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1. Proof of Proposition 1

According to Eq. 1, the recall probability m(t) depends on the forgetting rate, n(t), and the time elapsed since the last review,
D(t) := t− tr. Moreover, we can readily write the differential of D(t) as dD(t) = dt−D(t)dN(t).

We define the vector X(t) = [n(t), D(t)]T . Then, we use Eq. 2 and Itö’s calculus (1) to compute its differential:

dX(t) =
dt

zol
f(X(t), t)dt+ h(X(t), t)dN(t)

f(X(t), t) =
[

0
1

]
h(X(t), t) =

[−αn(t)r(t)+βn(t)(1−r(t))
−D(t)

]
Finally, using again Itö’s calculus and the above differential, we can compute the differential of the recall probability

m(t) = e−n(t)D(t) := F (X(t)) as follows:

dF (X(t)) = F (X(t+ dt))− F (X(t))
= F (X(t) + dX(t))− F (X(t))

=
dt

zol
(fTFX(X(t)))dt+ F (X(t) + h(X(t), t)dN(t))− F (X(t))

=
dt

zol
(fTFX(X(t)))dt+ (F (X(t) + h(X(t), t))− F (X(t)))dN(t)

= (e−(D(t)−D(t))n(t)(1+αri(t)−β(1−ri(t))) − e−D(t)n(t))dN(t)− n(t)e−D(t)n(t)dt

= −n(t)e−D(t)n(t)dt+ (1− e−D(t)n(t))dN(t)
= −n(t)F (X(t))dt+ (1− F (X(t)))dN(t)
= −n(t)m(t)dt+ (1−m(t))dN(t).

2. Lemma 1

Lemma 1 Let x(t) and y(t) be two jump-diffusion processes defined by the following jump SDEs:

dx(t) =f(x(t), y(t), t)dt+ g(x(t), y(t), t)z(t)dN(t) + h(x(t), y(t), t)(1− z(t))dN(t)
dy(t) =p(x(t), y(t), t)dt+ q(x(t), y(t), t)dN(t)

where N(t) is a jump process and z(t) ∈ {0, 1}. If function F (x(t), y(t), t) is once continuously differentiable in x(t), y(t) and t,
then,

dF (x, y, t) = (Ft + fFx + pFy)(x, y, t)dt+ [F (x+ g, y + q, t)z(t) + F (x+ h, y + q, t)(1− z(t))− F (x, y, t)]dN(t),

where for notational simplicity we dropped the arguments of the functions f , g, h, p, q and argument of state variables.

Proof According to the definition of differential,

dF := dF (x(t), y(t), t) = F (x(t+ dt), y(t+ dt), t+ dt)− F (x(t), y(t), t)
= F (x(t) + dx(t), y(t) + dy(t), t+ dt)− F (x(t), y(t), t).

Then, using Itö’s calculus, we can write

dF =
dt

zol
F (x+ fdt+ g, y + pdt+ q, t+ dt)dN(t)z + F (x+ fdt+ h, y + pdt+ q, t+ dt)dN(t)(1− z)

+ F (x+ fdt, y + pdt, t+ dt)(1− dN(t))− F (x, y, t) [1]

where for notational simplicity we drop arguments of all functions except F and dN . Then, we expand the first three terms:

F (x+ fdt+ g, y + pdt+ q, t+ dt) = F (x+ g, y + q, t) + Fx(x+ g, y + q, t)fdt
+ Fy(x+ g, y + q, t)pdt+ Ft(x+ g, y + q, t)dt

F (x+ fdt+ h, y + pdt+ q, t+ dt) = F (x+ h, y + q, t) + Fx(x+ h, y + q, t)fdt
+ Fy(x+ h, y + q, t)pdt+ Ft(x+ h, y + q, t)dt

F (x+ fdt, y + pdt, t+ dt) = F (x, y, t) + Fx(x, y, t)fdt+ Fy(x, y, t)pdt
+ Ft(x, y, t)dt

using that the bilinear differential form dt dN(t) = 0. Finally, by substituting the above three equations into Eq. 1, we conclude
that:

dF (x(t), y(t), t) = (Ft + fFx + pFy)(x(t), y(t), t)dt+
[
F (x+ g, y + q, t)z(t) + F (x+ h, y + q, t)(1− z(t))

− F (x, y, t)
]
dN(t),
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Specifically, consider x(t) = n(t), y(t) = m(t), z(t) = r(t) and J = F from equation 6 in the above equation, then,

dJ(m,n, t) = Jt(m,n, t)− nmJm(m,n, t) + [J(1, (1− α)n, t)r(t) + J(1, (1 + β)n, t)(1− r)
− J(m,n, t)]dN(t).

3. Lemma 2

Lemma 2 Consider the following family of losses with parameter d > 0,

`d(m(t), n(t), u(t)) = hd(m(t), n(t)) + g2
d(m(t), n(t)) + 1

2qu(t)2,

gd(m(t), n(t)) = 2−1/2
[
c2

log(d)
−m(t)2 + 2m(t)− d − c2

log(d)
1− d + c1m(t) log

(1 + β

1− α

)
− c1 log(1 + β)

]
+
,

hd(m(t), n(t)) = −√qm(t)n(t)c2
(−2m(t) + 2) log(d)

(−m(t)2 + 2m(t)− d)2 . [2]

where c1, c2 ∈ R are arbitrary constants. Then, the cost-to-go Jd(m(t), n(t), t) that satisfies the HJB equation, defined by Eq. 7,
is given by:

Jd(m(t), n(t), t) = √q
(
c1 log(n(t)) + c2

log(d)
−m(t)2 + 2m(t)− d

)
[3]

and the optimal intensity is given by:

u∗d(t) = q−1/2[c2
log(d)

−m(t)2 + 2m(t)− d − c2
log(d)
1− d + c1m(t) log

(1 + β

1− α

)
− c1 log(1 + β)]+.

Proof Consider the family of losses defined by Eq. 2 and the functional form for the cost-to-go defined by Eq. 3. Then, for
any parameter value d > 0, the optimal intensity u∗d(t) is given by

u∗d(t) = q−1 [Jd(m(t), n(t), t)− Jd(1, (1− α)n(t), t)m(t)− Jd(1, (1 + β)n(t), t)(1−m(t))]+

= q−1/2
[
c2

log(d)
−m2 + 2m− d − c2

log(d)
1− d + c1m(t) log

(1 + β

1− α

)
− c1 log(1 + β)

]
+
,

and the HJB equation is satisfied:

∂Jd(m,n, t)
∂t

−mn∂Jd(m,n, t)
∂m

+ hd(m,n) + g2
d(m,n)− 1

2q
−1(Jd(m,n, t)

− Jd(1, (1− α)n, t)m− Jd(1, (1 + β)n, t)(1−m)
)2
+

= √qmnc2
(−2m+ 2) log(d)
(−m2 + 2m− d)2 + hd(m,n) + g2

d(m,n)− 1
2

[
c1 log(n) + c2

log(d)
−m2 + 2m− d

−m
(
c1 log(n(1− α)) + c2

log(d)
1− d

)
− (1−m)

(
c1 log(n(1 + β)) + c2

log(d)
1− d

)]2

+

= √qmnc2
(−2m+ 2) log(d)
(−m2 + 2m− d)2 −

√
qmnc2

(−2m+ 2) log(d)
(−m2 + 2m− d)2︸ ︷︷ ︸
hd(m,n)

− 1
2
[
c2

log(d)
−m2 + 2m− d − c2

log(d)
1− d + c1m log( 1 + β

1− α )− c1 log(1 + β)
]2
+

+ 1
2
[
c2

log(d)
−m2 + 2m− d − c2

log(d)
1− d + c1m log( 1 + β

1− α )− c1 log(1 + β)
]2
+

where for notational simplicity m = m(t), n = n(t) and u = u(t).
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Fig. S1. Performance of MEMORIZE in comparison with several baselines. The solid lines are median values and the shadowed regions are 30% confidence intervals.
Short-term recall probability corresponds to m(t + 5) and long-term recall probability to m(t + 15). In all cases, we use α = 0.5, β = 1, n(0) = 1 and tf − t0 = 20.
Moreover, we set q = 3 · 10−4 for MEMORIZE, µ = 0.6 for the uniform reviewing schedule, tlm = 5 and µ = 2.38 for the last minute reviewing schedule, and mth = 0.7
and c = ζ = 5 for the threshold based reviewing schedule. Under these parameter values, the total number of reviewing events for all algorithms are equal (with a tolerance of
5%).

4. Proof of Theorem 3

Consider the family of losses defined by Eq. 2 in Lemma 2 whose optimal intensity is given by:

u∗d(t) = q−1/2
[
c2

log(d)
−m2 + 2m− d − c2

log(d)
1− d + c1m(t) log

(1 + β

1− α

)
− c1 log(1 + β)

]
+
.

Now, set the constants c1, c2 ∈ R to the following values:

c1 = −1
log
( 1+β

1−α

) c2 = − log (1− α)
log
( 1+β

1−α

) .

Since the HJB equation is satisfied for any value of d > 0, we can recover the quadratic loss l(m,n, u) and derive its corresponding
optimal intensity u∗(t) using point wise convergence:

l(m(t), n(t), u(t)) = lim
d→1

ld(m(t), n(t), u(t)) = 1
2(1−m(t))2 + 1

2qu
2(t),

u∗(t) = lim
d→1

u∗d(t) = q−1/2(1−m(t)),

where we used that limd→1
log(d)
1−d = −1 (L’Hospital’s rule).

This concludes the proof.

5. Synthetic Experiments

In this section, our goal is analyzing the performance of Memorize under a controlled setting using metrics and baselines
that we cannot compute in the real data we have access to. We evaluate the performance of Memorize using two quality
metrics: recall probability m(t+ τ) at a given time in the future t+ τ and forgetting rate n(t). Here, by considering high (low)
values of τ , we can assess long-term (short-term) retention. Moreover, we compare the performance of our algorithm with three
baselines: (i) a uniform reviewing schedule, which sends item(s) for review at a constant rate µ; (ii) a threshold based reviewing
schedule, which increases the reviewing intensity of an item by c exp ((t− s)/ζ) at time s, when its recall probability reaches a
threshold mth; and, (iii) a last minute reviewing schedule, which only sends item(s) for review during a period [tlm, tf ], at a
constant rate µ therein.∗ Unless otherwise stated, we set the parameters of the baselines and our algorithm such that the total
number of reviewing events during (t0, tf ] are equal.

First, we run 100 independent simulations and compute the above quality metrics over time. Figure S1 summarizes the
results, which show that our model: (i) consistently outperforms all the baselines in terms of both quality metrics; (ii) is more
robust across runs both in terms of quality metrics and reviewing schedule; and (iii) reduces the reviewing intensity as times
goes by and the recall probability improves, as one could have expected.

Second, we experiment with different values for the parameter q, which controls the learning effort required by Memorize—
the lower its value, the higher the number of reviewing events. Intuitively, one may also expect the learning effort to influence
how quickly a learner memorizes a given item—the lower its value, the quicker a learner will memorize it. Figure S2a confirms
this intuition by showing the average forgetting rate n(t) and number of reviewing events N(t) at several times t for different q
values.

Finally, we experiment with different values for the parameters α and β, which capture the aptitude of a learner and the
difficulty of the item to be learned—the higher (lower) the value of α (β), the quicker a learner will memorize the item. In
Figure S2b, we evaluate quantitatively this effect by means of the average time the learner takes to reach a forgetting rate of
n(t) = 1

2n(0) using Memorize for different parameter values.
∗The last minute reviewing schedule is only introduced here and was not used in empirical evaluations since in Duolingo there is no terminal time tf which users target. Additionally, in many (user, item)

pairs, the first review takes place close to t = 0 and thus the last minute baseline is equivalent to the uniform reviewing schedule.
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Fig. S2. Learning effort, aptitude of the learner and item difficulty. Panel (a) shows the average forgetting rate n(t) and number of reviewing events N(t) for different values of
the parameter q, which controls the learning effort. Panel (b) shows the average time the learner takes to reach a forgetting rate n(t) = 1

2n(0) for different values of the
parameters α and β, which capture the aptitude of the learner and the item difficulty. In Panel (a), we use α = 0.5, β = 1, n(0) = 1 and tf − t0 = 20. In Panel (b), we use
n(0) = 20 and q = 0.02. In both panels, error bars are too small to be seen.

6. Our Modeling Framework Using the Power-Law Forgetting Curve Model

Under the power-law forgetting curve model, the probability of recalling an item i at time t is given by (2):

mi(t) := P(ri(t)) = (1 + ω(t− tr))−ni(t), [4]

where tr is the time of the last review, ni(t) ∈ RR+ is the forgetting rate and ω is a time scale parameter.
Similarly as in Proposition 1 for the exponential forgetting curve model, we can express the dynamics of the recall probability

mi(t) by means of a SDE with jumps:

dmi(t) = −ni(t)mi(t)ωdt
(1 + ωDi(t))

+ (1−mi(t))dNi(t) [5]

where Di(t) := t− tr and thus the differential of Di(t) is readily given by dDi(t) = dt−Di(t)dNi(t).
Next, similarly as in the case of the exponential forgetting curve model in the main paper, we consider a single item with

ni(t) = n(t), mi(t) = m(t), Di(t) = D(t) and ri(t) = r(t), and adapt Lemma 1 to the power-law forgetting curve model as
follows:

Lemma 3 Let x(t) and y(t), k(t) be three jump-diffusion processes defined by the following jump SDEs:

dx(t) =f(x(t), y(t), t)dt+ g(x(t), y(t), t)z(t)dN(t) + h(x(t), y(t), t)(1− z(t))dN(t)
dy(t) =p(x(t), y(t), t)dt+ q(x(t), y(t), t)dN(t)
dk(t) =s(x(t), y(t), k(t), t)dt+ v(x(t), y(t), k(t), t)dN(t)

where N(t) is a jump process and z(t) ∈ {0, 1}. If function F (x(t), y(t), k(t), t) is once continuously differentiable in x(t), y(t),
z(t) and t, then,

dF (x, y, k, t) = (Ft + fFx + pFy + sFs)(x, y, k, t)dt+ [F (x+ g, y + q, k + v, t)z(t)
+ F (x+ h, y + q, k + v, t)(1− z(t))− F (x, y, t)]dN(t),

where for notational simplicity we dropped the arguments of the functions f , g, h, p, q, s, v and argument of state variables.

Then, if we consider x(t) = n(t), y(t) = m(t), k(t) = D(t), z(t) = r(t) and J = F in the above Lemma, the differential of
the optimal cost-to-go is readily given by

dJ(m,n, t) = Jt(m,n, t)−
ωnm

1 + ωD
Jm(m,n,D, t) + JD(m,n,D, t) + [J(1, (1− α)n, 0, t)r(t)

+ J(1, (1 + ω)n, 0, t)(1− r)− J(m,n,D, t)]dN(t).

Moreover, under the same loss function `(m(t), n(t), u(t)) as in Eq. 8, it is easy to show that the optimal cost-to-go J needs
to satisfy the following nonlinear partial differential equation:

0 = Jt(m(t), n(t), t)− ωn(t)m(t)
1 + ωD

Jm(m(t), n(t), t) + JD(m(t), n(t), t) + 1
2(1−m(t))2

− 1
2q
−1(J(m(t), n(t), t)− J(1, (1− α)n(t), t)m(t)− J(1, (1 + β)n(t), t)(1−m(t))

)2
+
. [6]

Then, we can adapt Lemma 2 to derive the optimal scheduling policy for a single item under the power-law forgetting curve
model:
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Lemma 4 Consider the following family of losses with parameter d > 0,

`d(m(t), n(t), D(t), u(t)) = hd(m(t), n(t), D(t)) + g2
d(m(t), n(t)) + 1

2qu(t)2,

gd(m(t), n(t)) = 2−1/2
[
c2

log(d)
−m(t)2 + 2m(t)− d − c2

log(d)
1− d + c1m(t) log

(1 + β

1− α

)
− c1 log(1 + β)

]
+
,

hd(m(t), n(t)) = −√q ωn(t)m(t)
1 + ωD(t) c2

(−2m(t) + 2) log(d)
(−m(t)2 + 2m(t)− d)2 . [7]

where c1, c2 ∈ R are arbitrary constants. Then, the cost-to-go Jd(m(t), n(t), t) that satisfies the HJB equation, defined by Eq. 6,
is given by:

Jd(m(t), n(t), D(t), t) = √q
(
c1 log(n(t)) + c2

log(d)
−m(t)2 + 2m(t)− d

)
[8]

which is independent of D(t), and the optimal intensity is given by:

u∗d(t) = q−1/2[c2
log(d)

−m(t)2 + 2m(t)− d − c2
log(d)
1− d + c1m(t) log

(1 + β

1− α

)
− c1 log(1 + β)]+.

Proof Consider the family of losses defined by Eq. 7 and the functional form for the cost-to-go defined by Eq. 8. Then, for
any parameter value d > 0, the optimal intensity u∗d(t) is given by

u∗d(t) = q−1 [Jd(m(t), n(t), t)− Jd(1, (1− α)n(t), t)m(t)− Jd(1, (1 + β)n(t), t)(1−m(t))]+

= q−1/2
[
c2

log(d)
−m2 + 2m− d − c2

log(d)
1− d + c1m(t) log

(1 + β

1− α

)
− c1 log(1 + β)

]
+
,

and the HJB equation is satisfied:

∂Jd(m,n, t)
∂t

− ωnm

1 + ωD

∂Jd(m,n, t)
∂m

+ hd(m,n) + g2
d(m,n)− 1

2q
−1(Jd(m,n, t)

− Jd(1, (1− α)n, t)m− Jd(1, (1 + β)n, t)(1−m)
)2
+

= √q βc2nm

1 + ωD

(−2m+ 2) log(d)
(−m2 + 2m− d)2 + hd(m,n) + g2

d(m,n)− 1
2

[
c1 log(n) + c2

log(d)
−m2 + 2m− d

−m
(
c1 log(n(1− α)) + c2

log(d)
1− d

)
− (1−m)

(
c1 log(n(1 + β)) + c2

log(d)
1− d

)]2

+

= √q ωnmc2

1 + ωD(t)
(−2m+ 2) log(d)
(−m2 + 2m− d)2 −

√
q
ωnmc2

1 + ωD

(−2m+ 2) log(d)
(−m2 + 2m− d)2︸ ︷︷ ︸
hd(m,n)

− 1
2
[
c2

log(d)
−m2 + 2m− d − c2

log(d)
1− d + c1m log( 1 + β

1− α )− c1 log(1 + β)
]2
+

+ 1
2
[
c2

log(d)
−m2 + 2m− d − c2

log(d)
1− d + c1m log( 1 + β

1− α )− c1 log(1 + β)
]2
+

where for notational simplicity m = m(t), n = n(t), D = D(t) and u = u(t).

Finally, reusing Theorem 3, the optimal reviewing intensity for a single item under the power-law forgetting curve model is
given by

u∗(t) = lim
d→1

u∗d(t) = q−1/2(1−m(t)).

It is then straightforward to derive the optimal reviewing intensity for a set of items, which adopts the same form as in
Theorem 4.
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HLR Our Model Our Model
Exponential Exponential Power-law

MAE↓ 0.128 0.129 0.105
AUC↑ 0.538 0.542 0.533

CORh ↑ 0.201 0.165 0.123
Table S1. Predictive performance of the exponential and power-law forgetting curve models in comparison with the results reported by Settles
et al. (4). The arrows indicate whether a higher value of the metric is better (↑) or a lower value (↓).

7. Our Modeling Framework Using the Multiscale Context Model

In this section, we will briefly describe the Multiscale Context Model (MCM) of memory (3) and sketch how derive the optimal
reviewing schedule for this model.

MCM models memory as activation of M time-varying context units with the values {xi(t)}[M ]. The units are leaky and
lose their activation at different decay rates {τi}[M ]; τi+1 > τi, such that ∆xi(t+ ∆t) = xi(t) exp (−∆t/τi). The accumulated

activity of the units, each scaled by {γi}[M ], represents the total trace strength of the item at time t, i.e., sM (t) =
∑M

i=0
γixi(t)∑M

i=0
γi

.

The probability of recall of the item at time t is then calculated as mMCM (t) = min {1, sM (t)}.
Each time a review happens, the activation of the context pools jumps by an amount which depends on how much activation

at timescale i, i.e., xi(t) had contributed to the recall. So if a review happens at time tr, ∆xi(t+r ) = ε(1− si(t−r )), where si(t)

represents the strength of all activations which decay faster than the current trace, i.e., si(t) =
∑i

j=1
γjxj (t)∑i

j=1
γj

. The value of ε is

set to εα if the recall was successful and to εβ if the recall was unsuccessful. For a more detailed description of MCM, we refer
the readers to (3).

The dynamics of the context pools {xi(t)}[M ] can be converted to the corresponding SDEs readily as follows.

si(t) =
∑i

j=1 γjxj(t)∑i

j=1 γj

dxi(t) = εαr(t)(1− si(t))dN(t) + εβ(1− r(t))(1− si(t))dN(t)− xi(t)
τi

dt [9]

dsM (t) =
∑M

j=1 γjdxj(t)∑M

j=1 γj
.

For modeling the probability of recall mMCM (t), we can use a differentiable approximation to the min {1, sM (t)} function.
For example, we can use hyperbolic-tan, and approximate mMCM (t) via m̃MCM (t):

m̃MCM (t) = tanh sM (t)
=⇒ dm̃MCM (t) =(1− m̃2

MCM (t))dsM (t). [10]

One can contrast Eq. 9 and Eq. 10 with Eq. 2 and Eq. 3 (or Eq. 5) respectively to compare the derivations for the exponential
forgetting curve model and the MCM.

Extension of Lemma 2 for Eq. 10 is straight-forward and the nonlinear partial differential equation corresponding to Eq. 7
(or Eq. 6) can be solved to arrive at the optimal scheduling for the MCM model. The resulting equation, however, does not
readily admit to an analytical solution as was the case for the exponential and power-law forgetting curve models.

8. Predictive performance of the memory model

Before we evaluate the predictive performance of the exponential and power-law forgetting curve models, whose forgetting
rates we estimated using a variant of Half-life regression (HLR) (4), we highlight the differences between the original HLR and
the variant we used.

The original HLR and the variant we used differ in the way successful and unsuccessful recalls change the forgetting rate. In
our work, the forgetting rate at time t depends on n3(t) =

∫ t
0 r(τ)dN(τ) and n7(t) =

∫ t
0 (1− r(τ))dN(τ). In contrast, in the

original HLR, the forgetting rate at time t depends on
√
n3(t) + 1 and

√
n7(t) + 1. The rationale behind our modeling choice

is to be able to express the dynamics of the forgetting rate using a linear stochastic differential equation with jumps. Moreover,
Settles et al. consider each session to contain multiple review events for each item. Hence, within a session, the n7(t) and n3(t)
may increase by more than one. In contrast, we consider each session to contain a single review event for each item because the
reviews in each session take place in a very short time and it is likely that after the first review, the user will recall the item
correctly during that session. Hence, we only increase one of n3(t) or n7(t) by exactly 1 after each session and consider an item
has been successfully recalled during a session if all reviews were successful, i.e., precall = 1. Noticeably, ∼83% of the items
were successfully recalled during a session.
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K Interval boundaries

3 [0, 20 minutes, 2.9 days, ∞]
4 [0, 9 minutes, 21.5 hours, 5.2 days, ∞]
5 [0, 6 minutes, 1.5 hours, 1.8 days, 7.3 days, ∞]

Table S2. The boundaries of intervals used to divide review times into bins based onK-quantiles of inter-review times in the Duolingo dataset.

(a) Comparing α(row) and α(col)

2 3 4 5
1 0.317 0.317 0.317 0.317
2 0.312 0.312 0.312
3 0.317 0.317
4 0.318

(b) Comparing β(row) and β(col)

2 3 4 5
1 0.165 0.172 0.165 0.165
2 0.318 0.302 0.302
3 0.318 0.318
4 0.302

Table S3. p-values obtained after using Welch’s t-test for populations with different variance to reject the null hypothesis that the samples
(i.e., 400 samples of {α(i)} and {β(i)} for i ∈ [5]) have the same mean value. In all cases, we find no evidence to reject the null hypothesis.
The results for other values of K were qualitatively similar.

Table S1 summarizes our results on the Duolingo dataset in terms of mean absolute error (MAE), area under curve (AUC)
and correlation (CORh), which show that the performance of both the exponential and power-law forgetting curve models with
forgetting rates estimated using the variant of HLR is comparable to the performance of the exponential forgetting curve model
with forgetting rates estimated using the original HLR. In the above results, note that we fitted a single set of parameters α
and β for all items and a different initial forgetting rate ni(0) per item i. One could think of estimating item specific (or even
user specific) parameters α and β, however, we found that our dataset is not large enough to provide accurate estimates of
such item specific parameters. More generally, there is always a trade-off between the complexity of the model and the size of
the dataset used to fit the model parameters.

9. Constant vs time-varying α and β parameters

In previous studies (5, 6), it has been shown the retention rate follows an inverted U-shape, i.e., mass practice does not improve
the forgetting rate, and thus one could argue that our framework should consider time-varying parameters αi(t) and βi(t). In
this section, we show that, for the reviewing sequences in our Duolingo dataset, allowing for time-varying αi(t) and βi(t) in our
modeling framework does not lead to more accurate recall predictions. This was one of the reasons, in addition to tractability,
for considering constant parameters αi and βi.
Formulation. In Eq. 2, we have considered α and β as constants, i.e., they do not vary with the review interval t − tr,
where tr is the time of last review. We have dropped the subscript i denoting the item for ease of exposition. We can make a
zeroth-order approximation to time varying (α, β) by allowing them to be piecewise constant for K mutually exclusive and
exhaustive review-time intervals

{
B(i)}

[K]
. We denote the value that α (β) takes in interval B(i) as α(i) (β(i)) and modify the

forgetting rate update equation to

dn(t) = −α(i)n(t)r(t)dN(t) + β(i)n(t)(1− r(t))dN(t)︸ ︷︷ ︸
i such that t−tr∈B(i)

If we find that ∃ {i, j} ⊂ [K] such that α(i) (β(i)) is significantly different from α(j) (β(j)), then we would conclude that α (β)
vary with review-time.

We obtain repeated estimates of
{
α(i)}

[K]
and

{
β(i)}

[K]
by fitting our model to datasets sampled with replacement from our

Duolingo dataset, i.e., via bootstrapping. The Welch’s t-test is used to test if the difference in mean values of the parameters
in different bins is significant.
Experimental setup. We set the bins boundaries by determining the K-quantiles of the review times in our dataset. Table S2
shows that the bin boundaries for different K are quite varied and adequately cover long time-scales as well as review intervals
which are short enough to capture massed practicing. This method of binning also ensures that we have sufficient samples
for accurate estimation (∼5.2e6/K) for all parameters. Then we use the variant of HLR described in Appendix 8 to fit the
parameters in 400 different datasets using bootstrapping. The regularization parameters are determined via grid-search using a
train/test dataset. We thus obtain 400 samples of

{
α(i)}

[K]
and

{
β(i)}

[K]
for K ∈ {3, 4, 5} and i ∈ [K]. Using Welch’s t-test

for distributions with varying variances, we observe that the mean values of the distributions of
{
α(i)}

[K]
(
{
β(i)}

[K]
) and{

α(j)}
[K]

(
{
β(j)}

[K]
) are not significantly different for any {i, j}. As an example, the p-values obtained for K = 5 are shown

in Table S3.

10. Likelihood distributions for different reviewing schedules

In this section, we compute the likelihood of each sequence of review events in our dataset under different reviewing schedules.
Figure S3 summarizes the results by showing the empirical distribution of estimated likelihood values for Memorize, threshold
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and uniform schedules. Since Duolingo uses a near-optimal hand-tuned reviewing schedule, the peak of the distribution for
Memorize corresponds to the highest likelihood values, i.e., there are many (user, item) pairs who follow Memorize closely.

−2000−1500−1000 −500 0
100

102

104

106

(a) MEMORIZE

0 500 1000
100

102

104

106

(b) Threshold

−200 0 200 400 600
100

102

104

106

(c) Uniform

Fig. S3. Empirical distribution of log-likelihood values for all (user, item) pairs under different reviewing schedules. Since Duolingo uses a near-optimal hand-tuned reviewing
schedule, the peak of the distribution for MEMORIZE corresponds to the highest likelihood values, i.e., there are many (user, item) pairs who follow MEMORIZE closely.

11. Leitner system: particular case of our modeling framework

In this section, we first describe the Leitner system and then show that it can be explicitly cast using our modeling framework
with particular choices of α, β and ni(0).
Leitner system. More than 40 years ago, Sebastian Leitner introduced the Leitner System as a method used to memorize
flash cards (7). Since then, several variants of the system have been introduced and some of them are still in active use. Next,
for the sake of brevity, we describe one of these variants, which has been recently studied by Reddy et al. (8) and Settles et
al. (4).

The learner maintains several decks of flashcards, labelled j ∈ Z, each of which is reviewed at exponentially decreasing
frequency λj = λ0c

j , for some constants c and λ0. Whenever a card i from deck j is reviewed, it is moved to deck j + 1 if it is
recalled correctly (i.e., if ri(t) = 1), or else (if ri(t) = 0) it is moved to deck j − 1, as shown in Figure S4. The intuition behind
the Leitner system is that cards which belong to a deck with a large index j have been learned (or were easy to learn), i.e.,
they have a low forgetting rate, and cards which are in lower decks have not been learned yet (or were difficult to learn), i.e.,
they have a high forgetting rate. Then, the learning strategy of the learner is to select flashcards at random from any deck as
long as the reviewing rate for flashcards in each deck j remains λj , i.e., the expected number of flashcards selected for review
from deck j in any time interval ∆t is λj ×∆t.
Modeling the Leitner system. For ease of exposition, we assume that the number of decks is unbounded both from above
and below†, i.e., there are always decks with higher (or lower) rate of review than the current deck. Under this assumption, we
can faithfully represent the Leitner system under our modeling framework as follows.

First, we assign a fixed forgetting rate ñj to all flashcards in deck j, i.e., if at time t, a flashcard i is in deck j then ni(t) = ñj
and, at the beginning, all flashcards are placed in the first deck, i.e., ∀i. ni(0) = ñ0. Then, every time a card i moves from deck
j to j + 1, we change its forgetting rate ni(t) by a factor of (1− α) = ñj+1

ñj
and, similarly, every time it moves from j to j − 1,

we change it by a factor of (1 + β) = ñj−1
ñj

. Finally, we set λj = ñj , i.e., the reviewing intensity of a card is proportional to the
rate of forgetting associated to its deck, where the constant of proportionality has been absorbed into ñj . Now we can uncover
α and β by solving the equations (1− α) = ñj+1

ñj
= c and (1 + β) = ñj−1

ñj
= 1

c
. It is easy to see that, with minor modifications,

our framework can be also used to represent many other variants of the Leitner system with, e.g., bounded number of decks.

12. Additional details on the Duolingo dataset

Learners on Duolingo have a source language (which they already know) and a target language (which they wish to learn).
Upon log-in, they are greeted with a screen to select the skill they wish to train/learn, shown in Figure S5a. As soon as they
select a skill, a session begins (see Figure S5b). In each session, the learner is asked to translate ∼10 phrases from the source
language to the target language or vice-versa. A typical session may last for ∼2–5 minutes but if it is interrupted in the
middle due to any reason (loss of connectivity, student logging-out, etc.), the session (and its associated data) is discarded.
Figures S5c and S5d show a correct translation and an incorrect translation, respectively, for one such phrases for the language
pair (English, French). For each word that appears at least once in a session, our dataset contains identity of the learner, a
timestamp (in UTC) indicating when the session started, the total number of times the word appears, and how many times
the learner correctly/incorrectly translated the phrases containing that word. We consider a session to be a single point in
time (localized at the start of the session), when the student practiced all the words appearing in it. A learner may do several
sessions in a single sitting: the sessions in our dataset are separated by a median of ∼7 minutes, including the time the learner
spent in the session.

† In a real deployment of the system, the bounds on the number of decks will be self imposed, e.g., flashcards which move to a high enough deck will effectively never be studied, i.e., they will be retired.
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Deck 1
Everyday

Deck 2
Every 2 days

Deck 3
Every 4 days

Deck 4
Every 8 days

Correct recalls

Incorrect recalls

……

Fig. S4. The Leitner system. The learner picks flashcards for review from several decks and flashcards are moved from one deck to another based on the recall outcome after
a review. The higher the index of the deck, the lower the rate at which cards are picked for review from that deck, e.g., cards in deck 1 may be reviewed once per day, cards in
deck 2 once every two days, and so on.

(a) Skill selection (b) Session start (c) Correct response (d) Incorrect response

Fig. S5. The Duolingo learning app.

As discussed in Section 8, our experimental design differs from that of Settles et al. (4) in some respects: we consider a word
i to be recalled correctly at time t, i.e., ri(t) = 1, if the student answered all the questions containing that word correctly.
Otherwise, we assume that the word was not recalled correctly.

13. Random assignment assumption on the item difficulties

To rule out that the competitive advantage that Memorize offers with respect to the uniform and the threshold based baselines
is a consequence of selection bias due to the item difficulty, we compute the empirical distributions of item difficulties for
the treatment (Memorize) and control (uniform and threshold) groups and check whether the allocation of items across the
treatment and control groups resemble random assignment.

Figure S6 summarizes the results for reviewing sequences with a training period T = 5± 0.5 days, which show a striking
similarity between distributions across groups. In fact, the treatment group is indistinguishable from both the control groups in
terms of item difficulties because their values are within a standardize mean difference (SMD)‡ of 0.25 standard deviations (9).
Similar results are obtained for sequences with a training period T = 3± 0.3 and with T = 7± 0.7.

Finally, we would like to acknowledge that there may be other covariates that influence the performance of a learner such as,
e.g., time of the day, amount of stress, amount of sleep or degree of concentration. Unfortunately, we did not have access to
measurement about them.

14. Empirical forgetting rate without normalization

In Figure 2, for a more fair comparison across items, we normalized each empirical forgetting rate using the average empirical
initial forgetting rate of the corresponding item at the beginning of the observation window n̂0. In this section, we demonstrate
that the competitive advantage of our algorithm is not sensitive to this normalization step.

More specifically, we re-run our analysis using unnormalized values for the empirical forgetting rates. Figure S7 summarizes
the results, which still show a competitive advantage of Memorize with respect to the uniform and threshold based baselines.
The primary difference between using normalization (Figure 2) or not using normalization (Figure S7 ) is just a scaling factor.

‡The standardized mean difference (SDM) is defined as the difference in means of the treatment and control group divided by the pool standard devision of both groups.
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Fig. S6. Empirical distribution of n0 for (user, item) pairs with a training period T = 5 ± 0.5 days in the treatment (MEMORIZE) and control groups (threshold based and
uniform).
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(a) T = 3 ± 0.3 days
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(b) T = 5 ± 0.5 days
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(c) T = 7 ± 0.7 days

Fig. S7. Average empirical forgetting rate without normalization for the top 25% pairs in terms of likelihood for MEMORIZE, the uniform reviewing schedule and the threshold
based reviewing schedule for sequences with different number of reviews n and different training periods T = tn−1 − t1. Boxes indicate 25% and 75% quantiles and solid
lines indicate median values, where lower values indicate better performance. MEMORIZE offers a competitive advantage with respect to the uniform and the threshold based
baselines and, as the training period increases, the number of reviews under which MEMORIZE achieves the greatest competitive advantage increases. For each distinct
number of reviews and training periods, ∗ indicates a statistically significant difference (Mann–Whitney U test; p-value<0.05) between MEMORIZE vs. threshold and between
MEMORIZE and uniform scheduling.
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