (0.32) 

Table S1. Model comparison in Experiment 1. Model comparison between the competing 

systems – model and two version of the model involving only one system (i.e., equation 4 

only included instrumental Q-values) showed that the competing systems – model explained 

the data best. The One system models either had the same learning rate, α, in the conditioning 

and decision-making blocks (One system 1, cf. Figure S2), or different learning rates in the 

two blocks (One system 2). The table displays summed (across participants) Akaike 

Information Criterion (AIC) (smaller values indicate better model fit), and mean (standard 

deviation) parameter estimates for the three models. Akaike Information Criterion weights 

(wAIC) can be interpreted as the probability that the model has the lowest AIC in the 

candidate set, and thereby provides the best explanation of the data.  
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 Competing systems One system 1 One System 2 

AIC (sum) 2486.58 2496.81 2507.15 

wAIC 0.994 0.006 0.00003 

α 0.5 (0.34) 0.41 (0.28) 0.37 (0.31) 

β 0.26 (0.29) 0.46 (0.32) 0.43 (0.33) 

ω 0.5 (0.35) - - 

αObservational - - 0.18 (0.24) 

Table S2. Model comparison in Experiment 2. Model comparison between the competing 

systems – model and two version of the model involving only one system (i.e., equation 4 

only included the instrumental Q-values) showed that the competing systems – model 

explained the data best. The One system - models either had the same learning rate, α, in the 

conditioning and decision-making blocks (One system 1, cf. Figure S2), or different learning 

rates in the two blocks (One system 2). The table displays summed (across participants) 

Akaike Information Criterion (AIC) (smaller values indicate better model fit), and mean 

(standard deviation) parameter estimates for the three models. Akaike Information Criterion 

weights (wAIC) can be interpreted as the probability that the model has the lowest AIC in the 

candidate set, and thereby provides the best explanation of the data. 

 

 

Conditioned autonomic arousal responses does not predict Pavlovian transfer 

We tested if individual differences in conditioned autonomic skin conductance responses 

(SCR) predicted the magnitude of Pavlovian transfer (focusing on the Transfer phase of the 

decision-making block). This was not the case. We assess individual differences in the 

differential (CS+>CS-) SCR response, in interaction with Group (Change/No Change) and 

Experiment (Exp. 1/Exp. 2 [we excluded Exp. 3 due to the absence of a transfer effect in that 

experiment). If higher SCR during conditioning predicts the transfer magnitude, we would 

expect a SCR*Group interaction (because the slopes should have different signs). Neither this 

interaction (χ2 (1) = 0.19, p = .67), the main effect (χ2 (1= 0.27, p = 0.6), nor interaction with 

Experiment (χ2 (1) = 0.15, p = 0.7) were significant. In other words, in our paradigm, 

individual differences in conditioned responses, as indexed by SCR, did not predict the 

magnitude of transfer, neither in Pavlovian, nor in observational conditioning. Although at 

first glance puzzling, it is known from non-human animals that physiological reactions 

thought to indicate conditioned threat responses typically do not predict avoidance behaviors 

(9). Thus, the relationship between affective state, physiological correlate, and instrumental 

behavior might not be as straightforward as the first glance suggests. 
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Empathy with the Demonstrator and the unpleasantness of watching the Demonstrator 

receiving shocks predicts Pavlovian transfer in Experiment 2  

In Experiment 2 (observational threat learning), the participants were prompted for their 

impressions of the Demonstrator directly after the conditioning block. We asked (i) how 

unpleasant it was to see the Demonstrator receiving electric shocks, (ii) how unpleasant they 

thought it would be for themselves to receive electric shocks, (iii) how unpleasant they 

thought it was for the Demonstrator to receive electric shocks, (iv) how natural the 

Demonstrator seemed, (v) how expressive the Demonstrator was, (vi) how much empathy 

they felt with the Demonstrator, (vii) how much they identified with the Demonstrator. We 

entered all these questions as predictors of the (arcsine transformed) proportion of correct 

responses during the Transfer phase, in interaction with Group (Change/No Change) in a 

linear model. To reduce the regression model, we used (two-ways) step-wise model selection 

using the AIC. All variables except i & v were left in the final model, but only two (in 

addition to Group, which naturally explained most variance) reached conventional 

significance (Group*i (F(1,29) = 5.19, p = .03) and Group*vi (F(1,29) = 4.56, p = .04)). In 

other words, the unpleasantness of watching the demonstrator receiving shocks and empathy 

with the demonstrator predicted a stronger influence of observational fear learning on 

behavior. Intriguingly, empathy with the demonstrator has previously been shown to moderate 

observational fear learning (10). Although both relationships are meaningful, their robustness, 

given the large number of predictors, and importance are unknown and requires future 

investigation.   

 

Comparison with a baseline control experiment without a conditioning block 

Because both the Change and No Change groups were preceded by a conditioning block, the 

results reported in the main text does not allow determining the directionality of the Pavlovian 

transfer effect (all comparisons are relative the other group, e.g., No Change > Change). To 

enable determining the influence of the Pavlovian transfer effects in absolute terms, we 

performed a baseline control experiment (n = 25, Experiment 4). Experiment 4 (18 women, 

mean age = 27) had exactly the same decision-making block as Experiments 1-3, but no 

conditioning block preceding decision-making. This allows a direct estimation of the absolute 

effect of the Pavlovian transfer observed in Experiments 1-2. 
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Because the influence of the conditioning block on decision-making did not 

reliably differ between Experiment 1 and Experiment 2 (see main text), we pooled the data 

from these experiments to maximize estimation precision. We first compared decision-making 

in the Transfer phase against the neutral baseline experiment, and found that the Change 

group had significantly reduced performance relative to this baseline (β = -.59, SE = .27, z = -

2.22, p = .026). In contrast, the No change group had facilitated performance (β = 0.88, SE = 

0.27, z = 3.33, p = .0008), Figure S6. Thus, in line with previous PIT findings (11), transfer of 

Pavlovian associations was maladaptive when misaligned with instrumental decision-making, 

but beneficial when aligned (the same pattern was evident when analyzing the experiments 

separately, although the effects were stronger in Experiment 2).  In the Reversal phase, none 

of the groups were significantly different from the baseline experiment, although both effects 

had the expected signs (i.e., reversed relative to the Transfer phase) and similar magnitudes:  

No Change groups versus baseline (β = -.4, SE = .28, z = -1.43, p = 0.15), and Change groups 

versus baseline (β = 0.42, SE = .28, z = 1.48, p = .14) (see Figure S6).  

 

Figure S6. Estimating the directionality of Pavlovian transfer by comparison against a 

baseline experiment (Experiment 4, n = 25) without preceding Pavlovian conditioning. 
Probability of selecting the optimal action for Baseline, No Change and Change groups 

during the decision-making block. Experiment 1 & 2 are pooled. Error bars are 95 % 

parameter CI. 

 

Does the competing systems – model predict the same pattern? To address this, 

we conducted simulations of the baseline condition (by setting the Pavlovian weight, ω, to 0). 
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As depicted in Figure S7, this was the case: the model predictions accurately captured the 

qualitative empirical pattern (c.f., Figure S6). As described in the main text, model predictions 

were generated by simulating the model across the parameter range, and using the average as 

the expectation. In other words, the simulations were not informed by the empirical results. 

These results demonstrate that the competing systems – model captures many important 

features of how Pavlovian associations transfer to decision-making. 

 

Figure S7. Competing systems – model predictions of the baseline condition. The figure 

shows the model predicted probability of optimal responses for the neutral baseline condition 

(ω = 0) relative to the No Change and Change conditions (ω = 0.5) (c.f., Figure S6).   

 

 

Additional model comparison in Experiment 3. 

The model comparison in the main text is based on a fixed effects model comparison method 

(i.e., group AIC weights), which can be sensitive to outliers. To ascertain the robustness of the 

conclusions that different computational mechanisms underlie the transfer from observational 

and instructed threat learning, we in addition used Bayesian random effects model 

comparison, which allows for model heterogeneity between participants (12). To this end, we 

used both the AIC (Figure S8) and the BIC (Figure S9) as approximations to model evidence, 

and computed the exceedance probability for each model. We used both AIC and BIC as 

these two criteria penalize model complexity differently (13). The exceedance probability 

expresses the probability that a given model is the most common model among the candidate 

models in the population (12). These additional model comparisons provided converging 
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results with those reported in the main text, and strengthen our conclusion that different 

models best describe the transfer of observational versus instructed threat learning. See 

following sections “Additional details about the Prior model” and “Difference in predictions 

from the Competing Systems - and Prior - models“ for additional information. 

 

 

Figure S8. Bayesian random effects model comparison based on AIC as approximation 

to model evidence. (A) Experiment 2 - Observational threat learning. (B) Experiment 3 – 

Instructed threat learning. The exceedance probability expresses the probability that a 

model is the most common model among the candidate models in the population. The green 

dotted line denotes probability = 0.95. 
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Figure S9. Bayesian random effects model comparison based on BIC as approximation 

to model evidence. (A) Experiment 2 - Observational threat learning. (B) Experiment 3 – 

Instructed threat learning. The exceedance probability expresses the probability that a 

model is the most common model among the candidate models in the population. The green 

dotted line denotes probability = 0.95. 

 

 

Additional details about the Prior - model 

The Prior – model, which best described the data in Experiment 3, states that instruction (or 

advice, as in its original applications (14, 15)) determines the initial instrumental action (i.e., 

Q) values at the outset of the decision-making block (see Figure S10). This differs from the 

Competing Systems - model (and most other models we consider), where the instrumental 

action values were initialized to 0. Specifically, in the Prior - model, the action values 

associated with the CS+ and CS- cues differed on trial 1: QCS+ (t = 1) = -ρN and QCS- (t = 1) = 

ρN, where ρ (0 ≤ ρ ≤ 1) is a free parameter and N the number of trials (= 70) in the decision-

making block (14, 15). Importantly, the Prior – model only had one system (i.e., 

instrumental), which allows eventually overcoming the influence of misleading threat 

instructions. The Prior – model thereby predicts the largest influence of threat instructions on 

decision-making at the outset of the decision-making block, and the smallest at the end of the 

decision-making block. 
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Figure S10. The structure of the Prior – model. An instrumental controller learns about the 

value of actions from their outcomes during decision-making. Instruction functions as a prior 

on instrumental action values at the outset of decision-making (t = 1). 

 

Difference in predictions from the Competing Systems - and Prior - models 

To understand which features of the data distinguished between the prediction of the prior and 

competing systems models, we compared the fitted model predictions (Figure S11). As 

expected from the formulation of the Prior – model, we found that the models make divergent 

predictions at the beginning of the experiment, where the prior model accounts better for the 

initial difference between the groups than the competing systems - model (cf. Figure 1). The 

average absolute difference between the model predictions was indeed largest at the outset of 

the experiment (black dotted line, Figure S11). 
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Figure S11. Comparison of predicted behavior for the Prior and Competing Systems 

models in Experiment 3. Average trial-by-trial fitted model predictions (colored lines) for 

the two models, overlaid on the experimental data (dots). The black dotted line shows the 

average absolute difference in predictions per trial for the prior vs competing systems – 

models.  Prior = Prior model. CS = Competing Systems – model. 

 

 

Experiment 3B 

In addition to the novel instructed threat learning paradigm we present in the main text 

(Experiment 3), we had originally conducted a more traditional variant of an instructed threat 

learning experiment (Experiment 3B, N = 40, 18 women, mean age = 26). In this standard 

paradigm (2) participants were instructed that they would receive shocks to one cue (CS+) but 

not the other (CS-) (2). In contrast to Experiment 3, the CS cues were then presented without 

reinforcement for the same total number of times as in Experiments 1-2, potentially leading to 

stronger expectation violation and lower inferred reliability of the environment in this 

experiment compared to the observational threat learning experiment. The instruction resulted 

in a clear differential SCR response during the conditioning block (t(39) = 9.12, p < .0001), 

indicating successful instructed threat learning. However, there was no evidence for transfer 
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to decision-making (β = 0.27, SE = 0.27, z = 1.0, p = 0.32, 95 % CI [-.79, 0.26]), or an 

interaction between Phase and Group (χ2(1) = 0.06, p = .81) in Experiment 3B (Figure S12). 

Although these result are intriguing, it is possible that participants learned that the 

environment could not be trusted, due to the omission of the expected shocks, which may 

have resulted in an extinction of the instructed threat expectancy. The version of Experiment 3 

presented in the main text circumvents this concern, and shows that that instructed threat 

learning can transfer to decision-making.  

Although no transfer effect was visible when averaged across trials, 

computational modelling can allow estimating more subtle behavioral effects than direct 

comparison of means. We therefore estimated the same set of social learning models for 

Experiment 3B as reported for Experiment 3 in the main text. Replicating the finding that 

instructed threat learning is best understood as a prior on the instrumental system, the Prior – 

model provided the best explanation of the data: wAIC (Prior) = 1. As the transfer effect in 

Experiment 3B was weak relative to Experiment 3, this should be reflected in the magnitude 

of the estimated ρ (i.e., Prior) parameter. As expected, the average parameter value of ρ was 

significantly lower in Experiment 3B (M = 0.33) than in Experiment 3 (M = 0.75), t(63.17) = 

-3, p = .003. This finding implies that instructed threat learning had a weak influence on 

action values in Experiment 3B, which was easily overruled following unexpected outcomes. 

We directly tested this implication by comparing the No Change and Change groups in 

Experiment 3B on the very first decision-making trial. The model predicts that instruction 

should lead to an initial difference in the instrumental expected values. In line with the 

prediction, groups initially differed in their choices (logistic regression: β = -1.65, SE = 0.70, 

z = -2.35, p = 0.019, see Fig. S12B). These results together with Experiment 3 provide 

converging evidence that instructed threat learning influences decision-making as a prior on 

the instrumental system. 
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Figure S12. Experiment 3B (N = 40). Probability of selecting the optimal action for No Change and 

Change groups during the decision-making block in Experiment 3B. Black points indicate the a priori 

predictions from the competing systems – model. Error bars are 95 % parameter CI from the GLMM model.  (B) 

In contrast to Experiments 1-3, there was no difference between the groups in fraction of optimal responses 

during neither the Transfer phase (trials 1-35, see Fig. 1), nor the Reversal phase (trials 36-70). The solid lines 

show the a priori predictions from the competing systems – model. 

 

 

Experiment 3C 

In Experiment 3C (N = 40, 25 women, mean age = 24.9), we investigated how a learning 

environment that provided both instruction of threat and actual experience of shock 

influenced decision-making. As in Experiments 3, participants were instructed that they 

would receive shocks to one cue (CS+) but not the other (CS-) at the start of the conditioning 

block, and (as text on screen) before every CS presentation. In contrast to Experiments 3, 

participants in Experiment 3C in addition experienced shocks in accordance to these 

instructions (following the same conditioning schedule as in Experiment 1). This design 

prevented violation of expectations arising from instructions in a different manner than 

Experiment 3. Moreover, it allowed us to estimate how the combination of instructed threat 

learning and fully-expected direct shock experience transfers to decision-making. As 

expected, Experiment 3C replicated both the Transfer (β = -0.88, SE = 0.38, z = -2.31, p = 

.02, 95% CI [-1.63, -0.14]), and reversal (Group*Reversal: χ2 (1) = 8.1, p = .004) of Pavlovian 
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threat learning to decision-making (Figure S13). Next, we compared Experiments 3 and 3C to 

discern if transfer was stronger when instruction and direct experience were combined (as in 

Experiment 3C) than for instruction alone (Experiment 3, main text). This was not the case 

(simple interaction, Group*Experiment: β = 0.428, SE = 0.24, z = 1.8, p = 0.08). If anything 

(based on the non-significant interaction estimate), transfer was stronger following instructed 

threat learning in the absence of shocks. Furthermore, there was no evidence for a difference 

between experiments in the Group*Reversal interaction (χ2 (1) = 0.3, p = .59). In other words, 

the combination of instruction and direct experience (Experiment 3C) did not result in more 

potent transfer to decision-making than instruction alone (Experiment 3).  

For completeness, we fitted the Competing Systems – and Prior – models to the 

data from Experiment 3C. The Prior – model explained the data best (wAIC (Prior) ~ 1), 

suggesting that threat instructions constituted the most important influence on decision-

making in Experiment 3C. This result resembles previous reports of equivalent shock 

expectancies and SCRs after threat instruction on its own, and after combined threat 

instruction and direct shock experience (16). 

 

Figure S13. Experiment 3C (N = 40). Probability of selecting the optimal action (i.e., CS 

with the lowest probability of shock) for No Change and Change groups during the decision-

making block in Experiment 3C. Black points indicate the a priori predictions from the 

competing systems – model. Error bars are 95 % parameter CI from the GLMM. (B) Higher 

fraction of optimal action selection during the Transfer phase by No Change group (trials 1-

35, see Fig. 1) was reversed during the Reversal phase (trials 36-70). The solid lines show the 

a priori predictions from the competing systems – model. 
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