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The expectation propagation approximation
At β = 0, the probability distribution of reaction fluxes in the population of cells
is the uniform measure in the polytope of feasible states P . We can represent this
distribution by a truncated multivariate Gaussian [1],
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where ψn(vn) = 1 if lbn ≤ vn ≤ ubn and ψn(vn) = 0 otherwise, and for a
large enough value of the parameter η. The truncation makes the marginals of
this distribution hard to compute, so we instead use the approximate multivariate
Gaussian,
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(vn−an)/dn are univariate Gaussians intended to approximate
the truncation factors ψn(vn), and
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and D is a diagonal matrix with entries Dnn = 1/dn. The 2N parameters an, dn
are obtained from the 2N moment-matching conditions [2],
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Upon convergence, the EP site distributions φn (vn) are an approximation of the
real site distributions ψn (vn). To incorporate the exponential selection prior, we
define:
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where w̄ = v̄ + Σβ and w̄(n) = v̄(n) + Σ(n)β. The vector β contains the
selection coefficients of each reaction flux in the network. In the main text, this
vector has a non-zero component in the biomass synthesis reaction, while all other
components are zero. Then we estimate the marginal distribution of flux vn under
the exponential selection prior as a truncated univariate Gaussian:
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Derivation of Equation 13 from Michaelis-Menten ki-
netics
An alternative uptake bound used in the literature is:

ui ≤
Visi

Ki + si
(12)

where Vi is the maximum uptake rate of metabolite i and Ki is the Michaelis-
Menten constant. Equation (13) in the main text can be derived as an approxi-
mation to equation (12) [3]. If a substrate is available in excess (si � Ki), this
bound simplifies to ui ≤ Vi. In rich media at low cell densities this is the rele-
vant regime. At higher cell-densities, substrates reach low levels (si � Ki), and
the bound is well approximated by ui ≤ siVi/Ki. Employing the steady state
metabolite concentration from Eq. (12) in the main text, si = ci − 〈ui〉ξ, where
〈ui〉 is the average uptake rate of metabolite i in the population of cells. Making
the mean-field approximation ui ≈ 〈ui〉, we obtain ui ≤ (ci − uiξ)Vi/Ki, or

ui ≤
ciVi/Ki

1 + ξVi/Xi

(13)

For high cell densities ξVi/Ki � 1, and the inequality simplifies to ui ≤ ci/ξ.
Combining the bounds obtained in both regimes leads to Equation (13) in the main
text. Note that, compared to Equation (12), this approximated bound contains
one parameter (since it does not depend on Ki), and it simplifies mathematical
derivations.
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Stochastic model
To gain some intuition for the metabolic distribution described in the previous
section, we conceived a simple stochastic model of a population of cells evolving
in metabolic space. As in the main text, a given value of ξ determines a polytope
Pξ of feasible metabolic states. We start the simulation with N cells placed ran-
domly inside Pξ. Let ~v` ∈ Pξ be the metabolic state of cell `, for ` = 1, . . . , N .
At each step, we select a random cell for reproduction. Cell ` has a probability
proportional to µ` of being selected for reproduction, where µ` (~v`) is its growth
rate. The selected cell replicates to generate a new cell. With a probability ε, the
newborn has a random metabolic state; thus ε is a probability of “mutation” in this
model. Otherwise, with a probability 1− ε the newborn has the same growth rate
as the mother cell, in which case its metabolic state is a random choice among all
metabolic states consistent with this growth rate. Moreover, whenever a cell re-
produces, we also select a random cell from the population and eliminate it. This
way the total number of cells, N , is kept constant.

Assuming thatN is sufficiently large, this simulation will converge after many
steps to a stationary population where average statistics

∑
` f (~v`) /N of arbitrary

functions f (~v) of the flux vector will be approximately constant. In particular,
we obtain 〈ui〉, the uptake rates, and from these, the metabolite concentrations
si = ci − 〈ui〉 ξ.

We simulated populations of 10000 cells, for different values of ξ and ε. In
each case we recorded the steady state distribution of cells in the polytope Pξ.
In particular the simulation resulted in a steady average flux of ATP production,
〈vatp〉. We then compare the distribution of cells in the polytope from the simula-
tion with the MaxEnt distribution obtained at the same value of ξ, where β is fixed
by demanding that the average flux of ATP is the same as in the simulation. Due
to the low dimensionality of this simple metabolic model, the resulting equation:∫

Pξ
e−βyvatpvatpdvatpdvg∫
Pξ

e−βyvatpdvatpdvg
= 〈vatp〉 (14)

can be solved numerically for β.
The comparison between the population histograms in steady state and the

coresponding MaxEnt distribution are shown in Fig. 1, for some representative
values of the parameters ξ, ε. Here the plot represents the marginal flux distri-
bution Pξ (vatp) in the population. The corresponding root β of Eq. (14) is also
shown.
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Figure 1: Comparison of MaxEnt distribution (red) and stationary distribtion
from the stochastic model (gray bars) for vatp.
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Figure 2: Glucose (sg) and lactate (sl) concentrations, inferred from MaxEnt (ME)
compared to the steady state value reached in the simulations (Sim.).

Finally, the metabolite concentrations are found from si = ci − ξ 〈ui〉, where
ci is the feed concentration of metabolite i and 〈ui〉 the average uptake in the
population. We compute 〈ui〉 from the steady state distribution, and from the
MaxEnt formalism. Note that 〈vatp〉ME = 〈vatp〉Sim. by definition, where ME
denotes the MaxEnt estimate and Sim. the simulation result. On the other hand,
〈vg〉ME and 〈vg〉Sim. can be different in principle. Figure 2 shows the comparison
between the inferred values (using the MaxEnt estimate, ME) and the simulation
results.

Sensitivity to variations in crowding coefficients
To assess the sensitivity of our qualitative results in the CHO-K1 genome-scale
model to variations in the crowding coefficients, we repeated simulations after
randomly perturbing these coefficients by as much as 25%. Comparing the fol-
lowing figures to Figures 6 and 7 in the text reveals no significant changes.

Reduced CHO-K1 model
The reduced CHO-K1 model is provided in supplementary materials in .jld2 for-
mat (https://github.com/JuliaIO/JLD2.jl). The file contains three variables that
represent the reduced model: nz S is the sotoichiometric matrix, nz mets the table
of metabolites and nz rxns the table of reactions.
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Figure 3: Steady state metabolite concentrations as functions of ξ for the
CHO-K1 model. Steady state concentrations of selected metabolites as functions
of ξ, for the simulations of the CHO-K1 metabolic network, after 25% relative
perturbations in crowding coefficients. Representative values of β are plotted.
The black line corresponds to the β →∞ limit.
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Figure 4: Dilution rate versus cell density in steady state of the CHO-K1
metabolic model. Different curves correspond to different levels of heterogeneity.
Discontinuous line indicates unstable steady states.
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