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Supplementary Information Text 
 
Details of STRUCTURE analysis using modern and inferred ancestral allele 
frequencies 
A description of patterns of substructure at K = 9 is described in the main text. We also 
examined patterns at lower values of K. At K=2, AAC 1 (blue) represents Saharan 
ancestry and AAC 2 (green), sub-Saharan ancestry. At K=3, AAC 3 (orange) is most 
commonly found in individuals that speak languages belonging to the NC language 
family. We compared the distribution of AAC 3 in individuals speaking NC languages to 
individuals speaking AA, NS, and Khoisan languages using the Wilcoxon rank-sum test 
and found individuals speaking NC languages to have a significantly greater distribution 
of AAC 3 when compared to individuals not speaking NC languages (W=126,094; p-
value < 1610x0.1 - ).   
 
At K=4 we observe an AAC (light blue) that is found at highest frequency in Sabue 
individuals, 83.2% on average; we compared the distribution of AAC 4 in Sabue 
individuals to all other ethno-linguistic groupings and combined p-values with Fisher’s 
method, testing for an excess of low p-values. We found a statistically significant 
enrichment of low p-values (χ2=1,731.3, d.f.=100; p-value< 1610x0.1 - ) indicating the 
specificity of this AAC to the Sabue. This AAC is also found at high frequency in Hadza 
individuals (60.2% on average), which was significantly greater in all pair-wise 
comparisons with other ethnicities save the Sabue, Aari (AA), Hamer (AA) and Pokot 
(NS) after adjusting p-values for FDR (1). Furthermore, we found a statistically 
significant excess of low p-values in the Hadza comparisons, indicating that the Hadza 
share a significant proportion of the AAC enriched in the Sabue (χ2=1,274.4, d.f.=100; p-
value < 1610x0.1 - ). The Aari, Hamer and Pokot populations are located relatively close to 
the Sabue geographically (224-660 km); the Shabo language is hypothesized to have 
borrowed linguistic features or descended from the languages spoken by the ancestors of 
these populations (2). In contrast, the Hadza live more than 1,250 km away and have no 
previously documented cultural connection, linguistic or otherwise, with the Sabue.  
 
At K=5, an AAC (yellow) is inferred that is at 59.5% frequency in Hadza individuals on 
average; when compared to other populations the distribution of this AAC was 
significantly greater in the Hadza than all other populations (χ2=1,799.0, d.f.=100; p-
value < 1610x0.1 - ). The levels of AAC 5 amongst San individuals (39.5% on average) was 
found to be significantly lower in other populations, save the Hadza (χ2=1,692.8, 
d.f.=100; p-value < 1610x0.1 - ), which is also of note because of the geographic distance 
between the Hadza and San and the contentious classification of their respective 
languages into the same language family based largely on sharing a dental click phoneme 
(3).  
 
At K=6, the genetic structure distinguished in the haplotypes cluster and genotype modes 
are discordant. At K=7, both types of markers produce consistent STRUCTURE runs, 
with two AACs emerging—one AAC (dark green) is common in RHG populations and 
one AAC (red) is common in NS-and AA-speaking individuals. The AAC (dark green) is 



 
 

3 
 

found at highest frequencies in the Biaka, Baka, Bakola, and Bedzan (Western RHG) 
than in other populations (χ2=1731.3, d.f.=92; p-value < 1610x0.1 - ). The Mbuti (Eastern 
RHG) have the second highest frequency of this AAC (χ2=1475.5, d.f.=92; p-value <

1610x0.1 - ). The distinct ancestry of the Mbuti is characterized by greater San ancestry 
than the Western RHG and less NC ancestry: the second highest frequency AAC in the 
Mbuti is found at high frequency in San individuals (28.2% frequency on average); in 
contrast, this AAC is found in the Western Pygmy at only 5.3% frequency on average 
(W=1,470, p-value= 1010x6.2 - ). While the NC AAC is found amongst the Mbuti, 9.2% 
frequency on average, the proportion of NC ancestry is significantly higher in the 
Western Pygmy individuals, 35.5% on average (W=1,470, p= 1010x6.2 - ). At K=8, an 
AAC (pink) emerges that is at highest frequency in Dahalo individuals when compared to 
other populations (χ2=1,578.5, d.f.=100; p-value < 1610x0.1 - ). 
 
We also examined the genetic relationship between AACs based on the inferred ancestral 
allele frequencies themselves. PCA of the ancestral allele frequencies for each AAC 
show clustering of EHG, consistent with a signal of shared ancestry amongst these 
groups. The first four principal components of the ancestral allele frequency matrix 
(K=9) account for 26.56%, 16.28%, 13.25%, and 12.34% of the variance, respectively. 
Results are shown for PC 1 to 3, which in total explain 56% of the variance in the data 
shown in Fig. S13, where the AAC’s are represented by color: San (light green), Western 
Pygmy (dark green), Hadza (yellow), Dahalo (dark purple) and Sabue (light purple). The 
results of the PCA of ancestral allele frequencies inferred by STRUCTURE (AAC-PCA) 
broadly reflect the results obtained by PCA of individuals’ genotypes on PC 1: the San-
specific AAC (green) is at one extreme of AAC-PC 1 while the Mozabite-specific is at 
the other end. In addition, the Western Pygmy-specific AAC is closest to the San-specific 
AAC while AACs specific to other sub-Saharan groups cluster around the center of 
AAC-PC 1 at 0. For AAC-PC 2, the relationship with genotype PC 2 is less clear; the 
NC-specific, NS-specific, and Sabue-specific AACs cluster together at one end of AAC-
PC 2 whereas on the genotype PC 2, NS-speaking and NC-speaking but not Sabue 
individuals are at the extreme end of genotype PC 2. This difference may reflect the 
evidence for recent common ancestry between the Sabue and NS-speaking populations 
previously hypothesized (2). Furthermore, on PC 3, four of the HG AACs are closest to 
each other on the negative-end of the axis: Hadza, San, Sabue, and Dahalo. Thus, while 
the AACs indicate that genetic drift has differentiated allele frequencies amongst these 
HG groups, a comparison of the inferred ancestral allele frequencies support a unique 
common ancestry for them. 
 
Supplemental Identity-by-descent 
Tracts of identity-by-descent (IBD) between pairs of haploid genomes, phased using 
BEAGLE, were obtained using the GERMLINE v2.2 software with “bits” set to 128, 
“haploid” set to true, “err_hom” set to 3 “-err_het” set to 2 and “-min_m” set to 2154. In 
total, 797,760 IBD tracts were identified between all pairs of individuals in our sample. 
Tracts of IBD identified between haploid chromosomes belonging to the same individual 
were categorized as runs-of-homozygosity (ROH). For each population, we visualized 
both the mean of the cumulative tract lengths i.e. the sum of all tract lengths between 
every possible pair of samples within the same ethno-linguistic affiliation, as well as the 
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number of tracts between every single possible pair of individuals of the same ethno-
linguistic affiliation. 
 
To compare the number of tracts and their lengths shared within and between 
populations, we used the model described by Huff et al. (5). The authors developed this 
model to identify cryptic relatives—up to 12th degree cousins—in population samples 
such as the CEU in the HapMap sample. Briefly, in this model, the distribution of the 
number of IBD tracts is assumed to be Poisson with mean equal to the number of 
generations since diverging from their last common ancestor, censored below a given 
cutoff. The distribution of tract lengths is assumed to be exponentially distributed with 
mean inversely proportionally to the number of generations since divergence from the 
last common ancestor. However, here we use this estimate of the number of generations 
since two individuals share an ancestor as an IBD-based distance, slightly modified, for 
summarizing the extent of IBD sharing in a set of individuals. Namely, we calculated a 
statistic measuring the distance for a given set of IBD tracts- 
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where S represents the set of IBD tracts greater than C cM in size among a group of 
individuals, |S| is the cardinality of set S, and the quantity r is the expected number of 
recombination events in a set of individuals, 35 per individual, and c is the number of 
chromosomes in a sample of individuals i.e. the number of individuals multiplied by 
22(5). The estimates were obtained by maximizing the objective function using the R 
function optim(). Unlike Huff et al. (5)we did not account for background IBD present in 
a population and, thus, use the estimated quantity IBDt solely as an IBD-based distance 
measure between the set of tracts from a chosen set of individuals. We inferred 
population-specific values of IBDt based on all IBD tracts and ROH tracts within a given 
population whereas Huff et al. calculated t based on the set of IBD tracts identified 
between a pair of individuals or “within individuals” i.e. ROH. We calculated standard 
errors by jackknifing individuals. 
 
In addition to examining IBD between individuals of the same population, we also 
examined IBD sharing between individuals of different populations to detect populations 
sharing. Similar to the within population case, we counted the number of IBD tracts and 
size of those tracks and estimated the quantity IBDt  except in this case the tracts were 
limited to those identified between individuals of two different populations i and j. We 
devised a between-population IBD statistic based on IBDt  analogous to STF : 

IBD

IBD
IBD t

tF
0

1-= , where 0
IBDt is the average of 0

IBDt within a population and IBDt  is calculated 

pooling populations together. We created a distance matrix using this quantity and re-
constructed a population tree using the NJ algorithm. Broadly, populations in this IBD 
tree cluster by language family and geography, consistent with the STF –based tree. 
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Correlations between among genetics, geography and culture 
Several studies of world-wide human diversity as well as studies within Africa have 
demonstrated that population structure between pairs of populations increases with 
geographic distance (6). We tested for and found a statistically significant association 
between Great-Circle (GC) distances, which were log-transformed, and genetic distances, 
g, between all pairs of populations with ≥10 sampled individuals using the Mantel test 
with 10,000 permutations (M=0.400, p-value= 410x0.1 - ) implemented in the ade4 
package for R (7). We also hypothesized that language and subsistence may impact the 
distribution of genetic variation as well. To investigate the relationship between linguistic 
and genetic distance, we created a language “distance matrix” where pairs of populations 
speaking the same language were coded as 0, and 1, otherwise. We then retained the 
residuals from a logistic regression of language distance with log-transformed GC 
distances for the Mantel test with genetic distances (i.e. a partial Mantel test), which was 
statistically significant (M=0.2329, p-value= 410x0.1 - ). We used a similar procedure for a 
partial Mantel test with the subsistence distance matrix wherein pairs of populations 
practicing the same subsistence strategy were coded as 0, and 1, otherwise. As with 
language, we found subsistence strategy and genetic distance to be positively correlated 
(partial Mantel test: M=0.08190, p-value=0.00849).  
 

Inferring Demographic History using Approximate Bayesian Computation (ABC) 
modeling 
Motivated by the problem of inferring divergence times between EHG populations, who 
have experienced gene flow from neighboring populations and have different effective 
population sizes, using SNP data based on ascertained SNP arrays, we utilized ABC, 
constructing summary statistics from patterns of allele frequency differences, LD decay, 
and admixture LD decay in order to infer parameters such as time of divergence and 
migration. 
 
Simulation framework 
We used Hudson’s ms program to simulate coalescent ARGs given a set of demographic 
parameters: effective population sizes, divergence times, and migration rates between 
populations. For these coalescent simulations we set µq eN4= , the mutation rate was 

chosen to be 1.1×10−8  per generation per base pair, based on a recent whole-genome 
sequencing study of Hutterite parent-offspring trios (8). For the parameter rNe=r , we 
allowed for variation in recombination rate r, which has been shown to have an influence 
on observed summary statistics such as LD decay (9). For this we used the sex-averaged 
recombination map inferred by Kong et al (10). However, the SNP array used by the 
authors had a lower density (approximately 5/6th) than the one we used in our analyses; 
therefore, we fit a smoothing spline regression to the cumulative recombination distance 
between the SNPs on the Kong array to infer the recombination rate between SNPs not 
present on their array. We pre-selected randomly sampled 50-kbp regions from the Kong 
map and matched their average recombination rates in our simulations.  
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The demographic model we developed for EHG evolution in the context of agriculturalist 
and pastoralist expansion is shown in Fig. S8 Parameters of the coalescent simulations 
were either randomly generated (from a prior distribution) if unknown or pre-determined 
based on previous studies (11, 12). The earliest event was the introduction of a population 
split 4,500 generations from the present (9, 13), corresponding to emergence of 
population structure in Africa. This population represents the ancestral population leading 
to modern agriculturalist and pastoralist populations (A/P). The second event was the 
divergence of a non-African representative population (used for ascertainment) 3,500 
generations in the past (9, 13, 14). The simulated out-of-Africa event is accompanied by a 
population bottleneck (10X reduction in population size from 10,000 to 1,000 
individuals) that lasts for 100 generations and is then followed by an exponential 
population growth to a current population size of 100,000 individuals (NOA) (9, 15). The 
A/P population grew exponentially from 10,000 to 100,000 individuals (NOA) at 250 
generations in the past. In addition, the beginning of the A/P expansion is also 
accompanied by the onset of gene flow into HG population 1 and 2, parameterized by 
migration rates M1 and M2, respectively (16, 17). The expansion and accompanying gene 
flow of the A/P population, is intended to be analogous to the population expansions that 
occurred at the advent of the Neolithic revolution in Africa, which occurred 5-3 kya (18, 
19). Thus, the time at which migration from the A/P population into the HG populations 
commenced (Tmig) was drawn from a uniform prior between 100 and 200 generations in 
the past. In addition, effective population sizes for the HG populations (N1 and N2) were 
drawn from a uniform prior between 10,000 and 30,000 individuals; the ancestral 
population size of the HG (NHG) was drawn from a uniform distribution on the interval 
20,000 to 100,000 individuals; the ancestral population size (Nanc) was also drawn from a 
uniform distribution between 20,000 and 100,000 individuals. Finally, the divergence 
time of the EHG populations (THG) was drawn from a wide uniform prior between 200 
and 3,000 generations before present. 
 
The SNP ascertainment scheme approximation was applied to each simulated 50 kbp 
region, before calculating summary statistics. The scheme entailed removing all SNPs 
with an allele frequency below 5% frequency in the non-African-representative sample 
from the African-representative populations. Next, pair-wise r2 was calculated as 
described above for all SNPs in the non-African population sample; for pairs of SNPs 
with an r2 > 0.7, one SNP was randomly chosen to be removed from the African-
representative sample. Finally, for simulations compared to actual data, loci were 
randomly sampled in the “African” samples to simulate the density of SNPs observed on 
the array. This number was generated by first sampling from a log-normal distribution 
with the same mean and standard-deviation as the log of the number of SNPs in the pre-
selected 50-kbp segments on the Illumina 1M-Duo. If the random number was less than a 
cutoff, a minimum number of SNPs (eight) was selected; otherwise the random number 
was rounded and that number of SNPs was randomly selected from the region. 
 
Summary statistics 
The parameters of our demographic model for the evolution of HG populations included 
divergence times, current effective population sizes, ancestral effective population sizes, 
and rates of migration. The f2 statistic summarizes the deviation of allele frequencies 
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between a pair of populations (20). The f2 statistic measures the extent of genetic drift 
between two populations; drift itself is a function of time of divergence and effective 
population size. For each site f2 statistics were calculated; the logs of the mean and 
variance of all f2 statistics between the EHG and each EHG with the A/P population were 
used as summary statistics for each simulation.  
The shape of the LD decay curve contains information regarding effective population 
sizes(21). Instead of relying on an analytical relationship between LD and Ne derived 
from a simple model, the relationship between effective population size and the shape of 
the curve was empirically explored. A simple, flexible approach for fitting curves is to 
use polynomial regression. In this case, a 4th degree orthogonal polynomial was fit with 
to ][ 2rE  as a function of pairwise distance between SNPs (in kbp) for a population. 
However, we found estimates ][ 2rE  to be subject to noise due to sampling variance, 
especially at SNPs farther apart for which fewer observations were available. Therefore, 
we fit the polynomial regression to a smoothed LD decay curve, which we estimated 
through bootstrap aggregated (bagged) local linear regression. The resulting coefficients 
of the polynomial regression were used as the summary statistics relevant to Ne. 
Analogously, the coefficients for a 4th degree polynomial regression fit to the admixture 
LD decay ][aE  as a function of pairwise distance between SNPs were used as summary 
statistics sensitive to migration rate (with smoothing first applied as well). This is in 
contrast to the approach of Moorjani and Loh (20, 22) who assume a simple model for 
the change of ALD as a function of admixture rate and time since admixture. In addition, 
their model assumes a single pulse of admixture as it is a more analytically tractable 
model (more recently extended to two pulses (23, 24). In contrast, we allow for a 
continuous migration rate, which is more plausible for East African and Pygmy hunting-
gathering populations who have likely co-existed with neighboring agriculturalist and 
pastoralist populations for extended periods of time (25-29). 
 
Demographic inference 
Following Fearnhead and Prangle (30), we used these summary statistics in a pilot stage 
for constructing lower dimensional summary statistics that corresponded to estimates of 
the means of the marginal posteriors for each parameter. Thus, for each demographic 
scenario we simulated B1 data sets from a prior distribution on the parameters; summary 
statistics )( simXS  were calculated for each simulation. 
 
The gradient boosting machine method (31, 32), as implemented in the R package gbm 
(33), was used to estimate the posterior mean of the summary statistics for each 
parameter, denoted ))((ˆ simp XSG , where p indicates the parameter of interest. Before 
fitting the GBM, we normalized the parameters, which were each drawn from a uniform 
distribution, to the range [0.001, 0.999] and then applied the inverse-CDF of the 
Gaussian, such that the parameters were approximately normally distributed with mean 0 
and standard deviation 1. At each iteration of the GBM, we used a random sample of 
50% of the data for training a decision tree. To capture interactions between summary 
statistics, decision trees were allowed to include up to 3 summary statistics; however, to 
prevent over-fitting only regression trees including at least 50 observations were 
included; a learning rate of 0.01 was used for regularization purposes. We fit up to 2,000 
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regression trees. Cross-validation was used to pick the total number of trees with the best 
out of sample performance. 
 
We sought to ensure that the GBM learned a function approximation invariant to the 
order in which populations were analyzed e.g. predictions for migration rates from the 
Iraqw into the Hadza and Sandawe should be the same whether the first set of ALD 
statistics is calculated with the Hadza and Iraqw or Sandawe and Iraqw and vice versa. 
Thus, instead of training separate GBM’s for migration rate 1 and 2 we trained a single 
GBM for each of these pairs of parameters. This was accomplished by only retaining 
relevant summary statistics for each parameter e.g. for migration rate between population 
1 and the A/P population we used f2 between the two HG populations, f2 between the HG 
population 1 and the A/P population, coefficients for LD decay in population 1, and 
coefficients for LD decay in population 1; we then concatenated the corresponding 
statistics for migration rate into population 2 (e.g. f2 between the HG population 2) to the 
matrix of statistics for migration rate into population 1, giving us a total of 2B1 rows. This 
process was also employed for effective population size in the HG populations.  
 
For the other parameters that may have had an effect on variation in both extant 
populations (ancestral population sizes and time of divergence), we trained a GBM that 
would learn the relationship between the summary statistics and parameters regardless of 
the order in which the HG populations were analyzed (e.g. the divergence time estimated 
for the Hadza and Sandawe should be the same whether population 1 were assigned to be 
the Hadza or Sandawe). Thus, the matrix of summary statistics was modified by 
concatenating a version of the matrix where population specific variables were swapped. 
For example, in the original matrix the coefficients for LD decay in population 1 were 
columns j through j+4 and in the coefficients for LD decay in population 2 were columns 
j+5 through j+9; in the second version of the matrix that was concatenated to the original 
matrix, these were swapped such that the coefficients for LD decay in population 2 were 
columns j through j+4 and in the coefficients for LD decay in population 1 were columns 
j+5 through j+9. In this way, we minimized the effect of the order in which populations 
were analyzed as a priori this has no inherent relevance to the model. 
 
In the second stage B2 data sets were simulated from the same prior distributions. The 
original set of summary statistics )( simXS  were calculated and the posterior means were 

predicted using the ))((ˆ simp XSG  predicted in the first stage. Thus the algorithm can be 
given as follows- 
1) Stage 1: semi-automatic summary statistic generation 

a. Draw a parameter from prior distribution on q  

b. Generate B1 data sets from coalescent simulator 

c. Create genotype data by randomly pairing genotypes 
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d. Ascertain SNPs in “outgroup” population; retain only those in other 

populations 

e. Calculate summary statistics of simulated )( simXS  data  

f. Repeat steps 1.a—1.e B1 times 

g. Train GBM on these data: ))((ˆ simp XSG  

2) Stage 2: Rejection-based posterior inference 

a. Repeat steps 1.a—1.e B2 times 

b.  Calculate distance between simulated ))((ˆ simp XSG  and observed statistics 

))((ˆ obsp XSG  

c. Accept a fraction of the B2 parameters closest to the observed summary 

statistics, as selected by cross-validation 

d. Utilize local linear regression to estimate posterior density (ABC with 

regression adjustment) 

The abc library (34) in the R environment was used to sample the posterior distribution as 
described in stage 2 of the algorithm above. 
 
Performance of ABC estimates on simulated data  
To test the performance of 2f  and ALD-based summary statistics for inferring the rate 
and time of admixture while accounting for ascertainment, we simulated a demographic 
scenario with three populations with 20 individuals each. Values for migration rates (

mNe4 ) from population 2 to population 3 were sampled from a uniform prior from 0.1 to 
500. The time at which migration initiated varied from 200 to 3000 generations in the 
past. Furthermore, the current Ne for population 3 varied from 10,000 to 30,000 
individuals; the ancestral effective population size values were drawn from a uniform 
distribution between 20,000 and 100,000. A total of B1=1,000 simulations were run in the 
first stage and B2=1,000 simulations in the second stage.  
 
The quality of the semi-automatic summary statistics was evaluated by comparing the 
fitted values to the actual values of the parameters (Figures S14-S17). We observed good 
performance from the trained GBMs on simulated data, with the exception of N1, N2, and 
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NHG parameters. However, our primary motivation was to understand divergence time of 
the EHG; thus, we left the issue of GBM fit for these parameters for future study. 
 
We selected the ABC tolerance, i.e. the fraction of parameter values to keep, by leave-
one-out cross-validation of divergence time. In each iteration a simulated observation was 
omitted and its parameter value was inferred using regression-adjusted ABC at a set of 
increase tolerance levels (1 to 25th percentiles); this procedure was repeated for 20 
simulated observations. The mean squared error was calculated for each tolerance level 
across the 20 chosen points and the tolerance level (20th percentile) with the lowest MSE 
(144848.7) was chosen for ABC inference on the whole data set. The performance of the 
CV analysis is shown in Figure S18. 
 
In addition, the coverage probability (i.e. the probability for the 95% credible for each 
parameter) was calculated and confirmed, demonstrating that the true parameter was 
reliably within the credible interval: M1 (94.5%), M2 (95.8%), THG (94.6%), Tmig (95.2%), 
N1 (93.8%), N2 (92.4%), NHG (92.3%), Nanc  (95.9%). An example of a parameter falling 
into the 95% CI is shown (Figure S19). 
 
Application to African SNP data 
As we observed strong evidence for common ancestry amongst a set of East African 
hunting-gathering populations we sought to date the divergence of these populations 
while accounting for changes in effective population size, gene flow and ascertainment 
bias. We used ABC to calculate the divergence time between the EHG populations 
(Hadza, Sandawe, Sabue, and Dahalo). For each possible EHG pair, we included one of 
three A/P populations—Yoruba (NC), Dinka (NS), and Iraqw (AA)—as a source of gene 
flow. Thus, we inferred divergence time for 18 population combinations in total. 
However, for certain combinations we had greater a priori belief that the A/P population 
had contributed gene flow in the past; this was supported with inspection of 
STRUCTURE results (Fig. S4). For each combination, we calculated the f2, LD, and 
ALD summary statistics.  
 
The maximum a posteriori (MAP) estimate and 95% credible interval for the divergence 
time are shown in Fig. 4 and discussed in the main text. We also examined the posterior 
estimates for other parameters (Tables S4-S10). Notably we observed migration rates 
consistent with a priori knowledge about populations as well as with STRUCTURE 
results. Namely, we find high levels of gene flow from the Iraqw into Hadza and 
Sandawe populations, which has been observed in prior genetic studies (35) and also is 
supported by the fact that the Iraqw live in close proximity to both these EHG 
populations (36). Our estimates of ancestral Ne in African populations are relatively large 
(~1.5x105 across population pairs) compared to other estimates (15). 
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Figure S1. Principal components analysis of individuals’ genotypes. A) The percentage 
of variance explained by the first ten principal components is shown. B) On PC 4, San 
individuals are on one end of the axis and WRHG individuals are on the other. C) On PC 
5, Hadza individuals are on one end of the axis and San individuals are on the other. D) 
On PC 6, Mbuti individuals are on one end of the axis and WRHG individuals are on the 
other. E) On PC 7, Sabue individuals are on one end of the axis and AA and NC 
individuals are on the other. F) On PC 8, Mozabite and Sabue individuals are on one end 
of the axis and Fulani individuals are on the other. G) On PC 9, Dahalo individuals are on 
one end of the axis and Elmolo individuals are on the other. H) Displays the proportion of 
variance explained by each PC.  

Figure S2. Regression analysis of PC 1 and 2 with geography and language. A) We fit a 
linear model relating latitude, longitude as well as different language family and 
subsistence strategies, as categorical variables, to the projection of indviduals’ genotypes 
onto PC1; the fit of the data was compared to the original data and fits the data well ( R2 
=0.86; p-value <1.0x10-16 ). B) We repeated the process for PC 2; however, the linear fit 
appears to be weaker ( R2 =0.56; p- value <1.0x10-16 ).  

Figure S3. The distribution of EHG and Dinka individuals in PC space. A) Euclidean 
distances were calculated between each EHG individuals using the first two PC’s as a 
two- dimensional space; in addition, Euclidean distances were calculated between every 
possible pair of an EHG individual with a non-EHG individual. These two distributions 
are juxtaposed and a statistical test bears out that the EHG individuals are closer to each 
other than to other individuals in the first two PC’s. B) Absolute distances of projection 
of individuals’ genotypes onto PC 3 between all possible pairs of Sabue, Dinka and 
Hadza individuals compared to all possible pairs of individuals in these three populations 
with individuals not in these three populations show that Sabue, Dinka and Hadza 
individuals are closer to each other on PC 3.  

Figure S4. STRUCTURE results for K=2 to K=9 for haplotype clusters at 20,000 
unlinked loci. Haplotype clusters identified from BEAGLE were plotted using 
DISTRUCT; the patterns are largely concordant across K’s. At K=6 and 7 AAC’s 
enriched in the Mbuti and NS populations appear, respectively, which is in contrast to the 
genotype-based results wherein for the AAC’s at K=6 and 7 the NS and Mbuti 
populations, respectively, are enriched.  

Figure S5. Data likelihood of STRUCTURE at K=2 to K=14 across replicate runs. A) 
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STRUCTURE analysis of genotypes at 20,000 unlinked loci shows data likelihood 
increasing as a function of K; however, the variance of the data likelihood increases 
dramatically at K=10 B) STRUCTURE analysis of haplotype clusters at 20,000 unlinked 
loci showed fit increasing as a function of K; as with analysis of genotypes, the variance 
of the data likelihood increases dramatically at K=10.  

Figure S6. Linkage disequilibrium (average r2) decay in populations. The decay of 
average r2 (y-axis) over genetic distance, measured in kb (x-axis) is displayed.  

Figure S7. Inference of demographic history based on linkage disequilibrium and 
haplotype sharing.  A) Effective population size was estimated from LD decay; EHG 
populations are indicated with asterisks. B)  The relationship between mean cumulative 
ROH and IBD. 

Figure S8. EHG Demographic Model. The model employed for EHG demographic 
history in the context of agriculturalist and pastoralist expansion includes the following 
parameters: effective population sizes, population splits, and migration.  

Figure S9. PCA of population samples used in neutrality testing. PC1 is plotted along the 
X- axis, and PC2 is plotted along the Y-axis.  

Figure S10. Distribution of iHS candidate loci across population groupings. The number 
of candidate loci identified in the top 0.1% iHS results that are present in a given number 
of population groupings are displayed on the Y-axis. The X-axis displays each population 
grouping number category.  

Figure S11. Distribution of D candidate loci across population groupings. The number of 
candidate loci identified in the top 0.1% D results that are present in a given number of 
population groupings are displayed on the Y-axis. The X-axis displays each population 
grouping number category.  

Figure S12. Distribution of XP-CLR candidate loci across population groupings. The 
number of candidate loci identified in the top 0.1% XP-CLR results that are present in a 
given number of population groupings are displayed on the Y-axis. The X-axis displays 
each population grouping number category.  

Figure S13. PCA of AAC (K=9) inferred allele frequencies. The AAC’s are projected 
onto axes obtained from the PCA; the AACs are denoted by which population is most 
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enriched for a given AAC. A) On the PC 1 axis, which explains 26.56% of the variance 
in AAC allele frequencies, we observe a distribution of population-specific AACs 
consistent with genotypic PC 1, wherein San and Mozabite populations are at opposite 
ends of the axis. In contrast, AAC PC axis 2, which explains 16.28% of the variance, is 
not so clearly correlated with genotypic PC 2. B) AAC PC 3, explaining 13.25% of the 
data variance, also shows a weak correspondence with genotypic PC 3; the AAC-specific 
to the WRHG is drawn out most on one end of the axis while the Hadza are on the other 
end, with the Sabue closest. C) AAC PC4, explaining 12.2% of the data variance. D) 
AAC PC5, explaining 9% of the variance.  

Figure S14. Transformed (inverse Gaussian CDF) simulated and estimated Nanc (left) 
and NHG (right) parameter values; the 45 degree red line represents perfect correlation.  

Figure S15. Transformed (inverse Gaussian CDF) simulated and estimated M1 (left) and 
M2 (right) parameter values; the 45 degree red line represents perfect correlation.  

Figure S16. Transformed (inverse Gaussian CDF) simulated and estimated N1 (left) and 
N2 (right) parameter values.  

Figure S17. Transformed (inverse Gaussian CDF) simulated and estimated divergence 
time (left) and time of migration (right) parameter values; the 45 degree red line 
represents perfect correlation.  

Figure S18. Cross-validation error for divergence time shown at varying tolerance levels 
(yellow to red is lowest to highest i.e. 1st percentile to 25th percentile; the black line 
represents perfect correlation).  

Figure S19. Example posterior distribution inferred for Nanc where the true, simulated 
parameter value is within the 95% credible interval. The dotted line reflects the prior; the 
black line is the unadjusted, standard ABC posterior distribution and the red line is the 
regression adjusted ABC posterior.  
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Fig. S14 Transformed (inverse Gaussian CDF) simulated and estimated Nanc (left) and NHG 

(right) parameter values; the 45 degree red line represents perfect correlation 
  



 

 
Fig. S15 Transformed (inverse Gaussian CDF) simulated and estimated M1 (left) and M2 (right) 

parameter values; the 45 degree red line represents perfect correlation 
  



 

 
Fig. S16 Transformed (inverse Gaussian CDF) simulated and estimated N1 (left) and N2 (right) 

parameter values   
  



 

 
Fig. S17 Transformed (inverse Gaussian CDF) simulated and estimated divergence time (left) 

and time of migration (right) parameter values; the 45 degree red line represents perfect 
correlation 

  



 
 

 
Fig. S18 Cross-validation error for divergence time shown at varying tolerance levels (yellow to 

red is lowest to highest i.e. 1st percentile to 25th percentile; the black line represents perfect 
correlation).  

  



 
 
 
 

 
Fig. S19 An example posterior distribution inferred for Nanc where the true, simulated parameter 
value is within the 95% credible interval. The dotted line reflects the prior; the black line is the 
unadjusted, standard ABC posterior distribution and the red line is the regression adjusted ABC 

posterior. 
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Table S1. The self-identified ethnicity, linguistic affiliation, country, and sample size for 
each population analyzed in the study. Populations samples obtained from the publicly 
available resources are indicated with an asterisk. Populations referred to as East African 
Hunting-Gathering in the text (EHG) are highlighted in bold. 
 

Ethnicity Country Language  Historical 
Subsistence 

Sample size 

Datog Tanzania Nilo-Saharan Pastoralist 18 

Dinka Sudan Nilo-Saharan Pastoralist 12 

Ilchamus Kenya Nilo-Saharan Pastoralist 19 

Tugen Kenya Nilo-Saharan Pastoralist 15 

Luo Kenya Nilo-Saharan Pastoralist 32 

Pokot Kenya Nilo-Saharan Pastoralist 5 

Ogiek Kenya Nilo-Saharan Hunter-Gatherer 17 

Sengwer Kenya Nilo-Saharan Hunter-Gatherer 16 

Sabue Ethiopia Nilo-Saharan Hunter-Gatherer 14 

Bulala Chad Nilo-Saharan Agriculturalist 12 

Fulani Cameroon Niger-Kordofanian Pastoralist 40 

Rangi Tanzania Niger-Kordofanian Agriculturalist 14 

Pare Kenya Niger-Kordofanian Agriculturalist 14 

Mbuti* DRC Niger-Kordofanian Hunter-Gatherer 15 

Biaka* CAR Niger-Kordofanian Hunter-Gatherer 31 

Bedzan Cameroon Niger-Kordofanian Hunter-Gatherer 13 

Baka Cameroon Niger-Kordofanian Hunter-Gatherer 25 

Bakola Cameroon Niger-Kordofanian Hunter-Gatherer 29 
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Taveta Kenya Niger-Kordofanian Agropastoralist 2 

Taita Kenya Niger-Kordofanian Agropastoralist 9 

Iyassa Cameroon Niger-Kordofanian Agriculturalist 20 

Mandenka* Senegal Niger-Kordofanian Agriculturalist 24 

Yoruba Nigeria Niger-Kordofanian Agriculturalist 12 

Kikuyu Kenya Niger-Kordofanian Agriculturalist 14 

Lemande Cameroon Niger-Kordofanian Agriculturalist 19 

Ngumba Cameroon Niger-Kordofanian Agriculturalist 20 

Tikar South Cameroon Niger-Kordofanian Agriculturalist 19 

Hadza Tanzania Khoisan Hunter-Gatherer 26 

Sandawe Tanzania Khoisan Hunter-Gatherer 29 

San* Namibia Khoisan Hunter-Gatherer 17 

Hadandawa Sudan Afro-Asiatic Pastoralist 15 

Baniamer Sudan Afro-Asiatic Pastoralist 10 

Borana Kenya Afro-Asiatic Pastoralist 18 

Gabra Kenya Afro-Asiatic Pastoralist 9 

Rendille Kenya Afro-Asiatic Pastoralist 14 

Orma Kenya Afro-Asiatic Pastoralist 14 

Gurreh Kenya Afro-Asiatic Pastoralist 7 

Aari Ethiopia Afro-Asiatic Pastoralist 10 

Hamer Ethiopia Afro-Asiatic Pastoralist 10 
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Iraqw Tanzania Afro-Asiatic Agriculturalist 23 

Burji Kenya Afro-Asiatic Agriculturalist 15 

Elmolo Kenya Afro-Asiatic Hunter-Gatherer 13 

Yaaku Kenya Afro-Asiatic Hunter-Gatherer 16 

Boni Kenya Afro-Asiatic Hunter-Gatherer 21 

Wata Kenya Afro-Asiatic Hunter-Gatherer 4 

Dahalo Kenya Afro-Asiatic Hunter-Gatherer 14 

Amhara Ethiopia Afro-Asiatic Agriculturalist 26 

Mada Cameroon Afro-Asiatic Agriculturalist 19 

Mozabite* Algeria Afro-Asiatic Agriculturalist 30 
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Table S2. Population grouping affiliations employed in neutrality tests.  
 
ethnolinguistic 
affiliation N 

country of 
residence language family 

population 
grouping 

historical 
subsistence 

Aari 10 Ethiopia Afro-Asiatic Omotic agro-pastoral 
Amhara 26 Ethiopia Afro-Asiatic Amhara agricultural 

Baka 25 Cameroon 
Niger-
Kordofanian WRHG hunting-gathering 

Bakola 29 Cameroon 
Niger-
Kordofanian WRHG hunting-gathering 

Baniamer 10 Sudan Afro-Asiatic Beja pastoral 

Bedzan 13 Cameroon 
Niger-
Kordofanian WRHG hunting-gathering 

Boni 21 Kenya Afro-Asiatic Boni hunting-gathering 
Bulala 12 Chad Nilo-Saharan Bulala agro-pastoral 
Dahalo 13 Kenya Afro-Asiatic Dahalo hunting-gathering 
Datog 18 Tanzania Nilo-Saharan Datog agro-pastoral 
Dinka 12 Sudan Nilo-Saharan Dinka pastoral 
Elmolo 13 Kenya Afro-Asiatic Elmolo hunting-gathering 

Fulani 16 Cameroon 
Niger-
Kordofanian Fulani pastoral 

Fulani 8 Nigeria 
Niger-
Kordofanian Fulani pastoral 

Gabra 9 Kenya Afro-Asiatic Eastern-Cushitic pastoral 
Gurreh 7 Kenya Afro-Asiatic Eastern-Cushitic pastoral 
Hadandawa 15 Sudan Afro-Asiatic Beja pastoral 
Hadzabe 26 Tanzania Khoisan Hadza hunting-gathering 
Hamer 10 Ethiopia Afro-Asiatic Omotic pastoral 
Iraqw 23 Tanzania Afro-Asiatic Iraqw agro-pastoral 

Lemande 19 Cameroon 
Niger-
Kordofanian Niger-Congo-west agricultural 

Luo 32 Kenya Nilo-Saharan Luo pastoral 
Mada 19 Cameroon Afro-Asiatic Mada agricultural 

Mbororo Fulani 16 Cameroon 
Niger-
Kordofanian Fulani pastoral 

Ngumba 20 Cameroon 
Niger-
Kordofanian Niger-Congo-west agricultural 

Ogiek 17 Kenya Nilo-Saharan Ogiek hunting-gathering 

Pare 14 Kenya 
Niger-
Kordofanian Niger-Congo-east agro-pastoral 

Pokot 5 Kenya Nilo-Saharan Southern-Nilotic pastoral 
Rendille 14 Kenya Afro-Asiatic Eastern-Cushitic pastoral 
Sabue 14 Ethiopia Nilo-Saharan Sabue hunting-gathering 
Sandawe 29 Tanzania Khoisan Sandawe hunting-gathering 
Sengwer 16 Kenya Nilo-Saharan Southern-Nilotic agricultural 

Taita 9 Kenya 
Niger-
Kordofanian Niger-Congo-east agricultural 

Taveta 2 Kenya 
Niger-
Kordofanian Niger-Congo-east agro-pastoral 

Tikar South 19 Cameroon 
Niger-
Kordofanian Niger-Congo-west agricultural 
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Yaaku 16 Kenya Afro-Asiatic Yaaku hunting-gathering 

Yoruba 12 Nigeria 
Niger-
Kordofanian Niger-Congo-west agricultural 
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Table S3. Pathway enrichment results. Population grouping, test statistic, pathway, and 
pathway enrichment results are listed in a supplementary data file. 

Statistic 
Population 
Grouping 

Pathway 
ID 

# 
Observed 

# 
Expected 

P 
Value 

Corr-
ected 
P 
Value Pathway Name 

XP-CLR 
Eastern-
Cushitic P05734 9 2.36 0.00 0.04 Synaptic vesicle trafficking 

XP-CLR Amhara P00059 21 8.48 0.00 0.02 p53 pathway 

XP-CLR Amhara P00043 12 3.79 0.00 0.05 
Muscarinic acetylcholine receptor 2 and 4 
signaling pathway 

XP-CLR Elmolo P00031 20 7.80 0.00 0.02 
Inflammation mediated by chemokine and 
cytokine signaling pathway 

XP-CLR Fulani P00057 57 32.76 0.00 0.03 Wnt signaling pathway 
XP-CLR Mada P00011 11 3.15 0.00 0.02 Blood coagulation 
XP-CLR Omotic P00048 13 4.25 0.00 0.04 PI3 kinase pathway 
XP-CLR Sabue P02766 2 0.09 0.00 0.04 Phenylethylamine degradation 

XP-CLR Sandawe P00040 9 2.35 0.00 0.04 
Metabotropic glutamate receptor group II 
pathway 

iHS 
Eastern-
Cushitic P00019 22 8.96 0.00 0.02 Endothelin signaling pathway 

iHS Beja P02771 4 0.49 0.00 0.03 Pyrimidine Metabolism 

iHS Dinka P04373 11 3.29 0.00 0.04 
5HT1 type receptor mediated signaling 
pathway 

iHS Fulani P00059 22 9.21 0.00 0.03 p53 pathway 
iHS Hadza P00057 63 36.72 0.00 0.02 Wnt signaling pathway 
iHS Iraqw P04395 10 2.51 0.00 0.03 Vasopressin synthesis 

iHS Mada P04373 17 6.26 0.00 0.04 
5HT1 type receptor mediated signaling 
pathway 

iHS 
Niger-Congo-
east P00013 8 1.68 0.00 0.02 Cell cycle 

iHS Sabue P00057 28 12.59 0.00 0.02 Wnt signaling pathway 

iHS Yaaku P00044 11 3.20 0.00 0.02 
Nicotinic acetylcholine receptor signaling 
pathway 

D Amhara P00049 21 8.23 0.00 0.02 Parkinson disease 
D Boni P00057 76 46.46 0.00 0.03 Wnt signaling pathway 

D Boni P00001 12 3.59 0.00 0.05 Adrenaline and noradrenaline biosynthesis 

D 
Eastern-
Cushitic P04378 29 12.22 0.00 0.02 

Beta2 adrenergic receptor signaling 
pathway 

D Luo P00004 54 29.98 0.00 0.03 Alzheimer disease-presenilin pathway 
D Ogiek P00037 19 7.10 0.00 0.02 Ionotropic glutamate receptor pathway 
D Ogiek P00011 15 5.19 0.00 0.04 Blood coagulation 

D 
Niger-Congo-
east P00060 15 4.77 0.00 0.02 Ubiquitin proteasome pathway 

D 
Southern-
Nilotic P00014 9 2.14 0.00 0.03 Cholesterol biosynthesis 

D Sabue P00012 32 15.49 0.00 0.03 Cadherin signaling pathway 
D Sandawe P04372 10 2.54 0.00 0.03 5-Hydroxytryptamine degredation 
D Dahalo P00037 23 9.43 0.00 0.02 Ionotropic glutamate receptor pathway 



 
Table S4. MAP estimates of ancestral Ne (Nanc) as well as upper and lower credible intervals in 
units of NOA = 100,000.  
 

Population Combination MAP 5th 
%ile 

95th %ile 

Hadza:Sandawe:Iraqw 1.486 1.003 2.233 
Hadza:Sandawe:Dinka 1.900 1.233 3.101 
Hadza:Dahalo:Iraqw 1.634 1.073 2.767 
Hadza:Dahalo:Dinka 1.950 1.355 2.969 
Hadza:Sabue:Iraqw 1.445 1.008 2.182 
Hadza:Sabue:Dinka 1.789 1.203 2.806 

Sandawe:Dahalo:Iraqw 1.662 1.118 2.687 
Sandawe:Dahalo:Dinka 1.994 1.414 2.978 
Sandawe:Sabue:Iraqw 1.577 1.140 2.192 
Sandawe:Sabue:Dinka 1.891 1.323 2.897 
Dahalo:Sabue:Iraqw 1.513 1.081 2.246 
Dahalo:Sabue:Dinka 1.903 1.363 2.795 

 
  



 
 
 
 
Table S5. MAP estimates of ancestral HG Ne (NHG) as well as upper and lower credible intervals 
in units of NOA = 100,000.  
	

Population Combination MAP 5th %ile 95th %ile 
Hadza:Sandawe:Iraqw 0.449 0.194 1.020 
Hadza:Sandawe:Dinka 0.226 0.186 0.343 
Hadza:Dahalo:Iraqw 0.379 0.195 0.866 
Hadza:Dahalo:Dinka 0.213 0.129 0.562 
Hadza:Sabue:Iraqw 0.845 0.365 0.964 
Hadza:Sabue:Dinka 0.215 0.145 0.454 

Sandawe:Dahalo:Iraqw 0.414 0.230 0.824 
Sandawe:Dahalo:Dinka 0.216 0.136 0.515 
Sandawe:Sabue:Iraqw 0.856 0.351 0.993 
Sandawe:Sabue:Dinka 0.220 0.171 0.356 
Dahalo:Sabue:Iraqw 0.507 0.255 0.976 
Dahalo:Sabue:Dinka 0.239 0.133 0.684 

  



Table S6. MAP estimates of N1 (left-most population) as well as upper and lower credible intervals 
in units of NOA = 100,000. 
 

Population 
Combinations MAP 5th %ile 95th %ile 

Hadza:Sandawe:Iraqw 0.285 0.094 0.396 
Hadza:Sandawe:Dinka 0.223 0.103 0.340 
Hadza:Dahalo:Iraqw 0.158 0.106 0.339 
Hadza:Dahalo:Dinka 0.128 0.090 0.273 
Hadza:Sabue:Iraqw 0.146 0.090 0.271 
Hadza:Sabue:Dinka 0.129 0.088 0.284 

Sandawe:Dahalo:Iraqw 0.171 0.116 0.350 
Sandawe:Dahalo:Dinka 0.130 0.091 0.280 
Sandawe:Sabue:Iraqw 0.197 0.108 0.401 
Sandawe:Sabue:Dinka 0.149 0.094 0.326 
Dahalo:Sabue:Iraqw 0.134 0.093 0.223 
Dahalo:Sabue:Dinka 0.133 0.095 0.278 

  



 
 
 
 
Table S7. MAP estimates of N2 (center population) as well as upper and lower credible intervals 
in units of NOA = 100,000.	
 

Population 
Combinations 

MAP 5th %ile 95th %ile 

Hadza:Sandawe:Iraqw 0.353 0.137 0.397 
Hadza:Sandawe:Dinka 0.243 0.111 0.376 
Hadza:Dahalo:Iraqw 0.127 0.091 0.244 
Hadza:Dahalo:Dinka 0.150 0.096 0.283 
Hadza:Sabue:Iraqw 0.145 0.100 0.352 
Hadza:Sabue:Dinka 0.158 0.099 0.308 

Sandawe:Dahalo:Iraqw 0.131 0.094 0.231 
Sandawe:Dahalo:Dinka 0.152 0.097 0.291 
Sandawe:Sabue:Iraqw 0.146 0.101 0.409 
Sandawe:Sabue:Dinka 0.158 0.100 0.356 
Dahalo:Sabue:Iraqw 0.159 0.102 0.384 
Dahalo:Sabue:Dinka 0.142 0.094 0.275 

  



 
Table S8. MAP estimates of M1 (gene flow from the right-most population to the left-most 
population) as well as upper and lower credible intervals in units of migrants per generation. 
 

Population 
Combinations 

MAP 5th %ile 95th %ile 

Hadza:Sandawe:Iraqw 559.255 214.011 1263.617 
Hadza:Sandawe:Dinka 186.140 60.167 1221.276 
Hadza:Dahalo:Iraqw 1184.150 535.102 2585.064 
Hadza:Dahalo:Dinka 113.004 31.775 1238.339 
Hadza:Sabue:Iraqw 1246.123 603.577 2694.996 
Hadza:Sabue:Dinka 110.173 28.138 1442.733 

Sandawe:Dahalo:Iraqw 2518.148 1392.942 3396.298 
Sandawe:Dahalo:Dinka 126.396 34.408 1380.123 
Sandawe:Sabue:Iraqw 1671.266 988.408 2404.591 
Sandawe:Sabue:Dinka 137.682 43.718 1248.757 
Dahalo:Sabue:Iraqw 142.927 41.543 1091.403 
Dahalo:Sabue:Dinka 105.415 27.037 1179.507 

  



Table S9. MAP estimates of M2 (gene flow from the right-most population to the center 
population) as well as upper and lower credible intervals in units of migrants per generation. 
 

Population Combinations MAP 5th 
%ile 

95th %ile 

Hadza:Sandawe:Iraqw 1650.526 920.863 2184.846 
Hadza:Sandawe:Dinka 269.567 71.699 1336.820 
Hadza:Dahalo:Iraqw 214.254 51.649 887.214 
Hadza:Dahalo:Dinka 129.716 35.287 972.618 
Hadza:Sabue:Iraqw 280.501 78.015 1651.883 
Hadza:Sabue:Dinka 121.714 32.282 1006.969 

Sandawe:Dahalo:Iraqw 198.423 48.476 750.554 
Sandawe:Dahalo:Dinka 125.961 34.044 917.488 
Sandawe:Sabue:Iraqw 175.427 67.942 825.138 
Sandawe:Sabue:Dinka 147.405 32.784 1081.539 
Dahalo:Sabue:Iraqw 402.398 101.953 1715.500 
Dahalo:Sabue:Dinka 116.637 32.033 921.510 

 

  



Table S10. MAP estimates of the time of migration between A/P (right-most) population into HG 
populations (left-most and center) began in units of generations. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

  

Population Combinations MAP 5th %ile 95th %ile 
Hadza:Sandawe:Iraqw 166.547 125.876 278.085 
Hadza:Sandawe:Dinka 114.723 88.900 253.770 
Hadza:Dahalo:Iraqw 128.562 101.407 264.067 
Hadza:Dahalo:Dinka 115.268 94.155 245.100 
Hadza:Sabue:Iraqw 136.172 103.746 291.389 
Hadza:Sabue:Dinka 121.038 99.337 252.103 

Sandawe:Dahalo:Iraqw 162.808 126.564 279.674 
Sandawe:Dahalo:Dinka 121.401 99.538 250.259 
Sandawe:Sabue:Iraqw 173.288 121.168 292.491 
Sandawe:Sabue:Dinka 121.679 97.220 271.026 
Dahalo:Sabue:Iraqw 118.602 95.515 261.357 
Dahalo:Sabue:Dinka 115.968 95.699 235.353 



Dataset S1. Top 0.1% results for the D test. Population grouping, chromosome, chromosome 
position (B37), SNP identifier (rsid), and genes within 100 kb are listed in a supplementary data 
file.  
 
Dataset S2. Top 0.1% results for the iHS test. Population grouping, iHS test statistic, chromosome, 
chromosome position (B37), SNP identifier (rsid), and genes within 100 kb are listed in a 
supplementary data file.  
 
Dataset S3. Top 0.1% results for the XP-CLR test. Population grouping, XP-CLR test statistic, 
chromosome, chromosome position (B37) of the start and end point of each tested region, and 
genes within 100 kb are listed in a supplementary data file.  
 
 


