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Methods 
Experimental devices. The RRAM devices in this work use a thin (5 nm) HfO2 film as a 
switching layer, deposited by e-beam evaporation on a confined graphitic carbon bottom 
electrode (BE). Without breaking the vacuum during evaporation, a thin layer of Ti was deposited 
as top electrode (TE) on top of the HfO2 dielectric layer. The deposited Ti layer has been reported 
to act as an oxygen scavenger (1), leading to the formation of an oxygen-exchange layer of TiOx 
between Ti and HfO2. The oxygen-exchange layer is instrumental in increasing the local oxygen-
vacancies concentration in HfO2, which enhances the leakage current in the pristine state. As 
consequences, the forming voltage of the devices is reduced, and a unidirectional switching 
behavior is forced, where set and reset transitions take place under positive and negative voltages 
applied to the TE, respectively. The forming process was operated in DC regime by applying a 
voltage sweep from 0 to 5 V, with the voltage applied to the TE and the BE being grounded. The 
forming process induces a soft breakdown of dielectric HfO2 layer, which initiated the CF 
formation and the resistive switching behavior. The DC conduction and switching characteristics 
of the RRAM were collected by a Keysight B1500A Semiconductor Parameter Analyzer, which 
was connected to the experimental device in a conventional probe station for electrical 
characterization. 
 
Experimental measurements. For all the experiments, the devices were arranged in the 
crosspoint configuration on a custom Printed Circuit Board (PCB, Fig. S1), and an Agilent 
B2902A Precision Source/Measure Unit was employed to program the devices to different 
conductance states. Matrix-vector multiplication (MVM) and matrix inversion experiments were 
carried out on a custom PCB with operational amplifiers (OAs) of model AD823 (Analog 
Devices). For eigenvectors experiments, Voltage Limiting Amplifiers of model OPA698 (Texas 
Instruments) were used to limit the maximum voltage across the RRAM devices, protecting the 
devices from electrical damages. RRAM devices were connected with the BE to the amplifiers’ 
inverting-input nodes and with the TE to the amplifiers’ output terminals. A BAS40-04 diode is 
connected between every amplifier output and ground, to limit the voltages within ±0.7 V, 
avoiding conductance changes of RRAM devices. All the input signals were given by a 4-
channels arbitrary waveform generator (Aim-TTi TGA12104) and applied to fixed input 
resistances, which were connected between the input and the amplifiers’ inverting-input nodes. 
The amplifiers’ output voltages were monitored by an oscilloscope (LeCroy Wavesurfer 3024). 
The board was powered by a BK Precision 1761 DC power supply. The board for matrix-
inversion circuit experiments of a single positive matrix (a crosspoint array of resistive switches 
or discrete resistors) is shown in Fig. S1. 
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Fig. S1. The board for matrix-inversion circuit experiments of a single positive matrix. V+ and V- 
are supply voltages for OAs, I1, I2 and I3 are input currents, and V1, V2 and V3 are output voltages. 
The discrete resistors were used to stabilize the feedback circuit when mounting the RRAM 
devices, and they were removed after the RRAM matrix was completed. For experiments of 
mixed matrices, another board was added. 
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Fig. S2. Current-voltage (I-V) characteristics of the resistive switching device. (a) Measured I-V 
characteristics of the device showing change of the conductance. The inset shows the structure of the 
resistive switching device employed in this work. In this case, IC is 200 µA, and Vstop is -3.5 V. (b) 
Measured I-V characteristics of the resistive switching device with multilevel low resistance state 
(LRS). To avoid conduction non-linearity of resistive switches, the devices were programmed to the 
LRS, with a conductance of few hundreds of µS. 
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Fig. S3. Matrix-vector multiplication (MVM) in a crosspoint resistive array. (a) Crosspoint array 
for MVM and a concerned square matrix A. The conductance matrix is the same one in Fig. 1A in the 
main text. To perform MVM, a voltage vector V = [V1; V2; V3] is applied to the columns, and a current 
vector I = [I1; I2; V3] is collected at the rows. (b) Experimental results of the MVM, consisting of the 
measured current at array rows as a function of the parameter a controlling the amplitude of the input 
voltage. The latter was V = a·[0.2; 0.3; 0.4] V, and a was changed uniformly in the range from -1 to 
1. The experimental currents are compared with the analytical results showing good accuracy. (c) 
Absolute errors of the MVM. (d) Relative errors of the MVM. 
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Table S1. Summary of numerical matrices utilized in experiment in this work. The transformation 
units for conductance and output voltage, the condition numbers (k) of adopted matrices for solving 
linear systems are also included. 

 
Continue in the next page. 
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Fig. S4. Solutions of systems of linear equations. (a) Oscilloscope traces of the input current, 
representing the known term b in Ax = b, where the relative current amplitude b covered both positive 
and negative values. The input currents were generated by independent voltage sources with triangular 
waveforms with output resistance Rs = 10 kW connected to the inverting-input nodes of the OAs. (b) 
Output voltage measured at the columns of the crosspoint array. (c) Absolute errors of the linear 
system solutions. (d) Relative errors of the linear system solutions. 
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Fig. S5. Relative errors of the matrix inversion in Fig. 1E. Relative error is defined as DMij/Mij, 
where DMij is the difference between the measured matrix coefficient and the ideal one Mij. 
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Loop gains of the feedback circuit for solving linear systems. 

 
Fig. S6. Calculation of the loop gain Gloop for the matrix-inversion circuit. The crosspoint circuit 

of Fig. 1 in the main text is cut at the first output for evaluating the loop gain Gloop1, obtained by 

forcing an input signal Vin and measuring the corresponding output Vout at the other end of the loop, 

where Gloop1 = Vout/Vin. This is obtained by solving Kirchhoff’s law and Ohm’s law for the circuit, 

resulting in the following six equations: 
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,

 

where (A-1)11 is the first diagonal element of A-1. The similar calculation of the gains of the second and 

third loops yields:  

 

 
where (A-1)22 and (A-1)33 are the second and third diagonal elements of A-1, respectively. 

As a result, Gloop has the opposite sign as the diagonal elements of A-1. We conclude that, for Gloop to 
be negative thus ensuring virtual ground at the crosspoint rows, the diagonal elements in A-1 must be 
positive. Also, this analysis indicates that Gloop is inversely proportional to the diagonal elements of A-

1. 
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Fig. S7. Solution of a linear system and matrix inversion for a 5×5 matrix. (a) Conductance values 
A of the 5×5 crosspoint array, mapping the coefficient matrix. The 5×5 crosspoint array was 
implemented with discrete resistors. The transformation units between the real-valued 
matrices/vectors and the physical implementations were G0 = 10 µS, I0 = 10 µA and V0 = 1 V for 
resistors’ conductance, input current and output voltage, respectively. (b) Experimental solution of the 
linear system Ax = b, with input-current vector I = -b = -[0.5; 1.5; -1; 1; -0.5]I0. The experimental 
solution is compared with the analytical solution. The triangles are calculated relative errors, which 
are plotted as the right y-axis. (c) Experimental matrix inversion of A, showing high accuracy 
compared to the analytical inversion thanks to high precision and linearity of discrete resistors. The 
triangles are calculated relative errors, which are plotted as the right y-axis. It is shown that the 
relative errors are within 1% for elements not close to zero. 
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Fig. S8. The program-and-verify algorithm. (a) Flow diagram of the program-and-verify algorithm. 
For a nominal conductance value, a target range is defined with the allowed maximum error e = 5%. 
To achieve a value within the target range, multiple programming steps of set/reset and reading 
operations are carried out until the conductance falls into the target range. A set/reset operation is 
executed by a positive/negative voltage sweep. For instance, to reach a conductance from a higher 
value, incremental reset steps are conducted, consisting of negative voltage sweeps at increasing 
voltage. If a reset step results in a value which is lower by more than the error e, a sequence of 
incremental set operations (positive voltage sweeps at increasing compliance current IC) is executed, 
until the desired conductance is reached within an accuracy margin e. (b) I-V curves for programming 
a device, indicating incremental set steps and incremental reset steps. The nominal conductance was 
164 µS. (c) Readout conductance values during the program-and-verify process (top panel), the 
incremental stop-voltage during the reset phase and the incremental compliance current during the set 
phase (bottom panel). After 45 operations, the device conductance falls into the target range. 
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Fig. S9. Relative errors of the double inversion experiment in Fig. 2. (a) Relative errors of the first 
inversion process, i.e., the measured A-1. (b) Relative errors of the device programming process. (c) 
Relative errors of the second inversion process, i.e., the measured (A-1)-1. (d) The overall relative 
errors of the double inversion experiment. 
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Solving a 1-dimensional steady-state Fourier equation. 

 
Fig. S10. Circuit solution of a steady-state Fourier equation. (a) 1-dimensional system for the 

solution of the steady-state heat equation, e.g., to describe Joule heating in the filamentary path of 

RRAM (2, 3). A voltage V is applied across the filament, while the two extremes are kept at 

temperature T0 = 300 K. (b) Matrix A of the coefficients obtained by discretizing the Fourier equation, 

and the two positive matrices B and C splitting matrix A, for the simulation case of V = 0.6 V. The 

condition number of matrix A is 304. For cases of V = 0.4 V and V = 0.5 V, the condition number of 

matrix A is 617 and 410, respectively. (c) Resulting temperature profile along the filament obtained by 

circuit simulation and from an analytical solution. The solutions are shown for 3 cases with increasing 

applied voltage V = 0.4 V, 0.5 V and 0.6 V. Compared with the analytical solutions (lines), the circuit 

simulations (dots) show good accuracy. 

The Fourier equation in 1D reads: 

, 

where kth is the filament thermal conductivity, r is the filament resistivity, and l is the filament length. 

In our study, we assumed kth = 23 W/(m·K), r = 270 mW·cm, l = 20 nm. 

The differential equation was transformed into a linear system by a standard finite difference approach, 

where the filament was discretized in 20 equal segments of length Dx = 1 nm. In the i-th segment, the 

Fourier equation is thus expressed as: 
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. 

A system of linear equations is thus obtained and expressed in the following matrix form: 

. 

For the above matrix, the diagonal of its inverse matrix is negative, so it does not satisfy the 

conditions for matrix-inversion circuit, the sign is changed in the left and right hand sides thus leading 

to: 

, 

where the matrix is suitable to the circuit-based inversion. In simulation, the matrix is split into two 
positive matrices B and C, with matrix B satisfying the condition for matrix-inversion circuit. Then, 
the system of equation is solved with the two-crosspoint-array circuit. For increasing applied voltages, 
different linear systems will be solved, and 3 cases of V = 0.4 V, 0.5 V, 0.6 V are simulated. In the 
simulation, the same input-current vector is forced for all cases, and the final temperature distributions 

are obtained through timing the factor . The simulation circuit is shown in Fig. S11. 
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Fig. S11. Simulation circuit for solving the steady-state Fourier equation. 
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Fig. S12. Condition number dependence of relative errors for solving linear systems. Three 10×
10 matrices composed of random discrete values, with different condition numbers of (a) 46, (b) 221 
and (c)1031. For the three matrices, their inversions were solved to study the condition number 
dependence of computing error, where a noise of 10% or -10% was randomly added to each element 
in the column vectors from the 10×10 unit matrix. (d-f) Correlation plot of the noised inverse matrix 
against the precise inverse for the matrix in (a-c), respectively. (g-i) Ratios of relative errors. For 
computing each column vector in the inverse matrix, the ratio of relative errors was calculated. The 
ratio of relative error of the y-axis is defined as !"

#$%!/!"#$'!
‖%‖/‖'‖

, where b is a column vector from the unit 
matrix, and e is a random error vector composed of ±0.1, A-1 is the precise inversion of matrix A. For 
all cases, the relative errors of input are the same. As the condition number of matrix increases, the 
relative error of output increases for some columns in the inverse matrix, for instance, the 1st, 7th and 
8th columns in matrix (b), the 2nd column in matrix (c), while the ones for other columns stay almost 
the same. 
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Fig. S13. Another double inversion experiment for a matrix with a larger condition number. (a) 

Measured values of the matrices A, B, and C, with A = B - C. In the experiment, matrix B was 

implemented by a crosspoint array of RRAM, while matrix C was implemented by a crosspoint array 

of discrete resistors. (b) Measured values of the inverse matrix A-1 as a function of the analytically 

calculated elements of A-1. (c) Conductance values for matrix A-1 implemented in RRAM elements, as 

a function of the experimental values of A-1 in (b). The matrix A-1 was implemented with G0 = 100 µS 

for RRAM conductance. (d) Measured elements of matrix (A-1)-1 as a function of analytical 

calculations. (e) Measured elements of matrix (A-1)-1 as a function with the original matrix A. The 

condition numbers of the conductance matrices A and A-1 are 16.9 and 19.2, respectively, compared to 

9.5 and 8.6 of the case in Fig. 2. 
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Fig. S14. Comparison of relative errors of matrix inversion with different condition numbers. (a) 
Relative errors of the first inversion in Fig. 2. (b) Relative errors of the second inversion in Fig. 2. (c) 
Relative errors of the first inversion in Fig. S13. (d) Relative errors of the second inversion in Fig. S13. 
The condition numbers are labeled in all plots. The double inversion experiment in Fig. S13 show 
larger relative errors for both processes than the one in Fig. 2. 
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Fig. S15. Condition number dependence of the error caused by device noise. (a) Circuit schematic 
for noise analysis. Thermal noise and shot noise are included as indicated, referring to (4), which 
analyzed the noise impact on MVM with a crosspoint array. A typical output voltage for solving a 
linear system of a matrix with condition number of (b) 3.0, (c) 45.3 and (d) 431.4. Blue lines are 
output voltages without devise noise, red curves are output voltages with device noise. (e-g) are 
calculated relative errors based on (b-d), respectively. 
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Fig. S16. Eigenvector circuits. (a) Eigenvector circuit for the lowest negative eigenvalue of a positive 
matrix. The absolute value of negative eigenvalue is mapped into the conductance Gl of feedback 
resistors in TIAs. (b) Eigenvector circuit for eigenvalues of a mixed matrix. For negative eigenvalues, 
the bottom and top crosspoint arrays implement matrix B and C, with A = B - C respectively. On the 
other hand, for positive eigenvalues, the bottom and top crosspoint arrays implement C and B, 
respectively. This is because the highest positive eigenvalues of A = B - C is the lowest negative 
eigenvalue of -A = C - B. The absolute values of the eigenvalues are mapped into the conductance Gl 
of feedback resistors in TIAs. 
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Fig. S17. A real-world PageRank case. (a) A system of 9 web pages, namely the WikiPedia pages of 
internet companies indicated in the table on the right. (b) Link matrix of the pages. (c) Calculated 
importance scores of the pages obtained from a circuit simulation, as a function of the analytically 
calculated eigenvector. In the circuit simulation, the supply voltage of amplifiers was ±1.5 V, thus the 
maximum output voltage was saturated around 1.5 V. The straight line through the coordinate origin 
indicates the scores are correctly solved. (d) Crosspoint circuit used in the simulation. The 
transformation unit for conductance is 100 µS, which is also the value of eigenvalue resistors. The 
zero elements are implemented with high-resistance resistors of 0.01 µS. 
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Loop gains of the eigenvector circuit. 

 
Fig. S18. Calculation of Gloop for the eigenvector circuit. In the eigenvector crosspoint circuit, the 

loop is cut at the output of the first TIA to compute Gloop1 thus leading to the following six equations: 

, , 

, , 

, , 

which can be solved to yield the following expression for Gloop1: 

 

where A1
* = A11 + A12 + A13 + Gl, A2

* = A21 + A22 + A23 + Gl, A3
* = A31 + A32 + A33 + Gl. and GOL is 

the open-loop gain of the OAs, assumed equal to 2×105 in the simulation. Gl is the conductance 

corresponding to the highest positive eigenvalue of A. Since GOL is very large, the additional terms in 

the diagonal elements can be ignored, thus leading to:
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( ) ( ) ( ) ( )1 3 31 2 3 32 3 3 33 3 3y x y x y x x yV V A V V A V V A V V Gl- + - + - = + 3 3y OL xV G V=
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Similar analysis of the second loop and third loop also lead to similar conclusions, namely:

 
 

 
As a result, if the TIA feedback conductance is chosen equal to the nominal eigenvalue, all Gloop are 

unit. In practice, the feedback conductance will be slight higher or lower, thus leading to: 

 

As a result, the practical Gloop is calculated to be 

 

where DGl = Gl –Gl,exp is the error in eigenvalue conductance. 

If DGl > 0, then Gloop1 > 1; if DGl < 0, then Gloop1 < 1, which applies to other loop gains. Thus, for 
Gloop to be larger than 1, the eigenvalue conductance should be slightly lower than the nominal value. 
The same conclusion is obtained for the lowest negative eigenvalue. 
  

11 12 13
22 23

21 22 23 22 23
32 33

31 32 22 32 33
1

22 23 22 23

32 33 32 33

1loop

A G A A
A G A

A A G A G A G A
A A G G

A A A G A A G
G

A G A A G A
G G

A A G A A G

l
l

l l l
l l

l l

l l
l l

l l

-
-

- + -
-

- -
= = =

- -
- -

11 13

31 33
2

11 13

31 33

1loop

A G A
G

A A G
G

A G A
G

A A G

l
l

l

l
l

l

-
-

= =
-

-

11 12

21 22
3

11 12

21 22

1loop

A G A
G

A A G
G

A G A
G

A A G

l
l

l

l
l

l

-
-

= =
-

-

11 12 13

21 22 23

31 32 22

0,
A G A A
A A G A
A A A G

l

l

l

-
- ¹

-

11 12 11 13 22 23

21 22 31 33 32 33
1

22 23

32 33

1loop

A G A A G A A G A
A A G A A G A A G GG

A G A G
A A G

l l l

l l l l

l l

l

- - -
+ +

- - - D
» +

-
-



 
 

26 
 

Solving the 1-dimensional time-independent Schrödinger equation. 

 
Fig. S19. Circuit solution of the Schrödinger equation. (a) Potential well and 33 discrete points to 

discretize the Schrödinger equation with a finite difference method. The distance between two points 

is 0.1 nm. (b) Energy states (eigenvalues) and normalized wave functions (eigenvectors) for the 

potential well calculated by MATLAB. 

The time-independent Schrödinger equation is given by: 

 
Where  is the reduced Planck constant, V(x) is the potential distribution, Y is eigenfunction, and E is 

the energy eigenvalue. The potential was assumed to have a rectangular shape, with: 

V(x) = -5 eV, for -1 ≤ x ≤ 1 nm, 

V(x) = 0, for -1.6 ≤ x < -1 nm, and 1 < x ≤ 1.6 nm. 

The Schrödinger equation can be solved numerically by the finite difference method, where the 

potential well is discretized in 33 points (a), where the first and second derivatives are approximated 

by the incremental ratios: 
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where Dx = 0.1 nm. 

As a result, the Schrödinger equation is transformed into:
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with the normalization condition on the square modulus given by:
 

, 

and the boundary conditions Y1 = YN = 0. The Schrödinger equation is then transformed into a linear 

system with matrix form: 

 

where the matrix eigenvalues correspond to energy eigenvalues, while matrix eigenvectors correspond 

to the discretized eigenfunction (Fig. S19b). 

For the eigenvector circuit, if the lowest negative eigenvalue (ground state energy) is known, the 

eigenvector (wave function) can be computed directly. 
The simulation circuit is shown in Fig. S20. 
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Fig. S20. Simulation circuit for solving the Schrödinger equation. 
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Fig. S21. Solving a linear system of a model covariance matrix, whose size is 100×100. (a) A 
covariance matrix A is defined as	𝐴+, = 1 + √𝑖, if i = j, otherwise 𝐴+, =

2
|+4,|

. The condition number of 
matrix A is 15.5. (b) Simulation results for solving a linear system Ax = b, where the matrix A was 
mapped to a crosspoint resistive array, the entries of b were generated uniformly in [0, 1], and the 
circuit was simulated in LTspice to give the solution. The calculated relative errors are plotted as the 
right y-axis. The extremely low solution errors demonstrate the feasibility of the circuit for solving 
large-scale problems. 

  

a b
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Fig. S22. Impact of device variations on the circuit solution of a linear system of equations. (a) 
Simulation results for the solution of the linear system of Fig. S21, assuming a random variation 
within ±2% for the conductance of each memory device with respect to the ideal value. (b) Same as 
(a), but the random errors are within ±5%. (c) Same as (a), but the random errors are within ±10%. 
The calculated relative errors are plotted as the right y-axis in each plot. Random errors within a 
certain range are assumed to follow a uniform distribution. 
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Fig. S23. Impact of the parasitic resistance on the circuit solution of a linear system of equations. 
(a) Correlation plot of the circuit solution as a function of the ideal analytical solution for the linear 
system with the 100×100 covariance matrix of Fig. S21. The wire parasitic resistance RW between 
adjacent memory elements was assumed to be RW = 1 W, corresponding to the 65 nm technology node. 
The relative errors are also shown (see the right y-axis). (b) Same as (a), but for RW = 3 W 
corresponding to the 22 nm node. 
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