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Methods

Experimental devices. The RRAM devices in this work use a thin (5 nm) HfO, film as a
switching layer, deposited by e-beam evaporation on a confined graphitic carbon bottom
electrode (BE). Without breaking the vacuum during evaporation, a thin layer of Ti was deposited
as top electrode (TE) on top of the HfO, dielectric layer. The deposited Ti layer has been reported
to act as an oxygen scavenger (1), leading to the formation of an oxygen-exchange layer of TiOx
between Ti and HfO,. The oxygen-exchange layer is instrumental in increasing the local oxygen-
vacancies concentration in HfO,, which enhances the leakage current in the pristine state. As
consequences, the forming voltage of the devices is reduced, and a unidirectional switching
behavior is forced, where set and reset transitions take place under positive and negative voltages
applied to the TE, respectively. The forming process was operated in DC regime by applying a
voltage sweep from 0 to 5 V, with the voltage applied to the TE and the BE being grounded. The
forming process induces a soft breakdown of dielectric HfO; layer, which initiated the CF
formation and the resistive switching behavior. The DC conduction and switching characteristics
of the RRAM were collected by a Keysight BIS00A Semiconductor Parameter Analyzer, which
was connected to the experimental device in a conventional probe station for electrical
characterization.

Experimental measurements. For all the experiments, the devices were arranged in the
crosspoint configuration on a custom Printed Circuit Board (PCB, Fig. S1), and an Agilent
B2902A Precision Source/Measure Unit was employed to program the devices to different
conductance states. Matrix-vector multiplication (MVM) and matrix inversion experiments were
carried out on a custom PCB with operational amplifiers (OAs) of model AD823 (Analog
Devices). For eigenvectors experiments, Voltage Limiting Amplifiers of model OPA698 (Texas
Instruments) were used to limit the maximum voltage across the RRAM devices, protecting the
devices from electrical damages. RRAM devices were connected with the BE to the amplifiers’
inverting-input nodes and with the TE to the amplifiers’ output terminals. A BAS40-04 diode is
connected between every amplifier output and ground, to limit the voltages within £0.7 V,
avoiding conductance changes of RRAM devices. All the input signals were given by a 4-
channels arbitrary waveform generator (Aim-TTi TGA12104) and applied to fixed input
resistances, which were connected between the input and the amplifiers’ inverting-input nodes.
The amplifiers’ output voltages were monitored by an oscilloscope (LeCroy Wavesurfer 3024).
The board was powered by a BK Precision 1761 DC power supply. The board for matrix-
inversion circuit experiments of a single positive matrix (a crosspoint array of resistive switches
or discrete resistors) is shown in Fig. S1.



Discrete
resistor
matrix

Fig. S1. The board for matrix-inversion circuit experiments of a single positive matrix. V' and V.
are supply voltages for OAs, /i, I> and /5 are input currents, and V3, V> and V3 are output voltages.
The discrete resistors were used to stabilize the feedback circuit when mounting the RRAM
devices, and they were removed after the RRAM matrix was completed. For experiments of
mixed matrices, another board was added.
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Fig. S2. Current-voltage (I-V) characteristics of the resistive switching device. (a) Measured /-
characteristics of the device showing change of the conductance. The inset shows the structure of the
resistive switching device employed in this work. In this case, Ic is 200 A, and Vi is -3.5 V. (b)
Measured /-V characteristics of the resistive switching device with multilevel low resistance state
(LRS). To avoid conduction non-linearity of resistive switches, the devices were programmed to the
LRS, with a conductance of few hundreds of £S.
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Fig. S3. Matrix-vector multiplication (MVM) in a crosspoint resistive array. (a) Crosspoint array
for MVM and a concerned square matrix 4. The conductance matrix is the same one in Fig. 14 in the
main text. To perform MVM, a voltage vector V' = [V1; V2; V3] is applied to the columns, and a current
vector I = [I1; L; V3] is collected at the rows. (b) Experimental results of the MV M, consisting of the
measured current at array rows as a function of the parameter « controlling the amplitude of the input
voltage. The latter was V= [0.2; 0.3; 0.4] V, and « was changed uniformly in the range from -1 to
1. The experimental currents are compared with the analytical results showing good accuracy. (c)
Absolute errors of the MVM. (d) Relative errors of the MVM.



Table S1. Summary of numerical matrices utilized in experiment in this work. The transformation
units for conductance and output voltage, the condition numbers () of adopted matrices for solving

linear systems are also inc

luded.

Matrices

Transformation
unit

Positions
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Matrices

Transformation

. Positions K
unit
524 291 18 [3.30 3.71 3.29
B=[339 325 343 C=[498 133 3.26 100 S Fig. S13a
315 116 7.58 1457 133 4.98
(194 -080 —1.49
A=|-159 192 017 Fig. S13a 16.9235
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Fig. S4. Solutions of systems of linear equations. (a) Oscilloscope traces
representing the known term b in Ax = b, where the relative current amplitude £ covered both positive
and negative values. The input currents were generated by independent voltage sources with triangular
waveforms with output resistance Ry = 10 k€ connected to the inverting-input nodes of the OAs. (b)
Output voltage measured at the columns of the crosspoint array. (c) Absolute errors of the linear

system solutions. (d) Relative errors of the linear system solutions.

of the input current,
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Fig. S5. Relative errors of the matrix inversion in Fig. 1E. Relative error is defined as AM;/Mj;,
where AM;; is the difference between the measured matrix coefficient and the ideal one M;;.



Loop gains of the feedback circuit for solving linear systems.
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Fig. S6. Calculation of the loop gain Gj,,, for the matrix-inversion circuit. The crosspoint circuit
of Fig. 1 in the main text is cut at the first output for evaluating the loop gain Giep1, obtained by
forcing an input signal Vi, and measuring the corresponding output Vo, at the other end of the loop,
where Gloopr = Vour/ Vin. This is obtained by solving Kirchhoff’s law and Ohm’s law for the circuit,

resulting in the following six equations:

y2 Vxl ==G, V.

(Vyl _sz)Azl +(Vy2 _sz)Azz +(Vyz _sz)Azz =0.V,= —Go Vo
(Vyl - Vx3)A31 + (Vyz _sz)An +(Vy3 - Vx3)A33 =0V, =-Go V.5
which result in the loop gain of the first loop (Gioop1),

xl out

(Vi =Va) 4, +(7, )4 +(V,s=V) 4y =0 7,

Al] AIZ A|3
A*
4, A,+—* A4,
21 GOL
A*
A31 A32 A33 + G73
G/ = I/out - _ G()L oL
T 4 A, + A
22 23
oL
A32 A33 + i
GOL

where 41" = A1 + Aia + A1z, A2" = Aoy + A + A3, A3 = A31 + Az + A33 and Gov is the open-loop gain
of amplifiers, which is infinite for ideal amplifiers, and was assumed equal to 2x10° in the simulations.

Since Gov is very large, the additional terms in diagonal elements can be ignored, leading to:

10
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where (4711 is the first diagonal element of 4. The similar calculation of the gains of the second and
third loops yields:

G, 1
Gl(mp2 = __O*L -1

4 (4"),

G, 1

G,,,=——%
loop3 A3 (A_l )33
where (4122 and (47133 are the second and third diagonal elements of 47!, respectively.
As aresult, Gy has the opposite sign as the diagonal elements of 4. We conclude that, for Giop to

be negative thus ensuring virtual ground at the crosspoint rows, the diagonal elements in 4™ must be
positive. Also, this analysis indicates that G, is inversely proportional to the diagonal elements of A
1
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Fig. S7. Solution of a linear system and matrix inversion for a 5x5 matrix. (a) Conductance values
A of the 5x5 crosspoint array, mapping the coefficient matrix. The 5x5 crosspoint array was
implemented with discrete resistors. The transformation units between the real-valued
matrices/vectors and the physical implementations were Go = 10 48, Io =10 gA and Vo =1V for
resistors’ conductance, input current and output voltage, respectively. (b) Experimental solution of the
linear system Ax = b, with input-current vector / =-b = -[0.5; 1.5; -1; 1; -0.5] 4. The experimental
solution is compared with the analytical solution. The triangles are calculated relative errors, which
are plotted as the right y-axis. (c) Experimental matrix inversion of 4, showing high accuracy
compared to the analytical inversion thanks to high precision and linearity of discrete resistors. The
triangles are calculated relative errors, which are plotted as the right y-axis. It is shown that the
relative errors are within 1% for elements not close to zero.
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Fig. S8. The program-and-verify algorithm. (a) Flow diagram of the program-and-verify algorithm.
For a nominal conductance value, a target range is defined with the allowed maximum error &= 5%.
To achieve a value within the target range, multiple programming steps of set/reset and reading
operations are carried out until the conductance falls into the target range. A set/reset operation is
executed by a positive/negative voltage sweep. For instance, to reach a conductance from a higher
value, incremental reset steps are conducted, consisting of negative voltage sweeps at increasing
voltage. If a reset step results in a value which is lower by more than the error ¢ a sequence of
incremental set operations (positive voltage sweeps at increasing compliance current /c) is executed,
until the desired conductance is reached within an accuracy margin ¢. (b) I-V curves for programming
a device, indicating incremental set steps and incremental reset steps. The nominal conductance was
164 4S. (c) Readout conductance values during the program-and-verify process (top panel), the
incremental stop-voltage during the reset phase and the incremental compliance current during the set
phase (bottom panel). After 45 operations, the device conductance falls into the target range.
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Fig. S9. Relative errors of the double inversion experiment in Fig. 2. (a) Relative errors of the first

inversion process, i.e., the measured 4™, (b) Relative errors of the device programming process. (c)
Relative errors of the second inversion process, i.e., the measured (4™')!. (d) The overall relative

errors of the double inversion experiment.
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Solving a 1-dimensional steady-state Fourier equation.
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Fig. S10. Circuit solution of a steady-state Fourier equation. (a) 1-dimensional system for the
solution of the steady-state heat equation, e.g., to describe Joule heating in the filamentary path of
RRAM (2, 3). A voltage V' is applied across the filament, while the two extremes are kept at
temperature 7o = 300 K. (b) Matrix 4 of the coefficients obtained by discretizing the Fourier equation,
and the two positive matrices B and C splitting matrix A, for the simulation case of /"= 0.6 V. The
condition number of matrix 4 is 304. For cases of '=0.4 V and V= 0.5V, the condition number of
matrix 4 is 617 and 410, respectively. (c) Resulting temperature profile along the filament obtained by
circuit simulation and from an analytical solution. The solutions are shown for 3 cases with increasing
applied voltage V"= 0.4V, 0.5 V and 0.6 V. Compared with the analytical solutions (lines), the circuit

simulations (dots) show good accuracy.

The Fourier equation in 1D reads:
a’T v?
ax*  pl’

where kz is the filament thermal conductivity, p is the filament resistivity, and / is the filament length.

kth = O’

In our study, we assumed &y, =23 W/(m * K), p=270 mW * cm, /=20 nm.
The differential equation was transformed into a linear system by a standard finite difference approach,
where the filament was discretized in 20 equal segments of length Ax = 1 nm. In the i-th segment, the

Fourier equation is thus expressed as:

15



2 2
T ,-2T+T _V_(gj .
kyp \ 1

A system of linear equations is thus obtained and expressed in the following matrix form:

- 2 ]
_r (gj 0 0 0 0 0 o -
KTy \ 1 T 1
1 2 1 0 « 0 0 T, 1
2 |
AW

0 1 0 T, | 1
0 ) 1 T, 1
2 2l T 1
0 0 0 0 — (ﬂj - o

L kapTy \ 1

For the above matrix, the diagonal of its inverse matrix is negative, so it does not satisfy the

conditions for matrix-inversion circuit, the sign is changed in the left and right hand sides thus leading

to:
7 (AxY |
(—j 0 0 0 0 0 o -
kthpTz) l ]—i 1
-1 2 -1 0 0 0 T, 1
0 12 - 0 0 T, R (ET !
kol ’
0 0 1 0 T, | 1
0 0 2 -1 T, 1
2 2T 1
0 00 0 « 0 (ﬁj - -
L kyppTy \ 1

where the matrix is suitable to the circuit-based inversion. In simulation, the matrix is split into two
positive matrices B and C, with matrix B satisfying the condition for matrix-inversion circuit. Then,
the system of equation is solved with the two-crosspoint-array circuit. For increasing applied voltages,
different linear systems will be solved, and 3 cases of '=0.4V, 0.5V, 0.6 V are simulated. In the
simulation, the same input-current vector is forced for all cases, and the final temperature distributions

2 2
are obtained through timing the factor kV (%) . The simulation circuit is shown in Fig. S11.
thp
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Fig. S12. Condition number dependence of relative errors for solving linear systems. Three 10X
10 matrices composed of random discrete values, with different condition numbers of (a) 46, (b) 221
and (c)1031. For the three matrices, their inversions were solved to study the condition number
dependence of computing error, where a noise of 10% or -10% was randomly added to each element
in the column vectors from the 10x10 unit matrix. (d-f) Correlation plot of the noised inverse matrix
against the precise inverse for the matrix in (a-c), respectively. (g-1) Ratios of relative errors. For
computing each column vector in the inverse matrix, the ratio of relative errors was calculated. The
[atell/]la"*p]

llell/ 111l
matrix, and e is a random error vector composed of 0.1, 4™ is the precise inversion of matrix 4. For
all cases, the relative errors of input are the same. As the condition number of matrix increases, the
relative error of output increases for some columns in the inverse matrix, for instance, the 1%, 7" and
8 columns in matrix (b), the 2™ column in matrix (c), while the ones for other columns stay almost
the same.

ratio of relative error of the y-axis is defined as , where b is a column vector from the unit
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Fig. S13. Another double inversion experiment for a matrix with a larger condition number. (a)

Measured values of the matrices 4, B, and C, with 4 = B - C. In the experiment, matrix B was
implemented by a crosspoint array of RRAM, while matrix C was implemented by a crosspoint array
of discrete resistors. (b) Measured values of the inverse matrix 4™ as a function of the analytically
calculated elements of 4. (c) Conductance values for matrix 4™ implemented in RRAM elements, as
a function of the experimental values of 4! in (b). The matrix 4! was implemented with Go = 100 28
for RRAM conductance. (d) Measured elements of matrix (47')! as a function of analytical
calculations. (e) Measured elements of matrix (4™')! as a function with the original matrix 4. The
condition numbers of the conductance matrices 4 and 4™ are 16.9 and 19.2, respectively, compared to

9.5 and 8.6 of the case in Fig. 2.
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Fig. S15. Condition number dependence of the error caused by device noise. (a) Circuit schematic
for noise analysis. Thermal noise and shot noise are included as indicated, referring to (4), which
analyzed the noise impact on MVM with a crosspoint array. A typical output voltage for solving a
linear system of a matrix with condition number of (b) 3.0, (c) 45.3 and (d) 431.4. Blue lines are
output voltages without devise noise, red curves are output voltages with device noise. (e-g) are
calculated relative errors based on (b-d), respectively.

21



AV=G,, <0

A=B-C
AV=G\V

Fig. S16. Eigenvector circuits. (a) Eigenvector circuit for the lowest negative eigenvalue of a positive
matrix. The absolute value of negative eigenvalue is mapped into the conductance G, of feedback
resistors in TIAs. (b) Eigenvector circuit for eigenvalues of a mixed matrix. For negative eigenvalues,
the bottom and top crosspoint arrays implement matrix B and C, with 4 = B - C respectively. On the
other hand, for positive eigenvalues, the bottom and top crosspoint arrays implement C and B,
respectively. This is because the highest positive eigenvalues of 4 = B - C is the lowest negative
eigenvalue of -4 = C - B. The absolute values of the eigenvalues are mapped into the conductance G,
of feedback resistors in TIAs.
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Fig. S17. A real-world PageRank case. (a) A system of 9 web pages, namely the WikiPedia pages of
internet companies indicated in the table on the right. (b) Link matrix of the pages. (c) Calculated
importance scores of the pages obtained from a circuit simulation, as a function of the analytically
calculated eigenvector. In the circuit simulation, the supply voltage of amplifiers was 1.5V, thus the
maximum output voltage was saturated around 1.5 V. The straight line through the coordinate origin
indicates the scores are correctly solved. (d) Crosspoint circuit used in the simulation. The
transformation unit for conductance is 100 xS, which is also the value of eigenvalue resistors. The
zero elements are implemented with high-resistance resistors of 0.01 £S.
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Loop gains of the eigenvector circuit.

Vii=-Vi, Vi Vis o

V, < Vout

e e
V,, >

IARRARAA _E* g

G, )

V., .

RAIRAIAA _é E

Fig. S18. Calculation of Gy, for the eigenvector circuit. In the eigenvector crosspoint circuit, the
loop is cut at the output of the first TIA to compute Gip1 thus leading to the following six equations:
(Vyl _V;I)All +(Vy2 _Vxl)Alz +(Vy3 _Vxl)A13 = (Vxl _I/out)G/l’ Vout = _GOLVxl ’
(Vyl - sz)Azl + (Vyz - sz)Azz + (Vy3 Ve )A23 = (sz + Vyz)G/l’ Via=GoViso

(Vyl _Vx3)A31 +(Vy2 _sz)An +(Vy3 _V3)A33 = (sz +Vy3)GA’ Vy3 =Gy Vs
which can be solved to yield the following expression for Gioopi:

An A12 A13
A21 Azz - G/l - (;42 Azs
oL
A*
A31 A32 A33 G/l - G3
G — 1 OL
loop1 * *
A
G1+G1 Azz_Gz_CIjz A23
OL oL
A*
A A,-G, -3
32 33 2 GOL

where A" = A1 + A1y + A1z + Gy, A" = Aa1 + Apy + Aoy + Ga, As" = A3 + A3z + A3z + G, and Goy is
the open-loop gain of the OAs, assumed equal to 2x10° in the simulation. G, is the conductance

corresponding to the highest positive eigenvalue of 4. Since Gor is very large, the additional terms in

the diagonal elements can be ignored, thus leading to:
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All _G/i A12 Al}

A,-G, A
A21 Azz - Gi A23 + G/l 2A ’ A sz G Azz - Gz A23
G _ A31 A32 Azz - G,a 2 > § _ ’ A32 A33 B Gz -1
toor! G Azz - G/I A23 G Azz - G;, A23
2 2
A32 A33 - G/i A32 A33 - G/l
Similar analysis of the second loop and third loop also lead to similar conclusions, namely:
G All - Gﬂ A13
_ ’ A31 A33 Gz _
GloopZ - =1
G A11 - G/l A13
! A31 A33 - G/l
G A11 - G,a Alz
_ ’ A2I Azz G/l _
Gluop3 - - 1
G A11 - G/l A12
’ AZl Azz - G/I

As aresult, if the TIA feedback conductance is chosen equal to the nominal eigenvalue, all G, are

unit. In practice, the feedback conductance will be slight higher or lower, thus leading to:

A11 - G/l A12 A13

AZI Azz - G/1 A23 #0,

A31 A32 Azz - G&
As aresult, the practical Gioop is calculated to be

An - Gﬂ A12 An - G,l A13 " Azz - G/l A23
lepl ~ A21 Azz B Gz A31 A33 — Gﬂ. A32 A33 — G/l AG4 1
Azz o G/l A23 Gg
A32 A33 - G&

where AG, = G, —Gexp 18 the error in eigenvalue conductance.

If AG,> 0, then Giogp1 > 1; if AG, <0, then Grgp1 < 1, which applies to other loop gains. Thus, for
Gioop to be larger than 1, the eigenvalue conductance should be slightly lower than the nominal value.
The same conclusion is obtained for the lowest negative eigenvalue.
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Solving the 1-dimensional time-independent Schrodinger equation.
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Fig. S19. Circuit solution of the Schriodinger equation. (a) Potential well and 33 discrete points to
discretize the Schrodinger equation with a finite difference method. The distance between two points
is 0.1 nm. (b) Energy states (eigenvalues) and normalized wave functions (eigenvectors) for the

potential well calculated by MATLAB.

The time-independent Schrédinger equation is given by:

L_h_za_zz.g.l/(x)j‘lf(x):E‘P(x)

2m Ox
Where /i is the reduced Planck constant, V(x) is the potential distribution, ¥ is eigenfunction, and E is

the energy eigenvalue. The potential was assumed to have a rectangular shape, with:

Vx)=-5¢V, for-1 < x < 1 nm,

Mx)=0,for-1.6 < x<-1nm,and 1 <x < 1.6 nm.

The Schrodinger equation can be solved numerically by the finite difference method, where the
potential well is discretized in 33 points (a), where the first and second derivatives are approximated

by the incremental ratios:

kY ~ \Pm — lPi
dx Ax
IPH—I — ‘Pi ‘Pi — \Pi—l
d’¥y - Ax B Ax _ Y 2%, +¥Y,,
dx’ Ax AX®

where Ax =0.1 nm.

As aresult, the Schrodinger equation is transformed into:

i n h2
—ﬁqg_l{—zm}qg—z W, = EW¥,
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with the normalization condition on the square modulus given by:

I |‘I’(x)|2 dx=1-
and the boundary conditions W1 = W~ = 0. The Schrodinger equation is then transformed into a linear

system with matrix form:

F _
m
K h? K
+7V, 0 0 0 r 7 r 7
2mA:  mAxE 2mAx* ¥, ¥,
2 2 2 b4 v
0 L /A 0 0 ’ ’
2mAx mAx 2mAx P, P,
ven =F
n Yy Yy,
0 0 0 0 2mAY 0 ¥ ¥
N-1 N-1
2 2
0 0 0 0 My, L] L
mAx 2mAx
hZ
0 0 0 0 0 — 7 +Vy
L m _

where the matrix eigenvalues correspond to energy eigenvalues, while matrix eigenvectors correspond

to the discretized eigenfunction (Fig. S19b).

For the eigenvector circuit, if the lowest negative eigenvalue (ground state energy) is known, the
eigenvector (wave function) can be computed directly.

The simulation circuit is shown in Fig. S20.
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Fig. S20. Simulation circuit for solving the Schriodinger equation.
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Fig. S21. Solving a linear system of a model covariance matrix, whose size is 100x100. (a) A
covariance matrix 4 is defined as 4;; = 1 + Vi, if i = j, otherwise 4; = —_ The condition number of

li-jl

matrix A4 is 15.5. (b) Simulation results for solving a linear system Ax = b, where the matrix 4 was
mapped to a crosspoint resistive array, the entries of b were generated uniformly in [0, 1], and the
circuit was simulated in LTspice to give the solution. The calculated relative errors are plotted as the
right y-axis. The extremely low solution errors demonstrate the feasibility of the circuit for solving
large-scale problems.
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Fig. S22. Impact of device variations on the circuit solution of a linear system of equations. (2)
Simulation results for the solution of the linear system of Fig. S21, assuming a random variation
within £ 2% for the conductance of each memory device with respect to the ideal value. (b) Same as
(a), but the random errors are within 5%. (¢) Same as (a), but the random errors are within = 10%.
The calculated relative errors are plotted as the right y-axis in each plot. Random errors within a
certain range are assumed to follow a uniform distribution.
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Fig. S23. Impact of the parasitic resistance on the circuit solution of a linear system of equations.
(a) Correlation plot of the circuit solution as a function of the ideal analytical solution for the linear
system with the 100x100 covariance matrix of Fig. S21. The wire parasitic resistance Rw between
adjacent memory elements was assumed to be Rw = 1 Q, corresponding to the 65 nm technology node.
The relative errors are also shown (see the right y-axis). (b) Same as (a), but for Rw =3 Q
corresponding to the 22 nm node.
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