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S1 Text: Supplementary methods and results. 
 

SUPPLEMENTARY METHODS 

Influenza Data Processing 
 Both syndromic and virologic data were downloaded from the WHO in April 2018. 

 When a country reported several different types of syndromic data, we used the 

data type that was most consistently reported across all seasons. When two data types 

were reported with roughly equal frequency, we favored ILI, as it is more specific than 

ARI, but includes a wider population than SARI or pneumonia. Data were also 

examined visually for signal; if one data type appeared to produce a much smoother 

signal than another, it was chosen for use in forecasting. France reported ARI data prior 

to the 2014-15 influenza season, but switched to ILI data for the 2014-15 season and all 

subsequent seasons; all other countries have favored the same data type or types over 

time. 

Overall, 38 countries reported ILI, 17 reported ARI, 6 reported SARI, one 

(Honduras) reported pneumonia, one (Canada) reported ILI rates rather than counts, 

and one (France) changed preferential data types during the period spanned by the 

data (from ARI to ILI) (S1 Table). SARI and pneumonia were only preferentially reported 

from tropical countries. Definitions for all 4 syndromes, however, are not standardized, 

and therefore the specific definitions used vary by member state. Broadly, ILI refers to a 

respiratory illness involving fever and cough, whereas ARI is less strict and captures 

patients with at least one of several respiratory symptoms. A diagnosis of SARI, 

meanwhile, requires hospitalization [1]. 

  Virologic data consisted of the number of tests positive for any influenza strain, 

as well as the number of tests processed and reported. The proportion of tests positive 

for influenza was calculated by dividing the number of positive tests by the number of 

tests processed; when no information regarding tests processed was available, the 

number of positive tests was instead divided by the number of tests reported. If the 

resulting proportion exceeded one, the data point was removed. 

 Countries were maintained in the data set if they had good quality syndromic and 

virologic data for at least one season. In the temperate regions, good quality data were 
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defined as data for which fewer than one third of all available seasons met the removal 

criteria described in the main text (i.e. at least 5 consecutive missing data points near 

the peak); in other words, temperate countries were maintained in the data set if over 

two thirds of available seasons could be used for forecasting. In the tropics, countries 

were removed from consideration if: 1) over 33% of total observations or over 5% of 

observations during outbreaks were 0, or 2) if the highest peak was over 15 times 

higher than the lowest peak (i.e., if the data showed an unrealistic amount of variation 

from outbreak to outbreak). 

 Finally, several countries were located between temperate and tropical regions in 

the subtropics, whereas others spanned both temperate and tropical regions. To 

classify these countries as “temperate” or “tropical” for the sake of this study, we 

therefore considered whether past influenza outbreaks exhibited a marked seasonal 

signal consistent with temperate influenza activity. If outbreaks occurred once a year 

and strictly within the seasons defined for temperate regions (weeks 40 to 20 in the 

northern hemisphere, or weeks 14 to 46 in the southern), the country was classified as 

“temperate;” otherwise, we classified it as “tropical.” 

 All data used for forecasting are described in S1 and S2 Tables, and visualized in 

S1 Fig. The fully processed data are provided as S1 Dataset. Note that these data are 

not yet multiplied by the relevant scaling values. 

 

Humidity Data Processing 
We processed the raw data for use in our models as follows. First, daily averages 

for each 1°x1° grid cell were calculated to yield daily time series of specific humidity. 

Next, we searched the humidity data visually for anomalies. Three major anomalies 

were found: 1) in some grid cells, humidity increased substantially for the years 1994-

1998; 2) in some grid cells, humidity was anomalously low in either 1999 or 2003-2004; 

and 3) in several countries, primarily Australia and countries in Eastern Europe, a sharp 

increase in humidity was observed throughout the majority of 1997, excepting the 

summer. The first two anomalies were addressed by removing any years for which 

yearly average specific humidity was over 1.5 times the 75th percentile or less than 0.65 

times the 25th percentile of yearly average specific humidity for a given grid cell. The 
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third anomaly was identified by visual inspection, and the year 1997 was removed from 

affected grid cells. A total of 469 grid cells were affected by the first anomaly, 44 by the 

second, and 1270 by the third; additionally, two grid cells from Chile were removed 

entirely because data shifted substantially upward and downward over time. Overall, 

1800 grid cells had at least some data removed due to anomalies, leaving 6240 grid 

cells with no anomalies during the 20-year record. 

 Twenty-year climatologies for each grid cell were then generated by averaging 

daily specific humidity on each of 365 days across twenty years. Note that, due to 

removal of anomalous data by year, many grid cells yielded 12 to 19 year climatologies. 

Each grid cells was then assigned to one or more countries using the Clip tool in QGIS 

2.18.2. Grid cells belonging to more than one country were delegated proportionally to 

all countries with which they overlapped. Finally, climatologies were aggregated to the 

country level by taking an average of the climatologies for all grid cells assigned to a 

given country, weighted by the proportion of the grid cell situated within the country in 

question. The processed humidity data are provided as S2 Dataset, where each column 

represents the average specific humidity for days 1 – 365 of the year for a single 

country. 

 
Ensemble Adjustment Kalman Filter 
Observational Error Variance: As described in the main text and above, both syndromic 

and virologic data are subject to error from a variety of sources, and thus deviate from 

the number of true influenza cases. However, the extent of this error is unknown. In 

order to properly use the EAKF, we must therefore specify some degree of error in our 

observations. We account for this by calculating observational error variance (OEV), 

defined as: 

 

𝑂𝐸𝑉! = 1×10! +  
𝑂!
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where Ot is the observed syndromic+ data at time t and c can be altered to modify the 

magnitude of the prescribed error, with lower values of c corresponding to higher overall 
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error in the observations. All forecasts described in the main text were run with c equal 

to 1. Results of sensitivity analyses using c = 10 are presented below. 

 

Filter Divergence: One prominent issue with the EAKF is that of filter divergence, in 

which, following assimilation of multiple successive observations, the variance of the 

model ensemble decreases, and thus confidence in the model estimates increases to 

the point where the observations are essentially ignored. To prevent filter divergence in 

temperate regions, we multiplicatively inflate the prior model variance by 1.03 times 

before assimilating each new observation [2,3]. In the tropics, where model fitting is 

performed over several years, filter divergence is likely to be a more substantial issue 

than over the shorter, seasonal time periods modeled for temperate countries. As in the 

temperate regions, we address filter divergence by multiplicatively inflating the 

ensemble variance by 1.03 at each time step. Additionally, per Yang et al. [3], if the 

model diverges from an observation by more than 20% at a given time step, we 

reinitialize the model completely by choosing new initial states and parameters at that 

time step. These methods are described in more detail in [3]. 

 

Retrospective Forecast Generation (Temperate without Humidity Forcing) 
 To generate retrospective forecasts in temperate regions with no absolute 

humidity forcing, we used the same SIRS model as for tropical forecasts. As with all 

other forecasts, we ran 5 simulations of 300 ensemble members each. 

 

Comparing Forecast Accuracy 
To compare forecast accuracy in the temperate and tropical regions, as well as 

by hemisphere, region, season, data type, and chosen scaling value, we used 

generalized estimating equations (GEEs) controlling for predicted lead week as a 

categorical variable with week 0 as the reference level. GEEs were chosen for their 

ability to control for temporal autocorrelation within each country and season pair, as the 

accuracy of successive weekly forecasts in a given country are temporally 

autocorrelated. Further, GEEs were chosen over mixed effects models in order to 

estimate overall effects rather than impact on individual forecasts. An autoregressive 
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AR(1) working correlation matrix was assumed. The five replicate forecasts produced 

for each country, season, and start week represent an additional layer of clustering in 

our results. To control for this, we randomly permuted the results 100 times, each time 

choosing a single run (among the 5 replicates) for each country, season, and start week 

(or, in the tropics, each country, start week, and individual outbreak). Final results were 

drawn from the median coefficients and standard errors of these 100 permutations. 

Results for all tested factors for both temperate and tropical regions can be found in 

Tables S3 and S4. 

 

Tropical Data Smoothing 
 We hypothesized that forecast accuracy in the tropics could be improved by 

smoothing the syndromic+ data, which was typically substantially noisier than the 

temperate data (S1 Fig). In order to test this hypothesis, we applied a simple moving 

average to the tropical data. Because in real-time forecasting no data beyond the 

current forecast week are available, we averaged the data for a given time point with the 

data from the previous two weeks to create a 3-week moving average. We then ran 

retrospective forecasts as described in the main text using the smoothed data. 

 
Retrospective Forecast Generation by Tropical Outbreak 
 To assess the role of sporadic outbreak timing on forecast accuracy in the 

tropics, we also ran tropical forecasts for each outbreak individually, similar to how 

forecasting was performed in temperate regions. Outbreaks for each tropical country 

were identified as described in the main text. We then added eight weeks to the 

beginning and end of each identified outbreak period, before performing forecasts as 

described in the main text for temperate regions, considering each outbreak as a 

“season.” Specifically, fitting began eight weeks before the identified outbreak onset, 

and forecasts were generated starting 3 weeks before outbreak onset (corresponding to 

5 weeks of training data, as in the temperate regions) through 4 weeks after the 

outbreak had ended. We note that, in temperate countries, model fitting started an 

average of 13 to 14 weeks prior to outbreak onset. However, because outbreaks in the 

tropics often happen in rapid succession, it was not possible to include this amount of 
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lead time around the outbreak periods without also including substantial portions of 

other “outbreaks.” 

 

Sensitivity Analyses for Timing/Intensity Accuracy Cutoffs 
 Because our conclusions regarding forecast accuracy are dependent on the 

ranges of predicted timing and intensity values that we consider to be “accurate,” we 

also assessed forecast accuracy using alternative accuracy definitions, one stricter and 

one more lenient. Specifically, we considered forecasts of peak timing to be accurate (a) 

only when the forecasted peak timing equaled the observed peak timing exactly, or (b) 

when the forecasted peak timing was within 2 weeks of the observed peak timing. For 

peak intensity, we considered forecasts accurate (a) when the forecasted value was 

within 12.5% of the observed value, or (b) when the forecasted value was within 50% of 

the observed value. 

 

Alternative Forecast Accuracy Metrics 
 In addition to the peak timing, peak intensity, and onset timing accuracy metrics 

defined in the main text, we also assessed forecast accuracy over the duration of the 

forecast using correlation coefficients and the symmetric mean absolute percentage 

error (sMAPE). These metrics are calculated by comparing forecast influenza incidence 

from the time of forecast start until 10 weeks post peak with the observed influenza 

syndromic+ data over the same time period. This time period was chosen because, 

beyond 8 weeks post observed peak, syndromic+ case counts tend to be low, zero, or 

missing, precluding meaningful error measurements. We additionally removed any 

forecasts with fewer than four non-NA data points. sMAPE is defined as: 

 

𝑠𝑀𝐴𝑃𝐸 =
100%
𝑇

𝐹! − 𝑂!
𝑂! + 𝐹! / 2

!

!!!
	

 

where T is the number of weeks forecasted, Ot is the observed syndromic+ value at 

time t, and Ft is the forecasted influenza incidence at time t [4]. We chose to use sMAPE 

rather than the more commonly used root mean square error (RMSE) because, unlike 

RMSE, sMAPE controls for the difference in the magnitude of the observed data both at 
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different points in an outbreak, as well as between different countries in the dataset. 

Also, unlike MAPE, sMAPE is not highly biased toward forecasts that undershoot 

observed values [4]. 

 To test whether significant differences in forecast accuracy exist between 

temperate and tropical regions, we performed Kruskal-Wallis rank sum tests at 

predicted lead weeks -6 through 4. Because 5 individual runs were performed for each 

country and season, we randomly chose a single run for each country and outbreak 

combination 20 separate times, similar to the process described in the main text for 

comparing forecast accuracy. If p-values were below 0.0045 (0.05 / 11; p = 0.05 with 

Bonferroni correction for the 11 distinct lead weeks) for at least 50% of randomly 

selected run combinations, we considered there to be a significant difference in value 

for that lead week. 

 

Method of Analogues 
 We further compared our mechanistic forecasting results with results obtained 

using the method of analogues [5]. Explicit methodological detail can be found in [5]. 

Briefly, the method involves searching through the entire time series of each country for 

a given number of vectors, or “nearest neighbors,” that most closely match the data at 

the time at which a forecast is desired. We performed the method for each country 

individually at each time point using two nearest neighbors of length four. These nearest 

neighbors were drawn from previous seasons in the temperate regions, and from any 

previous data in the tropics; in other words, neighbors from the current season itself 

were not permitted when forecasting in the temperate regions. Additionally, because 

missing data were common in our dataset, we limited forecasting with the method of 

analogues to forecast start weeks where at least two of the preceding three weeks had 

data. Finally, as this method relies on patterns observed in past data, we do not begin 

forecasting until two full seasons (temperate) or outbreaks (tropics) have occurred. We 

note that this precludes forecasting in several tropical countries (Bangladesh, Bolivia, 

Brazil, Honduras, Indonesia, Kenya, and Madagascar). In order to fairly compare the 

method of analogues with our methods as described in the main text, we remove 

forecasts from our main results accordingly for this analysis only. 
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Data Quality Metrics 
 In general, we expect that forecast accuracy will be higher when data of better 

quality are used for model fitting. To test whether this was the case in this study, we 

calculated three measures of data quality: 

1) The proportion of weeks within seasons (temperate countries; weeks 40 to 19 in 

the northern hemisphere and weeks 14 to 45 in the southern hemisphere) or 

outbreaks (tropical countries; outbreaks extended from the end of a previous 

outbreak to the next outbreak endpoint, so as to include both the outbreak itself 

and the most proximal training data) for which no data were available were 

calculated overall for each country, as well as by season for temperate countries. 

2) Data signal smoothness was calculated using lag-one autocorrelation. 

3) The extent to which a country sampled for influenza was estimated by comparing 

the number of virologic samples taken each week within the influenza season 

(temperate) or throughout the year (tropics) to the country’s total population size. 

These measures were then compared to overall average peak timing and intensity 

accuracy by country (and by season, for temperate countries and measure 1) using 

Kendall’s rank correlation. 

 
Inferred Model States and Parameters 
 As described in the main text, model state variables (the number susceptible and 

infected) and parameters (R0max, R0min, R0, D, L) are inferred throughout the model fitting 

process. To determine whether inferred values of S0 (the initial number of susceptible 

individuals in a country) and of model parameters substantially differed between 

temperate and tropic countries, by hemisphere, or by data type, we first limited our 

analysis to the training period of the final forecasts run for each country and season, as 

these were the model fits incorporating the greatest number of data points. Then, we 

calculated R0 for temperate countries according to equation 2 in the main text. Finally, 

Re, or “R effective,” defined as the number of cases caused by each infected individual 

after taking into account the susceptibility of the population, was calculated by 

multiplying R0 by S / N at each time point. The value of S0 for a country and season (or 

country and outbreak in the tropics) was considered to be the maximum inferred value 
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of S over the course of the outbreak. R0, Re, D, and L were considered at the time of 

maximum Re for each country and outbreak, as described in [6]. Finally, values of S0, 

R0, Re, D, and L were compared by region (temperate vs. tropics), hemisphere, and 

data type using the Kruskal-Wallis rank sum test, as described above under “Alternative 

Forecast Accuracy Methods.” Here, results were considered significant if f p-values 

were below 0.05 for at least 50% of randomly selected run combinations. 

 

Inferred Maximum and Minimum R0 by Latitude 
 In each country, R0 is allowed to vary between some maximum R0max and some 

minimum R0min, dependent on absolute humidity (see Eq. 2 in main text). R0max and 

R0min are fit separately for each country, and thus are permitted to vary. If the influence 

of humidity on influenza transmission acts similarly at all latitudes, we expect inferred 

values of R0max and R0min to also be similar at all latitudes. 

 To test this, we identified the inferred values of R0max and R0min for each country 

and season in both the northern and southern temperate regions at maximum Re, as 

described in the previous section. We then compared values of these two parameters 

between hemispheres, as described above, as well as by latitude, using Kendall rank 

correlation. Again, results were considered significant if p-values were below 0.05 for at 

least 10 of 20 randomly selected combinations of model runs. For each country, we 

tested two different values for latitude: the latitude at the center of the country, and the 

latitude of the country’s capital city. Absolute values were used so that countries in both 

the northern and southern hemispheres could be assessed together. 

 

Pandemic Forecasts 
 We also generated retrospective forecasts for the 2009 influenza pandemic for 

the 34 countries (including 2 in the tropics) reporting data during this period. Because 

the time of pandemic emergence was not known in advance in real time, we did not 

begin forecasting until scaled observations exceeded 50% of the onset baseline value 

(250 in temperate regions and 150 in the tropics). At that point, an initial forecast was 

produced using 10 weeks of training data, and forecasting proceeded as described in 

the main text. For this reason, forecasts of pandemic onset were not possible. Note that 
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if the time at which syndromic+ data exceeded baseline onset was before the fifth week 

of data, forecasting was begun after 2 weeks of training, to avoid generating forecasts 

with insufficiently trained models. This was done so that model states and parameters 

had some degree of training before forecasts were produced. Forecasts were then 

generated every week until scaled observations fell below 50% of the onset baseline for 

>=2 consecutive weeks (which we considered the pandemic “endpoint” for a country), or 

until less than 4 weeks remained before the beginning of the 2010-11 influenza season 

(in temperate countries). Thus, the exact period over which forecasts were generated 

varied by country. Otherwise, forecasts were run as described in the main text. 

 Countries for which both syndromic and virologic data were available for the 

2009 pandemic included 32 northern hemisphere temperate countries, and 2 tropical 

countries (Honduras and Singapore). A complete list of these countries can be found in 

S2 Table. 

 

SUPPLEMENTARY RESULTS 

Forecast Accuracy by Country 

 As observed in a previous forecasting study focusing on US cities [2] and as 

mentioned in the main text, forecast accuracy varied greatly by individual country (S2 

Fig). 

 

Forecast Accuracy by Observed Lead Week 
 When assessed by observed lead week, retrospective forecasts for temperate 

regions reached 50% accurate from 5 weeks prior to the peak (for peak timing) and 1 

week prior to the peak (for peak intensity). Peak timing forecasts exceed 75% at 2 

weeks post peak, and peak intensity forecasts exceed 75% the week after the peak 

(S3A Fig). These results are similar to those presented for predicted lead week in the 

main text. 

 Forecasts in the tropics exceed 50% accuracy at the observed peak for both 

peak timing and intensity (S3B Fig). Forecasts surpass 75% accuracy at one week post 

peak for peak timing, but never reach 75% accuracy for peak intensity. Thus, results are 
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similar to those in the main text before the peak, but demonstrate much higher accuracy 

post-peak. 

 

Choice of OEV Denominator 
 S4 Fig compares peak timing and intensity forecast accuracy for temperate and 

tropical regions when c is set to 10, rather than 1 as in the main text, corresponding to a 

tenfold reduction of error in the syndromic+ observations. S5 Fig compares forecast 

calibration under the same circumstances. In temperate regions, setting c to 10 appears 

to have little impact on forecast accuracy. In the tropics, however, peak intensity 

accuracy appears substantially higher when c is set to 10 rather than 1. However, for 

both temperate and tropical regions, and for peak intensity in particular, setting c to 1, 

as presented in the main text, appears to result in better forecast calibration, i.e. the 

prediction intervals for peak intensity are more aligned with the spread of observations. 

Given our goal of producing forecasts that are both accurate and well calibrated, using a 

c of 1 appears preferable to a c of 10. 

 
Choice of Onset 
 In the main text, we set the scaled baseline value to 500 for temperate regions 

and 300 for the tropics. In S6 Fig, we present the overall accuracy of onset timing 

forecasts when onset is set to 300, 400, or 600 in the temperate regions, and 200, 400, 

or 500 in the tropics. Seasons where no onset occurred were removed, and forecasts 

predicting no onset were counted as inaccurate. Forecast accuracy is therefore 

presented by lead relative to observed onset week, as predicted lead onset week does 

not exist when no onset is predicted. In temperate regions, there are no substantial 

differences in onset timing forecast accuracy by choice of onset value. In the tropics, 

differences are somewhat more pronounced, but the overall structure of accuracy as a 

function of lead is similar; note that for some baseline values more spurious predictions 

of no onset were generated (the smaller dots sizes in S6 Fig). 
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Choice of Scaling Value 
 In our main analyses, we systematically selected the lowest scaling values that 

yielded overall attack rates between 15% and 50% of the model population for all 

seasons, where possible. Here, we test the sensitivity of our results to this decision by 

essentially flipping our scaling selection rule (Eq. 4) and choosing the highest scaling 

values that yield the desired attack rates: 

 

𝛾 =  
𝑖𝑓 ∃ 𝛾 ∈  ℝ ∶  𝛾!",! <  𝛾 < 𝛾!",!  ∀ 𝑖: 𝑚𝑖𝑛!!!! (𝛾!",!)

𝑒𝑙𝑠𝑒: 𝑚𝑎𝑥!!!! (𝛾!",!)
 

 

 Results of these analyses are shown in S7 Fig. Overall, changing the selection 

rule has little impact on forecast accuracy. 

 

Tropical Forecast Accuracy Using Smoothed Data 
 When forecasting in the tropics is performed using data smoothed with a 3-week 

moving average, forecast accuracy appears to improve slightly for peak intensity, but 

not for peak timing (S8 Fig). However, forecast accuracy remains much lower than in 

the temperate regions. 

 

Retrospective Forecast Accuracy by Tropical Outbreak 
 When forecasts of tropical outbreaks are performed separately for each 

outbreak, essentially treating each outbreak as a “season,” forecast accuracy before the 

predicted peak appears to increase slightly (S9 Fig). However, forecast accuracy 

remains low overall compared to temperate regions, suggesting that low forecast 

accuracy in the tropics is not primarily due to the irregularity of outbreaks, which prevent 

recurrent, seasonal model fitting and forecasting. Instead, the differences appear to be 

related to factors such as the high amount of noise in tropical observations. 

 
Additional Forecast Calibration Results 
 In a properly calibrated forecast, we expect that errors in forecasted peak timing 

and intensity will display some distribution with a mean of 0. In contrast, a non-zero 
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mean indicates that forecasts are biased. We assess whether the forecasts generated 

in the main text are biased according to this measure by plotting histograms of the 

difference between the observed and predicted peak timing and peak intensity over time 

(S10 Fig). In order to standardize errors over a wide range of observed peak intensity 

values by country, we plot the error in peak intensity forecasts divided by the observed 

peak intensity, rather than simply plotting the absolute error. Using this metric, we see 

that good calibration is achieved in the temperate regions, particularly directly prior to 

the peak. Calibration appears substantially worse in the tropics, where both peak timing 

and peak intensity are consistently underestimated. Thus, although forecasts of peak 

intensity in the tropics yield informative and well-constrained credible intervals (Figs 3 

and 4 in the main text), they display substantial bias. 

 

Forecast Accuracy Using Alternative Accuracy Cutoffs 
 As expected, calculated forecast accuracy decreased when stricter accuracy 

cutoffs were employed (S11 Fig A and B) and increased when less strict cutoffs were 

used (S11 Fig C and D), However, observed patterns in accuracy remained the same: 

forecast accuracy generally increased as predicted lead week increased, and accuracy 

in temperate regions was noticeably higher than in the tropics. 

 

Forecast Accuracy Using Correlation Coefficients and sMAPE 
 Correlations between observed and forecasted incidence were significantly 

higher for temperate than tropical countries for all lead weeks except predicted lead 

week -6, where very few forecasts were available (S12 Fig A and B). Also notable were 

the wide confidence intervals around correlation coefficient estimates in the tropics, with 

95% credible intervals ranging from -0.68 to 0.97 (as opposed to 0.46 to 0.995 in 

temperate countries). sMAPE values, on the other hand, were similar in temperate and 

tropical regions, with no statistically significant differences observed at any predicted 

lead week. While we believe that the targets used in the main text (peak timing and 

peak intensity) represent metrics of practical importance for responding to influenza 

outbreaks, it is nonetheless important to acknowledge that the impact of temperate vs. 

tropical region on forecast accuracy is dependent on how forecast accuracy is 
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measured, and that tropical forecasts may perform better for other metrics not 

measured here. 

 

Method of Analogues Forecast Accuracy 
 Results are primarily discussed in the main text. However, we note here that, 

because the method of analogues requires information on past outbreaks, early 

outbreaks could not be forecasted for any country, and several tropical countries had to 

be removed from consideration entirely. Before comparing to mechanistic forecasts 

(S13 Fig), we therefore removed any country or season that could not be forecasted 

using the method of analogues. 

 
Forecast Accuracy by Data Quality 
 All three measures of data quality were found to differ significantly between 

temperate and tropical regions (Kruskal-Wallis one-way analysis of variance, p < 0.01 

for all measures). Therefore, the relationship between these measures and forecast 

accuracy was assessed separately for temperate and tropical countries. 

 Greater smoothness of data signal was significantly associated with higher peak 

intensity accuracy among both temperate (Kendal’s tau = 0.262, p < 0.05) and tropical 

(Kendal’s tau = 0.464, p < 0.01) countries, but not with peak timing accuracy. Neither 

proportion of data missing nor proportion of population sampled was significantly 

associated with forecast accuracy in either the temperate or tropical regions. 

 

Models States and Parameters 
 Inferred values of S0, Re, R0, D, and L for all countries and outbreaks can be 

found in S5 Table. Broadly, inferred states and parameters fall within realistic ranges 

[7–10], with values between about 50% and 90% of the population for S0, 1.0 and 5.3 

for Re, 1.4 and 3.1 for R0, 2.3 to 8.4 days for D, and 3.8 to 7.7 years for L. Compared to 

temperate countries, countries in the tropics yielded significantly lower values of S0, R0, 

and L, and significantly higher values of Re (S14 Fig A). Within temperate regions, 

countries located in the northern hemisphere showed significantly higher values of both 

Re and R0 than southern hemisphere countries (S14 Fig B), and countries and seasons 
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reporting ILI+ data displayed significantly lower R0 than countries reporting ARI+ data 

(S14 Fig C). No significant differences were observed between data types in the tropics 

(S14 Fig D). 

 

Inferred Maximum and Minimum R0 by Latitude 
Neither R0max nor R0min varied significantly by hemisphere, but R0max was 

significantly and negatively associated with the absolute value of latitude for both 

definitions of latitude used (S15 Fig A and B, and S5 Table). In other words, as the 

distance from the equator increased, the maximum possible R0 tended to decrease, 

suggesting a weaker impact of absolute humidity at higher latitudes. That said, the 

relationships were weak, with Kendall’s tau ranging from -0.05 to -0.10 when capital 

cities’ latitudes were used, and from -0.10 to -0.15 when centroids were used. Such a 

nominal result is more likely due to the simplicity of our model or the large geographic 

scale at which our model is implemented, than to a true biological process. 

 

Posterior and Forecast Visualizations 
 S16 Fig shows posterior model fits for five countries: Norway, Poland, Italy, 

Mexico, and Ecuador. These countries were chosen because they inhabit a range of 

latitudes and longitudes, and exhibited similar peak weeks (week 8 of 2016 for the four 

temperate countries, and week 17 of the same year for Ecuador). Furthermore, all four 

temperate countries reported ILI data. For the temperate countries, because the model 

was fit separately for each season, only the 2015-16 season was plotted. For Ecuador, 

which is located in the tropics model fitting is shown throughout the entirety of the time 

series leading up to the peak of interest. The mean posterior was plotted for all five 

model runs. As can be observed, the model was capable of closely fitting the data for a 

range of countries with varying locations and climates. 

 S17 Fig and S18 Fig show forecast trajectories over several lead weeks for the 

same five countries (the four temperate countries in S17 Fig, and Ecuador in S18 Fig). 

Both peak timing and intensity were predicted within 1 week and within 25% of 

observed values, respectively, by 2 weeks prior to the observed peak in Norway, 

Poland, and Italy, but were not both predicted accurately in Mexico until 2 weeks post-
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peak. In Ecuador, as was common for countries in the tropics, neither peak timing nor 

peak intensity were accurately predicted until the peak occurred. Additionally, the model 

was unable to detect the epidemic signal, with trajectories consistently predicting 

decreasing rather than increasing incidence, even before the peak. 

 

Pandemic Forecast Accuracy 
 In temperate regions, pandemic forecasts appear to perform slightly worse that 

seasonal forecasts prior to the predicted peak for both peak timing and intensity, with 

peak timing first exceeding 50% accuracy 2 weeks before the predicted peak, and peak 

intensity not exceeding 50% accuracy until the predicted peak (S19 Fig A). Given that 

the pandemic often did not display the clear signal and single peak typical of regular 

seasonal outbreaks, this finding is not surprising. Also, note that pandemic forecasting 

often had to be begun abruptly when out-of-season increases in influenza activity were 

observed. 

 In the tropics, forecasts of pandemic peak timing were more accurate than similar 

forecasts for “seasonal” influenza outbreaks several weeks before the predicted peak, 

and post-peak estimates of pandemic peak intensity also appeared better than 

analogous estimates for epidemic influenza (S19 Fig B). However, it is important to note 

that, because pandemic data were only available for 2 tropical countries, forecast 

counts are very low, reducing the certainty of these results. 
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