

Supplementary Information for

Fibroblast growth factor receptor influences primary cilium length through an interaction with intestinal cell kinase

Michaela Kunova Bosakova, Alexandru Nita, Tomas Gregor, Miroslav Varecha, Iva Gudernova, Bohumil Fafilek, Tomas Barta, Neha Basheer, Sara P. Abraham, Lukas Balek, Marketa Tomanova, Jana Fialova Kucerova, Juraj Bosak, David Potesil, Jennifer Zieba, Jieun Song, Peter Konik, Sohyun Park, Ivan Duran, Zbynek Zdrahal, David Smajs, Gert Jansen, Zheng Fu, Hyuk Wan Ko, Ales Hampl, Lukas Trantirek, Deborah Krakow*, Pavel Krejci*

Pavel Krejci Email: krejcip@med.muni.cz

Deborah Krakow Email: dkrakow@mednet.ucla.edu

This PDF file includes:

Figs. S1 to S5

7					
ਤ' □				<u></u>	
<u> </u>					
5					
<u>-</u> 5		Т			
È.					
24					
3		1			
Ŭ					
2					
		E I			
g 1 🖵					
	_{┪┹} ╉╉┪╝┇╹╹╹╹╹╹╹┱┱┱╋┑┱┱╴		TTTTT	╷ ┎┎╹╻╹╹╹╹╹╹╹╹╹╹╹╹╹╹╹╹╹╹╹╹╹╹╹╹╹╹╹	
0 1	3 5 7 0 11 13 15 17 10 21 23	25 27 20 31 33	25 37 30	41 43 45 47 49 51 53 55 57 59 61 4	3 65 67 60 7
de#'	5 5 7 5 11 15 15 17 18 21 25	25 21 28 51 55	5 33 37 38	5 41 45 45 47 48 51 55 55 57 58 61 V	5 05 07 08 7
R3	Juxtamembrane			TK C lobo	C-terminus
		<u> </u>		edui-0 MT	
397	459	556 562		75	5 8
		552YVLVEYAAKG562		⁷⁴⁰ TFKQLVEDLDRVLTV	TSTDEY ⁷⁶⁰
Pentide	e		Pentide		
#	Peptide sequence	Fluorescence	#	Peptide sequence	Fluorescenc
		6192	27		6139
		0102	37		0130
2		4314	38		7629
3		4106	39		6606
4	400LGSPTVHKISRFP410	4982	40		7081
5	⁴⁰⁹ PTVHKISRFPLKR ⁴²¹	5550	41		5617
6	412HKISRFPLKRQVS424	5647	42	633KIADFGLARDVHN644	5181
7	415SRFPLKRQVSLES427	7046	43	636DFGLARDVHNLDY647	6670
8	418PLKRQVSLESNAS430	6104	44	⁶³⁹ LARDVHNLDYYKK ⁶⁵⁰	4154
9	⁴²¹ RQVSLESNASMSS ⁴³³	6550	45	⁶⁴² DVHNLDYYKKTTN ⁶⁵³	5494
10	⁴²⁴ SLESNASMSSNTP ⁴³⁶	6372	46	⁶⁴⁵ NLDYYKKTTNGRL ⁶⁵⁶	5860
11	⁴²⁷ SNASMSSNTPLVR ⁴³⁹	6770	47	648YYKKTTNGRLPVK659	5111
12	⁴³⁰ SMSSNTPLVRIAR ⁴⁴²	8335	48	⁶⁵⁷ PVKWMAPEALFDRVY ⁶⁷¹	6331
13	⁴³³ SNTPLVRIARLSS ⁴⁴⁵	8241	49	689TLGGSPYPGI698	5915
14	⁴³⁶ PLVRIARLSSGEG ⁴⁴⁸	10174	50	⁶⁹⁹ PVEELFKLLKE ⁷⁰⁹	9525
15	⁴³⁹ RIARLSSGEGPTL ⁴⁵¹	7331	51	⁷¹⁰ GHRMDKPANC ⁷¹⁹	5642
16	442RLSSGEGPTLANV454	6352	52	720THDLYMIMRECW731	6490
17	⁴⁴⁵ SGEGPTLANVSEL ⁴⁵⁷	6694	53	⁷³² HAAPSQRP ⁷³⁹	4963
18	448GPTLANVSELELP460	6084	54	740TFKQLVEDLDRVLTV754	5997
19	⁴⁵¹ LANVSELELPADP ⁴⁶³	5899	55	740TFKQLVEDLDRVLTVTSTDEY760	64339
20	⁴⁵⁴ VSELELPADPKWE ⁴⁶⁶	7129	56	748LDRVLTVTSTDEY760	5661
21	457LELPADPKWELSR469	6475	57	751VLTVTSTDEYLDL763	5965
22	459LPADPKWEL467	6094	58	754VTSTDEYLDLSAP766	6255
23	468SRARLTLGKPLGE480	7629	59	757TDEYLDLSAPFEQ769	7135
24	⁴⁸¹ GCFGQVVMAEA ⁴⁹¹	6483	60	760YLDLSAPFEQYSP772	6385
25	⁴⁹² IGIDKDRAAKP ⁵⁰²	6001	61	763LSAPFEQYSPGGQ775	6325
26		6240	62	766PEEQYSPGGQDTP778	6493
27	515TDKDLSDLVSEMEMMKMIG533	5891	63	7690YSPGGODTPSSS ⁷⁸¹	7493
28	533GKHKNIIN540	5644	64	772PGGODTPSSSSSG784	7337
29		5977	65	7750DTPSSSSSGDDS787	6882
30		40066	20	778PSSSSSGDDSVEA790	6318
31		5012	67		6640
30		15250	69		6690
32		8759	60		5476
33		0700	70		54/0
34		0230	70		5/40
35		0215	(1	LLPPAPPSSGGSR1000	5400
36		0335	1	1	1

Figure S1 Mapping the FGFR3-ICK interaction using peptide microarray

(A) The intracellular part of FGFR3 was dissected into 71 overlapping peptides, and the peptide microarray was prepared and processed as detailed in Material and Methods. The fluorescence signal corresponds to ICK binding, and identified two ICK-binding peptides: ⁵⁵²YVLVEYAAKG⁵⁶¹, and ⁷⁴⁰TFKQLVEDLDRVLTVTSTDEY⁷⁶⁰. TK, tyrosine kinase. (B) Table listing all peptides and the corresponding mean of fluorescence values. The ICK interacting peptides are highlighted

in red. The contribution of ⁷⁴⁰TFKQLVEDLDRVLTVTSTDEY⁷⁶⁰ to FGFR3-ICK interaction is further analyzed in the manuscript (Figs. 2, 3). The identification of additional ICK binding site (⁵⁵²YVLVEYAAKG⁵⁶²) in the kinase domain of FGFR3 is in discrepancy with the co-immunoprecipitation results, where all C-terminal truncated constructs failed to bind ICK, despite possessing the intact ⁵⁵²YVLVEYAAKG⁵⁶² motif (Fig. 2B). It is likely that the ⁵⁵²YVLVEYAAKG⁵⁶² motif is a weak binding site that is not sufficient alone to mediate the stable interaction between FGFR and ICK, necessary for co-immunoprecipitation.

Figure S2 Inhibition of Ick activity deregulates cilia length and blocks the FGF2-mediated cilia elongation. NIH3T3 cells were serum starved for 12 hours to produce cilia, and then treated with ICK inhibitors flavopiridol, AT7519 or lestaurtinib, in the presence or absence of 2 ng/ml FGF2 for additional 12 hours. Cilia were visualized by ARL13B immunostaining, measured in 3D and plotted. Black dots, individual cilia; red bars, medians (Student's t-test, ***p<0.001); n.s., not significant.

Figure S3 Ick^{CRISPR} NIH3T3 cells form cilia with extreme variability in length

NIH3T3 cells were serum starved (24-36 hours) before their cilia lengths were visualized by ARL13B immunostaining, measured and plotted. Black dots represent individual cilia; red bars show medians (Student's t-test, ***p<0.001). Cilia of non-transfected FGF2-naïve wild-type (WT) and *Ick*^{CRISPR} NIH3T3 cells from Figure 6 and Figure 7F were used to build the figure.

(A) GLI3 expression in Ick^{CRISPR} cells (clones #1, #2, and #3), analyzed by western blot. Ick^{CRISPR} cells show increased full length GLI3 (FL) to repressor (R) ratio, and upregulate GLI1, compared to wild-type (WT) NIH3T3 cells (Student's t-test, */*#p<0.05, **/*#p<0.01, ***/###p<0.001). Actin was used as a loading control and for normalization of GLI1 expression. (B-C) Ick^{CRISPR} cells do not process GLI3 upon treatment with SAG, as evidenced by no changes in GLI3^{FL}/GLI3^R ratios, fail to activate GLI1 expression in western blots (B), and *Gli1* and *Ptch1* expression in qRT-PCR (C) (statistical significance -# among untreated cells, * among SAG treated cells). (D) Cilia of Ick^{CRISPR} cells aberrantly accumulate BBS8, IFT172 and GLI3 in their bulged tips. (E) In the absence of SAG, Ick^{CRISPR} cells translocate Smoothened (SMO) to cilia in contrast to

(A) Serum starved Shh-LIGHT2 NIH3T3 cells were treated with increasing concentrations of SAG. FGF2 inhibited the SAG-mediated transactivation of the Hh reporter (Student's t-test, **p<0.01, ***p<0.001). (B) Inhibition of ICK activity by 125 nM flavopiridol (F), 1.25 μ M AT7519 (A), 125 nM lestaurtinib (L) or by FGF2 blocks the SAG-mediated GLI1 expression in NIH3T3 cells. Actin was used as a loading control, and for normalization of GLI1 expression. (C) Micromasses produced from limb buds of *Ick*^{-/-} E12 mice have inhibited SAG-mediated expression of *Gli1* and *Ptch1*, compared to the *Ick*^{+/+} littermates (control) that inhibit SAG-mediated *Gli1* expression upon FGF2. (D) *Ick*^{-/-} micromasses failed to efficiently shuttle GLI2 to cilia as a response to SAG, similar to FGF2-treated control micromasses. Cells were stained by ARL13B and GLI2 antibodies, and the percentage of GLI2-positive cilia was scored (scale bar 1 μ m).