Supplemental Material

DNA polymerase θ accomplishes translesion synthesis opposite 1,N⁶ethenodeoxyadenosine with a remarkably high fidelity in human cells

Jung-Hoon Yoon, Robert E. Johnson, Louise Prakash*, and Satya Prakash

Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555, USA

*Corresponding author: Louise Prakash, loprakas@utmb.edu

This PDF file includes: Supplemental Methods, Supplemental Tables 1-6, and Supplemental Figures 1-4.

Supplemental Methods

Western blot analysis of siRNA depletion of TLS Pols in HFs and MEFs

48h after siRNA transfection, cells were washed with PBS buffer and lysed with RIPA buffer (1x PBS, 1% IP-40, 0.5% sodium deoxycholate, 0.1% SDS). 30µg of prepared cellular extracts were separated on a 10% SDS-polyacrylamide gel and transferred to a PVDF membrane (Bio-rad). The membranes were probed with antibodies against Poln (rabbit polyclonal antibody against full length of human Poln), Poli (rabbit polyclonal antibody against full length of human Poln), Poli (rabbit polyclonal antibody against full length of human Poln), Poli (Santa Cruz Biothechnology), Rev1 (Santa Cruz Biothechnology), Rev7 (Abcam), or Polθ (Abcam) followed by appropriate secondary antibodies conjugated with horseradish peroxidase. The signals were detected using ECL-Plus (GenDEPOT). For the loading control, anti-β-tubulin antibody (Santa Cruz Biotechnology) was used.

Stable expression of wild type and catalytic mutant of human (1708-2590) Pol θ in HFs or MEFs

As described previously (Yoon et al. 2014), wild type Pol θ (1708-2590) and its catalytic mutant containing D2540A, E2541A mutations in the active site residues were subcloned into pCMV7-3xFlag-zeo vector (Sigma). The vectors were transfected into HFs (GM637) or MEFs by Lipofectamine 2000 reagent (Invitrogen). After 24h incubation, 0.5 µg of Zeocin (GenDEPOT) were added to the culture media. After 3 days of incubation, cells were washed with PBS buffer and were continuously cultured with the media containing 250 ng of Zeocin for ~ 2 weeks. The protein expression and siRNA knock down efficiency were checked by western blot analysis.

Stable expression of wild type and catalytic mutant of human Rev1 in HFs or MEFs

As described previously (Yoon et al. 2018), siRNA sensitive and siRNA resistant WT and catalytic mutant D570A, E571A Rev1 were expressed in GM637 HFs or MEFs using pCMV7-3x Flag-zeo vector.

- Yoon JH, Hodge, RP, Hackfeld, LC, Park, J, Roy Choudhury, J, Prakash, S, and Prakash, L. 2018. Genetic control of predominantly error-free replication through an acrolein-derived minor-groove DNA adduct. *J Biol Chem* 293: 2949-2958.
- Yoon JH, Roy Choudhury, J, Park, J, Prakash, S, and Prakash, L. 2014. A role for DNA polymerase theta in promoting replication through oxidative DNA lesion, thymine glycol, in human cells. *J Biol Chem* **289**: 13177-13185.

Effects of siRNA knockdown of TLS polymerases on the replicative bypass of the ϵ dA lesion carried on the leading strand template in wild type, Rev1^{-/-}, or Pol $\theta^{-/-}$ MEFs

MEFs	siRNA	Number of <i>Kan</i> ⁺ colonies	Number of blue colonies among <i>Kan</i> ⁺	TLS (%)	
WT	NC	422	94	22.3	
	NC	350	Number of n^+ coloniesNumber of blue colonies among Kan^+ 4229435028308262962441143874443215408143674		
Rev1-/-	Poli	308	308 26		
	Rev3	296	24	8.1	
	ΡοΙθ	411	4	1.0	
Pol0-/-	NC	387	44	11.4	
	Polı	432	15	3.5	
	Rev3	408	14	3.4	
	Rev1	367	4	1.1	

Effects of catalytically active (WT) Rev1 or catalytically inactive D570A E571A mutant Rev1 on TLS opposite ϵ dA carried on the leading strand template in human fibroblasts

siRNA	Vector expressing	No. Kan⁺ colonies	No. blue colonies among Kan⁺	TLS (%)	TLS pathway that remains active
NC	-	404	102	25.2	Polι/Polζ, Rev1 Pol, Polθ
Rev1	-	415	38	9.2	ΡοΙθ
Rev1	WT Rev1	317	30	9.5	ΡοΙθ
Rev1	siR ^a -WT Rev1	364	85	23.4	Polι/Polζ, Rev1 Pol, Polθ
Rev1	siR catalytic mutant Rev1	294	58	19.7	Polι/Polζ, Polθ

^asiR, indicates siRNA resistant form of WT or mutant Rev1

Effects of catalytically active (WT) Rev1 or catalytically inactive D570A E571A mutant Rev1 on TLS opposite ɛdA carried on the leading strand template in Rev1^{-/-} MEFs

Vector expressing	Number of <i>Kan</i> ⁺ colonies	Number of blue colonies among <i>Kan</i> ⁺	TLS (%)	TLS pathway that remains active	
_	458	38	8.3	Ροίθ	
WT Rev1	364	70	19.2	Polι/Polζ, Rev1 Pol, Polθ	
Catalytic mutant Rev1	306	48	15.7	ΡοΙι/ΡοΙζ, ΡοΙθ	

Effects of catalytically active (WT) or catalytically inactive D2540A E2541A mutant (1708-2590) Pol θ on TLS opposite ϵ dA carried on the leading strand template in human fibroblasts

siRNA	Vector expressing	No. Kan⁺ colonies	No. blue colonies among Kan⁺	TLS (%)
NC	-	404	102	25.2
ΡοΙθ	-	336	52	15.5
ΡοΙθ	WT ΡοΙθ	324	48	14.8
ΡοΙθ	siR ^a -WT Pol0	315	74	23.5
ΡοΙθ	siR catalytic mutant $Pol\theta$	287	42	14.6

 $^a\!siR,$ indicates siRNA resistant form of WT or mutant $\text{Pol}\theta$

Effects of catalytically active (WT) or catalytically inactive D2540A E2541A mutant (1708-2590) Pol θ on TLS opposite ϵ dA carried on the leading strand template in Pol $\theta^{-/-}$ MEFs

Vector expressing	Number of <i>Kan</i> ⁺ colonies	Number of blue colonies among <i>Kan</i> ⁺	TLS (%)	TLS pathways that remain active
_	381	42	11.0	Polι/Polζ, Rev1 Pol
WT Pol0	332	73	22.0	Polι/Polζ, Rev1 Pol, Polθ
Catalytic mutant Pol0	295	31	10.5	PolιPolζ, Rev1 Pol

Effect of wild type Pol θ , catalytically active (WT) Rev1, or catalytically inactive D570A E571A mutant Rev1 on mutation frequencies and nucleotides inserted opposite ϵ dA carried on the leading strand DNA template in wild type, Rev1^{-/-}, or Pol θ -/- MEFs

MEFs	Vector expressing,	No. of <i>Kan</i> + blue colonies	Nucleotide inserted				Mutation frequency	Error-prone TLS pathway
	siRNAs	sequenced	А	G	С	Т	(%)	active
WT	None	96 (12) ^a	3	0	9	84	12.5	Rev1,Polθ
Pol0-/-	Vector control	96 (9)	1	0	8	87	9.4	Rev1
Rev1 ^{-/-}	Vector control	96 (8)	4	0	4	88	8.3	ΡοΙθ
Rev1 ^{-/-} (mPolθ siRNA) ^b	Flag-Mutant - Rev1	90 (0)	0	0	0	90	0	none

^aNumber of colonies where TLS occurred by insertion of a nucleotide other than T are shown in parentheses.

^bRev1^{-/-} MEFs were treated with mPol θ siRNA. In these MEFs carrying Flag-mutant Rev1, only the Pol₁/Pol ζ dependent error-free pathway remains active.

Supplemental Figure Legends

Supplemental Figure S1

Assay for TLS opposite εdA . (*A*), Chemical structure of A and εdA . (*B*), The target 16mer sequence containing εdA at $\stackrel{*}{A}$ is shown on top, and the lacZ' sequence in the leading strand in the pBS vector containing the adduct at $\stackrel{A}{*}$ is shown below. The εdA -containing DNA strand is in-frame and it carries the *Kan*+ gene. TLS through the adduct generates Kan+ blue colonies.

Supplemental Figure S2

Efficiency of siRNA knockdown of TLS Pols in HFs and MEFs. (A) Western blot analyses of siRNA knockdown of TLS Pols in GM637 HFs. NC: negative control siRNA. (B) Western blot analyses of siRNA knockdown of TLS Pols in Rev1^{-/-} MEFs. (C) Western blot analyses of the efficiency of siRNA knockdown of TLS Pols in Polθ^{-/-} MEFs. In (A), (B), and (C), β -tubulin was used as the loading control. (D) RT-PCR analyses of the efficiency of siRNA knockdown of Rev3 in HFs (left) and MEFs (right). In both panels, the first lanes contains molecular weight markers. GAPDH is used as a loading control for RT-PCR. RT-PCR analyses were done as described (Yoon et al. 2009).

Supplemental Figure S3

Nucleotide incorporation opposite A or ϵ dA by Rev1. 0.5 nM Rev1 was incubated with 10 nM DNA substrate and 25 uM of either dGTP, dATP, dTTP, dCTP, or all 4 dNTPs for 5 min at 37C. Reactions containing a single dNTP or all 4 dNTPs (N) are indicated. The template in lanes 1-5 contains an undamaged template A at the primer terminus. Lanes 6-20 harbor ϵ dA at the primer terminus followed by either T (lanes 6-10), A (lanes 11-15) or G (lanes 16-20) residue, indicated by D in the template sequence. X in the template sequence indicates the site of undamaged A or ϵ dA.

Supplemental Figure S4

TLS pathways for replicating through ε dA in human cells. Replication through ε dA occurs *via* 3 different pathways in which the Pol₁/Pol² pathway conducts error-free TLS and Rev1 functions as a non-catalytic component of Pol₁ in this pathway. Rev1 polymerase activity contributes to error-prone TLS *via* a pathway independent of Pol₁/Pol² and Pol₀ functions in another independent error-prone TLS pathway.

Yoon J-H, Prakash, L, and Prakash, S. 2009. Highly error-free role of DNA polymerase η in the replicative bypass of UV induced pyrimidine dimers in mouse and human cells. *Proc Natl Acad Sci U S A* **106**: 18219-18224.

5'-GGA AGC AAT Å GTACGG-3'

Leading strand (pBS vector)

Supplemental_Fig_S3.pdf

Supplemental_Fig_S4.pdf

