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SUMMARY
Cryopreservation has a negative effect on the quality of oocytes and may be closely associated with increased levels of reactive oxygen

species (ROS) and apoptotic events. The purpose of the present study was to evaluate the detrimental effects on the developmental

competence of somatic cell nuclear transferred (SCNT) mouse embryos using vitrified (cryopreserved) oocytes and to evaluate the recov-

ery effects of melatonin on cryo-damage in cloned embryos. Development of SCNT embryos using cryopreserved oocyte cytoplasm

(SCNT-CROC) was inferior to those using fresh cytoplasm (SCNT-FOC). Using RNA-sequencing analysis, we found upregulation of eight

pro-apoptotic-related genes (Cyct, Dapk2, Dffb, Gadd45g, Hint2, Mien1, P2rx7, and Pmaip) in the SCNT-CROC group. Furthermore, the

addition of melatonin, an agent that reduces apoptosis and ROS production, enhanced blastocyst formation rates in the SCNT-CROP

group when compared with the melatonin-untreated group. Additionally, melatonin treatment increased the derivation efficiency of

pluripotent stem cells from cloned embryos using cryopreserved oocyte.
INTRODUCTION

It has been suggested that somatic cell nuclear transfer

(SCNT)-based reprogramming and subsequent derivation

of embryonic stem cells (ESCs) can produce patient-specific

stem cells for regenerative medicine (Lanza et al., 1999).

Recently, three individual research groups have success-

fully derived several SCNT-ESC lines using good-quality hu-

man oocytes and fibroblast cells from various sources

(Chung et al., 2014; Tachibana et al., 2013; Yamada et al.,

2014). In addition, many of the developmental blocks in

human SCNT embryos have been partially overcome by

modulation of histone methylation (Chung et al., 2015)

and are now an applicable technology for cell therapy.

Recently, oocyte vitrification has been used as a practical

tool in human assisted reproductive technology as well as a

popular cryopreservation method. In fact, it was reported

that cytogenetic and developmental deficits in offspring

born from vitrified (cryopreserved) oocytes were not

increased when compared with conventional in vitro fertil-

ization (Practice Committees of American Society for

Reproductive Medicine and Society for Assisted Reproduc-

tive Technology, 2013). This technique provides a valuable

opportunity to preserve fertility for infertile women, to

treat fertile women at risk of age-induced fertility decline

(Zhang et al., 2016) and cancer therapy-induced threats

to fertility (Falcone et al., 2004). In addition, vitrification

of surplus human oocytes could provide a steady source

of eggs for research, such as SCNT, and its use also reduces
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ethical concerns (Baek et al., 2017). However, although cry-

opreserved mouse oocytes can support genomic reprog-

ramming of the somatic cell nucleus to permit full-term

development, developmental potential of the SCNT

embryos was very poor (Hirata et al., 2011). In particular,

production of cloned embryos using cryopreserved human

oocytes and derivation of their SCNT-ESC lines was not

achieved until recently. Even with a survival rate greater

than 90%, clinical outcomes from vitrified oocytes are

lower than from fresh oocytes in the human assisted repro-

ductive technology program (Nakagata et al., 2013). This is

suggested to be due to cytoskeletal damage (Hotamisligil

et al., 1996), altered spindle structure (Joly et al., 1992), mi-

crotubules (Van der Elst et al., 1992), cortical granule distri-

bution (Gook et al., 1993; Van Blerkom and Davis, 1994),

and zonal hardening of oocytes (Chen et al., 2000; Kazem

et al., 1995). Additionally, cryopreserved oocytes are partic-

ularly vulnerable to oxidative stress because of their high

levels of lipids, and generate large amounts of reactive

oxygen species (ROS) that influence the balance between

oxidation and reduction reactions and the intracellular

anti-oxidative system (Luberda, 2005; Nakamura et al.,

2011).

Melatonin is a secretory product of the pineal gland and

regulates circadian rhythmicity (Reiter et al., 2003), aging

(Tamura et al., 2017), immune function (Calvo et al.,

2013), and apoptosis (Wei et al., 2015). It has been increas-

ingly recognized for its anti-oxidant capacity (Manchester

et al., 2015; Reiter et al., 2016; Zhang and Zhang, 2014).
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Table 1. Effect of Kdm4a mRNA Injection on the Developmental Potential of Cloned Embryos from Cryopreserved Mouse Oocytes

Group mRNA (mg/mL)
No. of NT
Oocytes

No. of 2-Cell
Embryos (%)a

No. of 4-Cell
Embryos (%)b

No. of 2-Cell Block
Embryos (% ± SEM)b

No. of Blastocysts
(% ± SEM)b

SCNT-FOC – 112 105 (94) 70 (67) 35 (33 ± 2.9)a 27 (26 ± 3.4)a

SCNT-FOC + K 2 109 103 (95) 102 (99) 1 (1 ± 1)b 85 (83 ± 3.5)b

SCNT-CROC – 139 132 (95) 93 (70) 39 (30 ± 1.8)a 30 (23 ± 3.1)a

SCNT-CROC + K 2 130 125 (96) 123 (98) 2 (2 ± 1.2)b 82 (66 ± 2.4)c

SCNT-FOC, cloned embryos from somatic cell nuclear transfer using fresh oocyte cytoplasm; SCNT-CROC, cloned embryos from somatic cell nuclear transfer

using cryopreserved (vitrified/warmed) oocyte cytoplasm; K, injection of lysine (K)-specific demethylase 4A (Kdm4a) mRNA. Within the same column, values

with different superscript letters (a, b, c) are significantly different (p < 0.05; n = 5).
aBased on the number of SCNT oocytes.
bBased on the number of 2-cell embryos.
In the field of reproductive biology, several recent studies

have shown that melatonin improves age-induced fertility

decline, attenuates ovarian mitochondrial oxidative stress

(Song et al., 2016), and promotes oocyte maturation

(Tian et al., 2014). Also,melatonin improves oocyte quality

and embryonic development in sheep (Abecia et al., 2002),

pigs (Shi et al., 2009), bovine species (Papis et al., 2007),

mice (Ishizuka et al., 2000), and humans (Arjmand et al.,

2016).Moreover, supplementation ofmelatonin enhanced

embryonic development, improving the quality of SCNT

blastocysts and reducing the apoptosis rate in porcine

(Choi et al., 2008; Nakano et al., 2012; Pang et al., 2013),

bovine (Su et al., 2015), and mouse embryos (Salehi et al.,

2014).

In the present study, we primarily explored the effect of

vitrified oocyte cytoplasm on the outcome of SCNT-medi-

ated reprogramming. By modulation of histone methyl-

ation, a developmental block was overcome in cloned

embryos derived fromboth cryopreserved and fresh oocytes;

however, the developmental capacity was greater in those

from fresh oocytes. This deficit in embryonic development

can be partly recovered by addition of melatonin during

cultivation in vitro, as shown in cloned embryos derived

from fresh oocytes. In fact, supplementation of melatonin

may positively affect the quality of cloned embryos by regu-

lating gene expression and apoptotic processes.
RESULTS

Injection of Kdm4a mRNA Enhanced Embryonic

Development of Cloned Embryos Using Vitrified/

WarmedOocytes, butDidNot Fully Reach that of Fresh

Oocytes

In our previous study, mRNA injection of Kdm4a encod-

ing the H3K9me3 demethylase overcame a developmental

block of SCNT mammalian eggs and improved their em-

bryonic development (Chung et al., 2015). To analyze
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the effect of Kdm4a mRNA on the development of cloned

embryos using cytoplasm of vitrified/warmed oocytes, we

assessed their embryonic development after injections

with or without Kdm4a mRNA. The injection of Kdm4a

mRNA removed H3K9me3 activity (Figure S1) and over-

came the 2-cell block in the cloned embryos (Table 1).

In fact, downregulation of H3K9me3 activity highly

improved blastocyst formation rates in both cloned em-

bryos using fresh (SCNT-FOC) and cryopreserved oocyte

cytoplasm (SCNT-CROC). Interestingly, although devel-

opmental block was nearly overcome after Kdm4a

mRNA injection in both groups, embryonic development

and the quality of blastocysts from the SCNT-CROC group

was still lower than those of the SCNT-FOC group (Figure 1

and Table 1). As shown Figure 1C, the number of cloned

embryos showing a high ratio of inner cell mass (ICM)

number (more than 10 ICMs per blastocyst) was lower

in the SCNT-CROC + K group than in the SCNT-FOC +

K group (p < 0.05).

Analysis of Transcriptional Differences in Cloned

2-Cell Embryos between SCNT-FOC and SCNT-CROC

Groups

To identify the earliest embryonic transcriptional differ-

ences between SCNT-FOC and SCNT-CROC groups, we per-

formed RNA-sequencing (RNA-seq) experiments with

pooled 2-cell embryos (100 embryos per sample, repeated

three times) of both groups 24 h after oocyte activation

and Kdm4amRNA injection. The expression of most genes

was similar in both groups, and only a small number of

genes (159 genes) were shown to have different expression

patterns (Figure 2A). From gene ontology (GO) terms and

KEGG analysis, we found that several pathways, including

apoptosis and p53 signaling pathways, were markedly acti-

vated. When the differentially expressed genes (DEGs) in

the GO-term database were analyzed, out of 1,730

apoptosis-related genes only 16 genes (0.92%) showed

greater than a 3-fold difference between SCNT-FOC and



Figure 1. Injection of Kdm4a mRNA Improved the Embryonic Development of SCNT Embryos Using Fresh Oocyte Cytoplasm and
Cryopreserved Oocyte Cytoplasm
(A) Blastocyst formation in SCNT embryos using fresh oocyte cytoplasm (SCNT-FOC) and cryopreserved oocyte cytoplasm (SCNT-CROC)
groups with and without Kdm4a mRNA injection (K). Scale bar, 20 mm.
(B) Expression of OCT4 and DAPI staining of blastocysts derived from SCNT-FOC and SCNT-CROC groups with or without Kdm4a mRNA
injection (K). Scale bar, 20 mm.
(C) The proportion of SCNT-derived blastocysts based on the numbers of inner cell mass (ICM) and expressed immunoreactivity for OCT4.
Type 1, the types of blastocysts containing more than 10 ICM cells; type II, the types of blastocysts containing fewer than 10 ICM cells. The
results in the bars are presented as means ± SEM. The different letters on the bars indicate significantly different values (p < 0.05).
SCNT-CROC groups. Interestingly, in the SCNT-CROC

group, eight (50%) pro-apoptosis-related genes (Cyct,

Dapk2, Dffb, Gadd45g, Hint2, Mien1, P2rx7, and Pmaip)

and three (27.2%) anti-apoptotic genes (Adrb2, Scin, and

Six1) were upregulated when compared with the SCNT-

FOC group. Also, only two (18.2%) pro-apoptosis-related

genes (Ifng and Siah1a) and three (27.2%) anti-apoptotic

genes (Syce3, Tsc22d3, and Vegfa) were downregulated

(Figure 2B).

In addition, only six cell-cycle-related genes (0.41% out

of 1,449 genes) had different expression levels and only

one cell arrest-related gene (Gadd45g) was upregulated in

the SCNT-CROC group (Figure 2B).

On the other hand, 30 gene expression-related genes

(0.62% out of 4,841 genes) and 61 metabolic process-

related genes (0.60% out of 10,234 genes) showed different

expression between SCNT-FOC and SCNT-CROC groups.
However, most of them have no negative function on

gene expression or metabolic process (Figure 2B).

Melatonin Enhances Embryonic Development of

Cloned Embryos Using Vitrified/Warmed Oocytes

Due to the low rate of embryonic development up to the

blastocyst stage and different expressions of apoptotic

genes in the SCNT-CROC group, we applied 10 mM mela-

tonin to the culture system of cloned embryos to improve

their quality. The concentration of melatonin resulting in

the best quality and a high blastocyst formation rate was

selected from a preliminary experiment using convention-

ally fertilized mouse embryos (data not shown). As shown

in several studies (Gao et al., 2012; Liang et al., 2017; Zhao

et al., 2016), supplementation of melatonin during cultiva-

tion reduced ROS levels and the number of TUNEL-positive

cells in blastocysts from the SCNT-CROC group (Figure 3).
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Figure 2. Analysis of Gene Expressions Between SCNT-CROC + K and SCNT-FOC + K Groups
(A) (Left) Scatterplot showing upregulated (red) and downregulated (blue) genes in SCNT-FOC. FPKM > 5 and FC > 3 is used as a cutoff
value. (Center) Bar graph showing GO terms with upregulated (red) or downregulated (blue) genes in SCNT-FOC. (Right) KEGG pathway
analysis using the DEGs. Red and blue color in pie charts represent ratio of genes repressed (blue) and enhanced (red) in SCNT-FOC.
(B) DEGs are compared with each GO dataset and then classified into four groups by apoptotic process, cell cycle, gene expression, and
metabolic process.
The overall percentage of TUNEL-positive embryos were

significantly decreased in the melatonin-supplemented

group (SCNT-CROC + K + M) compared with those of

the non-supplemented group (SCNT-CROC and SCNT-

CROC + K) (7.8% versus 54.3% and 24.1%, p < 0.05; Figures

3A and 3B). In addition, melatonin has a positive role on

the reduction of ROS levels and in the embryonic develop-

ment of the SCNT-CROC group, regardless of Kdm4a

mRNA injection (Table 2). To compare the embryonic qual-

ity of cloned embryos with or without supplementation of

melatonin, we analyzed the implantation rate after embryo

transfer and the derivation rate of mouse ESCs (mESCs).

The number of implantation rates in the melatonin-sup-

plemented group (SCNT-CROC + K + M) was significantly

increased compared with those of the non-supplemented

group (SCNT-CROC + K) (66.2% [51/77] versus 42.9%

[33/77], p < 0.05; Figures 4A and S2). Also, we obtained a

higher derivation rate of mESCs in the melatonin-supple-
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mented group compared with those in the non-

supplemented group (21.3% [10/47] versus 5.6% [2/36],

p < 0.05; Figure 4B).

Effect of Melatonin Treatment on Transcription in

Cloned Blastocysts from the SCNT-CROC Group

To find which genes are regulated by melatonin, we

analyzed transcripts from 2-cell embryos and blastocysts

(50 embryos or blastocysts per sample, repeated two

times) in both melatonin-treated and -non-treated groups.

In comparison of 2-cell embryos, 175 genes were consid-

ered differentially expressed at a fold change (FC) > 5

and fragments per kilobase per million reads (FPKM) > 5

(Figure 5 and Table S1). In the melatonin-treated (SCNT-

CROC + K + M) group, 111 genes were upregulated

compared with the melatonin-non-treated (SCNT-

CROC + K) group. GO-term and KEGG pathway analysis

revealed that the addition of melatonin ameliorates cell



Figure 3. Effects of Kdm4a mRNA Injection (K) and/or Melatonin Treatment (M, 10 mM) on Apoptosis and ROS Levels in SCNT
Embryos Using Cryopreserved Oocyte Cytoplasm
(A) Immunostaining of cloned blastocysts in the SCNT-CROC group after various treatments. The nuclei (blue) are stained with DAPI, and
the TUNEL-positive apoptotic nuclei (green) are indicated by arrows. OCT4 staining (red) is indicated ICM. Scale bar, 100 mm.
(B) TUNEL-positive cells indicate each embryo with apoptotic cells. **p < 0.05, significantly different from SCNT-CROC group; *p < 0.05,
significantly different from SCNT-CROC + K group (n = 4).
(C) ROS staining (green) of cloned morula in the SCNT-CROC group after various treatments. Scale bar, 100 mm.
(D) Quantification of ROS fluorescence intensity of cloned morula in the SCNT-CROC group after various treatments. The experiments were
performed four times. In each replicate, n = 6–9 per group. The total number of embryos was 26 and 31 in the SCNT-CROC + K and SCNT-
CROC + M + K groups, respectively. Asterisk indicates significantly different value (p < 0.05).
death-related pathways such as apoptosis, peroxisome,

and oxidative phosphorylation (Figure 5). Notably,

Deaf1, Fxn, Ppan, Rab10os, Sprr2d, Stag3, Tsen15, and

Zfp335, which are involved in cell survival and tissue

regeneration, were upregulated in 2-cell embryos from

the SCNT-CROC + K + M group. In addition, Ctss, Dffa,

Eif3f, Hacl1, Hspbp1, Mob2, Mrpl23, Mrpl33, Pmvk,

Slc4a11, and Wbscr22, which are involved in anti-oxidant

function, inflammation, and apoptosis, were also highly

upregulated. In contrast, the expression of cell death

and degeneration-related genes (Atp6v0c, Cd52, Dapk2,

Ddit4l, Duoxa2, Nfkbia, Ptgds, Rdh12, and Rnd3) were

downregulated in 2-cell embryos from the SCNT-

CROC + K + M group (Table S1).
As shown in the Table S2, in comparison of blastocysts,

81 genes were considered differentially expressed at a

FC > 2 and FPKM > 5. In the melatonin-treated (SCNT-

CROC + K + M) group, 20 genes were upregulated

compared with the melatonin-non-treated (SCNT-

CROC + K) group. Notably, Amd1, Fam46C, Oxt, and

Ppt2, which are involved in cell survival and tissue regener-

ation, were upregulated in blastocysts from the SCNT-

CROC + K + M group. In addition, Gulo and Txnip, which

are involved in anti-oxidant function, inflammation, and

apoptosis, were also highly upregulated.

In contrast, the expression of many oxidative stress-

related genes (Adh1, Car2, Gsta3, Gstm2, Mb, Phlda2, and

S100a1) and cell death and degeneration-related genes
Stem Cell Reports j Vol. 12 j 545–556 j March 5, 2019 549



Table 2. Effect of Kdm4a mRNA Injection and Melatonin Supplement on the Developmental Potential in Cloned Embryos of
Cryopreserved Mouse Oocytes

Group
Melatonin
(mM)

No. of NT
Oocytes

No. of 2-Cell
Embryos (%)a

No. of 4-Cell
Embryos (%)b

No. of 2-Cell Block
Embryos (% ± SEM)b

No. of Blastocysts
(% ± SEM)b

SCNT-CROC – 125 112 (90) 66 (59) 46 (42 ± 3.7)a 23 (20 ± 1.5)a

SCNT-CROC + M 10 125 114 (91) 81 (71) 33 (31 ± 3.7)a 44 (39 ± 1.2)b

SCNT-CROC + K – 138 128 (98) 124 (94) 4 (3 ± 1.5)a 76 (59 ± 3.3)a

SCNT-CROC + K + M 10 138 123 (96) 119 (96) 4 (4 ± 1.8)a 91 (75 ± 3.3)b

SCNT-CROC, cloned embryos from somatic cell nuclear transfer using cryopreserved (vitrified/warmed) oocyte cytoplasm; M, treatment of melatonin; K, in-

jection of lysine (K)-specific demethylase 4A (Kdm4a) mRNA (2 mg/mL). Within the same column, values with different superscript letters (a, b) are signif-

icantly different (p < 0.05; n = 5).
aBased on the number of SCNT oocytes.
bBased on the number of 2-cell embryos.
(Akr1c13,Amd2,Clu,Hist1h3a,Hspb1, Il1rn, andNat8) were

downregulated in blastocysts from the SCNT-CROC + K +

M group. Also, many cell and tumor proliferation-related

genes (Efemp1, Glipr1, Lgals4, Plac1, Snora15, Snora 21,

Snora 34, andAnxa1) were shown to have decreased expres-

sion levels. Moreover, some immune response-related

genes (Clec2f, Hrsp12, and Plat) were also shown to be

downregulated in the melatonin-treated group (Table S2).
DISCUSSION

During the last decade, three types of pluripotent stem cells

(PSCs), including SCNT-ESCs, induced PSCs (iPSCs), and

multipotent germline stem cells, have been established us-

ing mouse and human cells, and these technologies may

provide a prominent approach for the treatment of pa-

tients with incurable diseases as well as for improving the

quality of life for the aging population (Chung et al.,

2014; Kanatsu-Shinohara et al., 2004; Tachibana et al.,

2013; Takahashi et al., 2007). In addition, the establish-

ment of PSC banks with various homozygous HLA types

may accelerate the clinical application of stem cell therapy

and the development of stem cell businesses (Lee et al.,

2016; Taylor et al., 2012). Recently, several reports have

suggested that the merits of SCNT-ESCs include improved

genetic stability and non-transmission of mitochondrial

disease compared with iPSCs (Kang et al., 2016; Ma et al.,

2014). Beyond these promising applications, SCNT-ESC

technologies may help solve the supply problem of human

donated oocytes required for the establishment of PSCs. In

the present study, we analyzed the developmental capacity

of cloned embryos using vitrified oocytes in order to secure

a supply of oocytes. The embryonic development of cloned

mouse embryos using vitrified oocyte cytoplasm (SCNT-

CROC) was decreased and the development was not fully

recovered by recent SCNT technology. By RNA-seq anal-
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ysis, we have evaluated that different expression in

apoptosis- and cell-cycle-related genes were found in em-

bryos from the SCNT-CROC group. Addition of melatonin,

which has various positive anti-apoptotic and anti-oxida-

tive stress effects during cultivation, was improved in the

pre- and post-implantation development of cloned mouse

embryos. Moreover, the expression of anti-apoptotic- and

cell-survival-related genes was significantly upregulated

in the melatonin-treated cloned embryos when compared

with the non-treated group.

A high incidence of developmental block has been

observed in cloned mammalian embryos and is a major

reason for the low efficiency of SCNT technology (Yang

et al., 2007). Several recent reports have suggested that

persistence of specific histone methylation interrupts

cellular reprogramming of donor nuclei and that addition

of histone demethylase enhanced the cloning efficiency

in mouse and human SCNT procedures (Chung et al.,

2015; Matoba et al., 2014; Matoba and Zhang, 2018). In

addition, it has been generally accepted that the vitrifica-

tion procedure can maintain the developmental capacity

of mammalian oocytes after cryopreservation and

contribute to the preservation of female fertility (Practice

Committees of American Society for Reproductive Medi-

cine and Society for Assisted Reproductive Technology,

2013). However, some effects of cryo-injury still must be

overcome in conventional and cloned embryos, even if

various technologies are applied (Baek et al., 2017; Yang

et al., 2016). To test whether increased histone demethyla-

tion has an effect on the recovery of diminished reprog-

ramming potential mediated by cryo-injury, we injected

Kdm4a mRNAs into cloned embryos. Similar to our previ-

ous reports, Kdm4a mRNAs overcame the developmental

block in embryos from the SCNT-FOC and SCNT-CROC

groups (Table 1). It is well known that Oct4 is a specific

gene marker for the ICM at the expanded blastocyst stage

(Nichols et al., 1998; Strumpf et al., 2005). In the present



Figure 4. Effects of Kdm4a mRNA Injec-
tion (K) and/or Melatonin Treatment
(M, 10 mM) on Implantation and SCNT-
ESC Derivation from SCNT Embryos Using
Cryopreserved Oocyte Cytoplasm
(A) Photograph of representative uterus at
day 7. The blastocysts from the SCNT-CROC +
K were transferred into the left horn only and
the blastocysts from the SCNT-CROC + K + M
into the right horn. Embryo transfer was
performed 11 times (see Figure S2).
(B) Comparison of implantation rate between
blastocysts from the SCNT-CROC + K and
SCNT-CROC + K + M groups.
(C) Photograph of ESCs from cloned embryos.
C1 (bright-field picture) and C2 (alkaline
phosphatase staining) represent colonies
from melatonin-non-treated (SCNT-CROC + K)
group. C3 (bright-field picture) and C4
(alkaline phosphatase staining) represent
colonies from melatonin-treated (SCNT-
CROC + K + M) group.
(D) Efficiency of SCNT-ESC derivation. The
efficiency of SCNT-ESC derivation was
analyzed based on the total number of blas-
tocysts placed on mitotic inactivated MEF
feeder cells. ESC derivation was performed
three times.
study, to assess the quality of blastocysts, we evaluated ICM

and total cell numbers (Kishigami et al., 2006). Although

Kdm4a mRNA was injected, the number of ICM in the

SCNT-FOC group (using fresh oocyte cytoplasm) was

significantly higher than those in the SCNT-CROC group

(Figure 1C). Also, a significant difference in developmental

potential still remained in both SCNT-FOC and SCNT-

CROC groups (Table 1), which suggests that cryo-injury is

not fully overcome by this procedure.

We performed RNA-seq analysis to identify differential

gene expression related to difference in embryonic devel-

opment between the SCNT-FOC and SCNT-CROC groups.

As shown in Figure 2, gene expression in both groups was

similar except for a small number of genes. Of particular

note were eight pro-apoptosis-related genes (Cyct, Dapk2,

Dffb, Gadd45g, Hint2, Mien1, P2rx7, and Pmaip) and one

cell-cycle arrest gene (Gadd45g) that were upregulated in

the SCNT-CROC group (Figure 2). On the other hand,

among the 30 gene expression-related genes (0.62% of

4,841 genes) and 61 metabolic process-related genes

(0.60% of 10,234 genes) showing different expression in

both SCNT-FOC and SCNT-CROC groups, we did not find

any gene that downregulated their related functions. Based

on these results, we hypothesized that cryo-injury during

vitrification may upregulate apoptosis and downregulate
embryonic development. Melatonin, well known as an

anti-apoptotic and scavenging agent in mammalian

embryology (Reiter et al., 2016; Salehi et al., 2014), was

able to improve the developmental competence of cloned

embryos in the SCNT-CROC group.

Supplementation of melatonin into culture medium

increased embryonic development regardless of Kdm4a

mRNA injection but showed no effect on overcoming the

developmental block (Table 2). Also, melatonin supple-

mentation decreased apoptosis in cloned mouse embryos

(Figure 3). GO-term and KEGG pathway analysis revealed

that the addition of melatonin results in altered expression

of genes related to terpenoid backbone biosynthesis,

apoptosis, peroxisome, and oxidative phosphorylation,

among others. The data suggest that melatoninmay confer

a beneficial effect on cell survival to SCNT-CROC. There-

fore, combining melatonin supplementation and Kdm4a

mRNA injection can provide a synergistic effect on the em-

bryonic development of cloned embryos in the SCNT-

CROC group. In addition, we analyzed implantation and

the ESC derivation of cloned embryos from the SCNT-

CROC group after melatonin supplementation. As shown

in Figures 4A and S2, the number of implantation sites at

embryonic day 7.5 was significantly increased in the mela-

tonin-treated group. We also found that the derivation
Stem Cell Reports j Vol. 12 j 545–556 j March 5, 2019 551



Figure 5. Melatonin Confers a Beneficial Effect on Cell Survival to SCNT-CROC
(A) Scatterplot showing alteration of gene expression by melatonin treatment. Red and blue dots represent genes repressed and enhanced
by melatonin, respectively. FPKM > 5 and FC > 5 is used as cutoff value.
(B) GO-term analysis using both up- and downregulated genes in melatonin-treated SCNT-CROCs. Each red and blue dot in the GO terms
represents a gene repressed and enhanced by melatonin, respectively.
(C) Bar graph showing GO terms with up- or downregulated genes in SCNT-CROC + K + M group. Red bars, analysis with downregulated
genes; blue bars, analysis with upregulated genes.
(D) KEGG pathway analysis using all DEGs. Red and blue color in pie charts represent ratio of genes repressed (red) and enhanced (blue) by
melatonin.
efficiency of SCNT-ESCs from cloned embryos using cryo-

preserved oocytes was improved after melatonin supple-

mentation (Figure 4B). More interestingly, we found that

the expression of some immune response-related genes

(Clec2f, Hrsp12, and Plat) was downregulated following

melatonin treatment in in vitro culture, and this downregu-

lation may be related to the increased implantation rate

(Table S1).

In the present study,we have found that the lowdevelop-

mental efficiency of cloned mouse embryos using cryopre-

served oocytes may be due to increased apoptosis and

altered gene expression resulting from cryo-injury. There-

fore, this decreased developmental competence should be

alleviated by the addition of a scavenger agent such as
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melatonin. This system will also be helpful in the deri-

vation and application of human SCNT-ESC lines by

providing steady sources of oocytes, and may reduce the

ethical concern related to oocyte donation.
EXPERIMENTAL PROCEDURES

Animals
Eight- to 10-week-old female B6D2F1 mice (Orient-Bio, Gyunggi-

do, Korea) were used for the collection of the recipient oocytes

and as SCNT donors. Eight- to 10-week-old female ICR mice were

used as the poster mothers of embryo transfer. To induce pseudo-

pregnancy, these mice were mated with vasectomized male mice

of the same strain. The protocols for the use of animals in these



studies were approved by the Institutional Animal Care and

Use Committee (IACUC) of CHA University (Project no. IACUC-

170119) and all experiments were carried out in accordance with

the approved protocols.

Oocyte Collection
Mice were superovulated by injecting them with 5 IU of pregnant

mare serum gonadotropin (Sigma-Aldrich, St. Louis, MO), followed

by 5 IU of human chorionic gonadotropin (hCG; Sigma-Aldrich)

48 h later. Oocytes were collected in M2 (Sigma-Aldrich) medium

at 14 h after hCG injection, and cumulus cells were denuded with

M2 medium containing 0.1% hyaluronidase (Sigma-Aldrich). The

cumulus-free oocytes were then cultured in potassium simplex opti-

mized medium (KSOM; Millipore, Darmstadt, Germany) for the

experiment. Dispersed cumulus cells were removed by hyaluroni-

dase treatment, diluted in M2 medium, and collected. The pellet

was then resuspended in a small volume of 3% (v/v) polyvinylpyrro-

lidone (PVP) in M2 and kept at 4�C until use.

Oocyte Vitrification and Warming
Quinn’s Advantage Medium with HEPES (Sage, Malov, Denmark)

with 20% (v/v) Knockout Serum Replacement (KSR; Gibco, Grand

Island, NY) was used as the base medium for preparation of all

vitrification and warming solutions. Two cryoprotectant agents, a

combination of ethylene glycol (EG; Sigma-Aldrich) and dimethyl-

sulfoxide (DMSO; Sigma-Aldrich) were used for the vitrification

procedure. MII oocytes were pre-equilibrated with HEPES medium

containing 7.5% EG and 7.5% DMSO for 2 min 30 s. Pre-equili-

brated oocytes were then placed and equilibrated in the same vol-

ume of HEPES medium supplemented with 15% EG, 15% DMSO,

and 0.5 M sucrose (Sigma-Aldrich) for 20 s. Equilibrated oocytes

were loaded onto electron microscopic (EM) copper grids (EM

Grid; PELCO, Redding, CA) and plugged into slush nitrogen (SN2)

using Vit-master (IMT; Ness Ziona, Israel). Vitrified oocytes were

stored in an LN2 tank. For warming, vitrified oocytes were warmed

by a four-step method. The EM grids were sequentially transferred

to 0.5, 0.25, 0.125, and 0 M sucrose with an interval of 2 min 30 s

at 37�C. The oocytes were washed three times with fresh modified

HTF (Millipore)medium and cultured inHTFmediumuntil the start

of the experiments (Cha et al., 2011).

Preparation of Kdm4a mRNA
In vitro transcription was performed as described previously

(Chung et al., 2015). In brief, full-length mouse Kdm4a/Jhdm3a

cDNA was cloned into a pcDNA3.1 plasmid containing poly(A)

83 at the 30 end of the cloning site by using an In-Fusion Kit (Clo-

netech #638909). Messenger RNAwas synthesized from the linear-

ized template plasmids by in vitro transcription using amMESSAGE

mMACHINE T7 Ultra Kit (Life Technologies #AM1345). The syn-

thesized mRNA was dissolved in nuclease-free water. The concen-

tration of mRNA was measured using a NanoDrop ND-1000

spectrophotometer (NanoDrop Technologies); aliquots of mRNA

were stored at �80�C until use.

SCNT and Embryonic Development
After incubation at 37�C, the cumulus of fresh or vitrified/warmed

oocytes was denuded and fresh cumulus cells were also collected as
nuclear donors. The fresh and vitrified/warmed oocytes were

enucleated in M2 medium containing 5 mg/mL cytochalasin B.

For nuclear transfer, cumulus cells were injected into enucleated

oocytes in M2 medium using a piezo-driven micromanipulator

(Primetech, Tsuchiura-shi, Japan). After nuclear transfer, the recon-

structed embryos were activated for 6 h by 10 mM SrCl2, 2 mM

EGTA, and 5 mg/mL cytochalasin B in M16 (Millipore) medium

and then cultured in KSOM in a humidified atmosphere of 5%

CO2 at 37
�C. The group of cloned embryos from SCNTusing fresh

oocyte cytoplasm (FOC) was referred as SCNT-FOC, and the group

using vitrified/warmed (cryopreserved/thawed) oocyte cytoplasm

was referred to as SCNT-CROC. In the first-round experiment,

cloned embryos of both groups were injected with�10 pL of water

(control) or 2 mg/mL Kdm4a mRNA using a piezo-driven microma-

nipulator. In the second-round experiment, cloned embryos

from the SCNT-CROC group were first injected with Kdm4a

(SCNT-CROC + K) and then cultured in KSOM medium with or

without 10 mM melatonin (Sigma). The concentration of mela-

tonin was chosen from our previous report (Kim et al., 2013) and

comparison test (data not shown). The embryonic development

of cloned embryos was assessed for 5 days (120 h) after activation.

Immunofluorescence
Cloned embryos were washed in PBS containing 0.1% polyvinyl

alcohol (PVA) and then fixed in 4% (w/v) paraformaldehyde at

room temperature for 30 min. The oocytes were then washed in

PBS/PVA and incubated overnight in PBS containing 1% BSA and

0.1% Triton X-100 at 4�C. Following this, the oocytes were washed

three times in PBS-0.1% BSA and incubated with a 1:200 dilution

of H3K9me3 antibody (07–442, Millipore) at the 1- and 2-cell

stages and purified mouse anti-OCT-3/4 (611203, BD Bioscience)

at the blastocyst stage for 2 h at room temperature. The cloned em-

bryos were then washed three times in PBS-0.1% BSA and incu-

bated with a 1:200 dilution of goat anti-mouse antibody

(ab150113, Abcam) for 1 h at room temperature. Following this,

they were washed in PBS-0.1% BSA three additional times. The

DNA was visualized by staining the oocytes with 40,6-diamidino-

2-phenylindole (DAPI; D5942, Sigma-Aldrich). The embryos were

mounted on glass slides with a drop of fluorescent mounting me-

dium and then observed using fluorescence confocal microscopy

(Zeiss LSM880; Zeiss, Jena, Germany).

Detection of DNA Fragmentation by TUNEL
DNA fragmentation was detected using TUNEL staining (in situ

Cell Death Detection Kit, Roche, Indianapolis, IN). According to

the instruction manual, SCNT-derived blastocysts were washed

three times in 0.1% PVA in Dulbecco’s PBS. The embryos were

then incubated in TUNEL reaction medium at 37�C in the dark

for 1 h. DNA stainingwith 1 mg/mLHoechst 33342 (bis-benzimide,

Sigma) was used for nuclear counterstaining. Signals in embryos

were observed with a confocal microscope (Zeiss LSM880).

Analysis of ROS Level
In the SCNT-CROC + K group, embryos at the morula or blastocyst

stages were treated with or without melatonin and incubated in

culture medium containing 5 mM CellROX Oxidative Stress Re-

agents (Molecular Probes, Eugene, OR) for 30 min, then washed
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two times with 0.1% PVA-D-PBS. Embryos were examined under a

fluorescence confocal microscope (Zeiss LSM880). The recorded

fluorescence intensities were analyzed using ImageJ software.

The fluorescence pixel value of the embryos was measured within

a constant area from different embryos’ cytoplasmic regions. Back-

ground fluorescent values were subtracted from the final values

before analysis of statistically significant differences between the

groups. The experiment was replicated three times with 5–10 em-

bryos in each replicate.

RNA-Seq Analysis of Cloned Embryos and Blastocysts
We performed two rounds of RNA-seq analysis. In the first round,

gene expression was assessed in 2-cell embryos between SCNT-

FOC + K and SCNT-CROC + K (100 embryos per sample, repeated

three times). In the second round, gene expression was assessed in

2-cell embryos and blastocysts between SCNT-CROC + K and

SCNT-CROC + K +M (50 2-cell embryos and 50 blastocysts per sam-

ple, repeated two times). Complementary DNAs (cDNAs) were

amplified using a SMARTer Ultra Low Input RNA cDNA preparation

kit (Takara, 634890) according to the manufacturer’s instructions.

The cDNAs were then fragmented into approximately 200-bp frag-

ments using an M220 sonicator (Covaris). The fragmented cDNAs

were end-repaired and adapter-ligated. The sequencing libraries

were prepared using a ScriptSeq v2 kit (Illumina) according to the

manufacturer’s instructions. Single-end sequencing was performed

on a HiSeq2500 (Illumina), and reads were mapped to the mm9

mouse genome using STAR (v2.5.2b, https://github.com/

alexdobin/STAR). After mapping, FPKMwas calculated by Cufflinks

(v2.2.1) using a default option. Genes were considered differentially

expressed at FC >2–5 and FPKM > 5. KEGG pathway analysis was

visualized by ClueGO package. Gene set enrichment analysis was

also used to identify biological function of the DEGs. An R (v3.3.2)

package was used for statistical analyses and scatterplot generation.

Embryo Transfer and Implantation Monitoring
Reconstructed embryos cultured to the blastocyst stage under

melatonin treatment or non-treatment conditions (SCNT-

CROC + K and SCNT-CROC + K + M groups) were transferred

into the uteri of 2.5-day pseudopregnant female ICR mice that

had been mated with vasectomized male ICR mice. Each groups

are transplanted into the left (SCNT-CROC + K) and right (SCNT-

CROC + K + M) uterus in the same mouse. Females were subse-

quently checked for implantation rate at 7.5 days post coitus. For

visualization of implantation, mice were euthanized, the intact

uterus was excised into normal saline, adhering fat was dissected

away, and the tissue was photographed.

Derivation ofMouse Embryonic StemCells from SCNT

Blastocysts
Hatched blastocysts obtained from both groups (SCNT-CROC + K

and SCNT-CROC + K + M) were placed on mitotic inactivated

mouse embryonic fibroblast (MEF) feeder cells inmESC cultureme-

dium to form outgrowths. We used DMEM/F12 containing 20%

KSR, 0.1 mM b-mercaptoethanol, 1% non-essential amino

acids, 100 units/mL penicillin, 100 mg/mL streptomycin (all

products from Gibco/Invitrogen, Grand Island, NY), and 1.5 3

103 units/mL recombinant mouse leukemia inhibitory factor
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(Chemicon, Temecula, CA) formESC culturemedium.Outgrowths

were transferred onto new MEF feeder cells, mechanically at first,

then passaged using trypsin-EDTA. All of the established mESC

lines were monitored and then characterized by morphology and

alkaline phosphatase staining. Alkaline phosphatase activity was

assessed by histochemical staining. Colonies were fixed in 4%

paraformaldehyde at room temperature for 1 min, washed twice

with PBS, and stained with an alkaline phosphatase substrate solu-

tion (10 mL of FRV-alkaline solution, 10 mL of naphthol AS-BI

alkaline solution; alkaline phosphatase kit, Sigma-Aldrich) for

30min at room temperature. Alkaline phosphatase activity was de-

tected colorimetrically by light microscopy.

Statistical Analysis
All the experiments were repeated at least three times. The results

are presented as mean or mean ± SEM. Embryonic developments

were analyzed by one-way ANOVA byDuncan’s test using SAS soft-

ware and implantation, and ESC-derivation rates were analyzed by

the Chi-square test. p < 0.05 was regarded as statically significant.
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FIGURE S1. Injection of Kdm4a mRNA removes H3K9me3 of SCNT embryos using fresh oocyte cytoplasm (SCNT-FOC) 

and cryopreserved oocyte cytoplasm (SCNT-CROC) at the 1-cell and 2-cell stage (related to Table 1). A) Representative 

nuclear images of 1-cell and 2-cell stage SCNT embryos stained with anti-H3K9me3 and DAPI. Shown in each panel is a nucleus 

of a single blastomere. Scale bar, 10 µm. B) Bar graph showing reduced expression intensity of H3K9me3 between cloned 

embryos from SCNT-FOC and SCNT-CROC groups at the 1-cell and 2-cell stage.  
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FIGURE S2. Photographs of uteri with implantation sites at day 7 (related to Fig.4).  Allows indicate ovary and 

implantation site, respectively. In 9 out of 11 experiments, the number of implantation sites was increased in the SCNT-

CROC+M+K group compared to those in the SCNT-CROC+K group. 
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