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Figure S1
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Figure S1. NOC treatment induced rapid apoptosis in hPSCs while mESCs and differentisted hPSCs can slip
into the next phase of cell cycle in the presence of NOC, Related to Figure 2.
(A, B and C) FACS analysis of cell cycle profile (Hoechst staining) and apoptosis (Annexin V-PI staining) at
different time points in NOC treated hiPSCs (A), mESCs (B) and differentiated H9 (RA+) cells (C)(n>3).
(D) Statistical analysis of apoptotic cell percentage in NOC treated hESCs (H9), hiPSCs, mESCs and differentiated
H9 (RA+) cells. Average apoptotic cell percentage are generated from 3 independent biological replicates (Data are
represented as mean ± s.e.m., n.s., not significant, *P < 0.05, **P<0.01, based on unpaired Student’s t-test).
(E) FACS analysis of mitochondrial membrane potential by TMRE dye staining at indicated time points during
NOC treatment. The numbers represents the percentage of cells with reduced TMRE fluorescence (n>3).
(F) Statistical analysis of H9 cells with reduced TMRE (E) after NOC treatment (Data are represented as     mean
s.e.m. of 3 biological replicates, n.s., not significant, **P<0.01, based on unpaired Student’s t-test).
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Figure S2. NOXA knock-out or BCL-XL overexpression decreased mitotic error induced apoptosis,
Related to Figure 4.
(A) Schematic view of NOXA genome locus, the positions and sequence of crRNAs.
(B) Statistical analysis of apoptotic cell percentage in NOC treated wild-type H9 and NOXA-/- clones (Data
are represented as mean ± s.e.m. of 3 biological replicates, n.s., not significant, *P < 0.05, based on unpaired
Student’s t-test).
(C) Cartoon depicting the Dox-inducible BCL-XL expression system.
(D) Flow cytometric analysis of apoptosis (Annexin V-PI staining) of Dox-induced and non-induced HA-
BCL-XL cells treated with NOC (n>3).
(E) Statistical analysis of apoptotic cell percentage from inducible HA-BCL-XL cells (D) with NOC
treatment (Error bars are shown as ± s.e.m. of 3 independent biological experiments, n.s., not
significant, *P < 0.05, based on unpaired Student’s t-test).
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Figure S3. Dox alone does not affect apoptosis or mitochondrial membrane potential change induced 
by NOC treatment in H9 cells, Related to Figure 4.
(A) Timeline of the experiment. Dox was added right after passaging of cells, medium (with Dox) was 
changed 1 day after passaging. After another day, NOC was added for 24 h, followed byFACSanalysis.
(B and C) Mitochondrial membrane potential was examined by TMRE and JC1 staining and FACS
(n=3). The concentration of Dox was labeled on the top. (Data are represented as mean ± s.e.m. of 3 
independent experiments, n.s., not significant, based on unpaired Student’s t-test).
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Figure S4. Transcriptome analysis of hPSCs with anti-apoptotic mutation after NOC treatment, Related to
Figure 4.
(A) Schematic timeline of RNA-seq samples collection.
(B) Principal component analysis of different cell lines treated with NOC. Ctrl (DMSO treatment) in blue. NOC
treatment in orange. Different shapes represent assigned cell lines. Two biological replicates for each group.
(C) Gene ontology (GO) analysis of differentially expressed genes in BCL-XL overexpression (BCL-XL) cells versus
wild-type H9 cells. Red and blue represent GO term of genes significantly upregulated and downregulated in BCL-
XL cells. Note that genes negatively regulating NF-kB transcription factor were higher expressed in BCL-XL cells.
While genes positively regulating apoptotic processes were higher in wild-type H9 cells.
(D) Enriched GO terms associated with NOC treatment in different cell lines, wild-type H9 (i), BCL-XL H9 (ii),
NOXA-/- H9 (iii).
(E, F and G) Heatmap of apoptosis and NIK/NF-κB pathway genes that are significantly differentially expressed in
NOC treated wild-type H9 versus NOXA-/- H9 (E), NOC treated wild-type H9 versus BCL-XL H9 (F), NOC treated
wild-type iPSC versus BCL-XL OE iPSC (G), respectively. Many apoptosis and NIK/NF-κB related genes were
downregulated by BCL-XL overexpression or NOXA knockout. FPKM values were scaled and color key indicated
relative gene expression level. Higher level in red, lower level in blue (n=2).
(H) Venn diagram showing intersect gene numbers between significantly upregulated genes when BCL-XL, NOXA-/-

or shTP53 H9 were compared with wild-type H9.
(I) Heatmap of the 17 commonly upregulated genes from Venn diagram. These genes, such as ARRB1 and
LNC00458, may be potential biomarkers to identify culture adapted cells. FPKM values were scaled and color key
indicated gene expression level. Higher expressed genes in red, lower expressed genes in blue (n=2).



Figure S5

Figure S5. BCL-XL upregulation in BCL-XL OE or BCL2L1 CNV cells, Related to Figure 5.
(A) Bar graph showing the level of BCL-XL transcript in OE H9 cells increased about 5 folds based
on RNA-seq results. (B and C) Bar graph quantification of BCL-XL protein level based on western
blot results from Avery et al 2013 and Cho et al 2018 (Avery et al., 2013; Cho et al., 2018) (n ≥ 2).
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Figure S6

Figure S6. BCL-XL overexpression or NOXA knock out affect teratoma formation of hPSCs, Related to 
Figure 6.
(A) Heatmap showing commonly upregulated mitochondria genes in BCL-XL OE cells and NOXA-/- cells. 
FPKM values were scaled and color key indicated gene expression level. Higher expressed genes in red, lower 
expressed genes in blue (n = 2).
(B) Hematoxylin and eosin staining of teratoma sections from WT H9 cells, BCL-XL OE and NOXA knock-out 
cells. Three germ layers are indicated by yellow arrows.
(C) Schematic view of endoderm differentiation from hPSCs.
(D) RT-qPCR analysis of pluripotent genes (OCT4) and endoderm genes (SOX17 and FOXA2) at day 3 of 
differentiation (Data are represented as mean ± s.e.m. of 3 independent experiments, *** P < 0.001, based on 
unpaired Student’s t-test). 
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Supplemental Experimental Procedures 

KaryotypeAnalysis
Control and drug treated cells were cultured until confluent and sent for karyotyping at the Reproductive 
Medicine Center of the Peking University 3rd Hospital and Peking Union Medical College. Growing cells 
were treated with colcemid at 0.25 µg/ml for 4 h, then trypsinised to single cell suspension. Cells were 
resuspended in 0.4%M KCl hypotonic solution for 6 min at 37°C, followed by fixation with freshly made 
ice-cold methanol/acetic acid (3:1) for 20 min twice. After centrifugation, cells were resuspended in 300 µl 
fixation solution and dropped onto pre-cleaned glass slide. Slides were dried at 37°C overnight, followed 
by trypsin digestion and Giemsa staining. Images were taken on Zeiss Image M2 and analysed by SmartType 
software. For each group of cells, 50-70 chromosome spreads were imaged and analysed.

Flow Cytometry Analysis
To determine the cell cycle profile, hPSCs were incubated with 4 µg/ml Hoechst 33342 (Dojindo) for 2h, 
then washed and dissociated with 0.05% trypsin-EDTA. For cell death and apoptosis analyses, hPSCs were 
dissociated with 0.05% trypsin-EDTA, washed with PBS and then incubated with Alexa Fluor® 488 
Annexin V/Dead Cell Apoptosis Kit (Invitrogen V13241 and V13245) for 15 min. For mitochondrial 
membrane potential detection, cells were stained with TMRE (Invitrogen) for 10 min or with JC-1 (Sigma). 
Flow cytometric analysis was carried out using a BD LSRFortessaTM FACS machine (BD Biosciences).

Immunostaining and Western Blot
For immunostaining, hPSCs were fixed in 4% PFA for 20 min, then permeabilized with 0.25% Triton X-100 
for 20 min. Cells were then blocked with 5% FCS and incubated with primary antibody for 2 h, followed by 
washing in PBST and incubating with secondary antibody for 1h. For western blotting, hPSCs were lysed in 
SDS loading buffer. Protein samples were separated by gel electrophoresis and transferred to the 
nitrocellulose membrane, then incubated with primary antibody for 2 h and secondary antibody for 1 
h. Antibodies used in this study were: TP53, NOXA and OCT3/4 (sc-126, sc-30209 and sc-5279 Santa
Cruz), BCL-XL (ab32370 Abcam); MCL1, phospho-H3S10 and MCL1 (5453, 9706 and 9661 Cell
Signaling Technology); HA (rat mAb 3F10, 1867423a Roche); GAPDH (CW0101A CWBiotech).
Secondary antibodies used were: HRP-conjugated Goat Anti-Rat (ZSGB-Bio), HRP-conjugated Goat Anti-
Rabbit (Cell Signaling Technology), HRP-conjugated Goat Anti-Mouse (Jackson ImmunoResearch),
Dylight 488-conjugated Goat Anti-Mouse, Dylight 488-Goat Anti-Rabbit, Dylight 549-conjugated Goat
Anti-Mouse and Dylight 549-conjugated Goat Anti-Rabbit (Thermo).

DNA Constructs and The Generation of Transgenic hPSC Lines
pCAG-H2B-mCherry-IRES-puro plasmid was constructed by ligating a fragment encoding H2B-mCherry in 
between a pCAG promoter and an IRES-puro resistance gene cassette in the pCAG-IRES-puro 
plasmid(Wang et al., 2008). TP53 knocking-down H9 cells were generated using the lentivirus pLKO.1 
system. The targeted TP53 sequence is: 5'-GACTCCAGTGGTAATCTAC-3'. Empty vector was used as 
negative control. Lentivirus was packaged by transfecting 293FT cells with pLKO.1-shTP53 or pLKO.1 
together with helper plasmids psPAX2 and pMD2.G-VSVG. Lentivirus was collected from supernatant by 
concentration. Stable shRNA transfectants were selected in a medium containing puromycin. For inducible 
BCL-XL overexpression H9 cells, human BCL-XL cDNA was cloned into a Tet-inducible piggyBac plasmid 
(Gift from Sanger Institute)(Wang et al., 2008) after a TRE3G promoter (Clontech). A 3xHA tag was added 
to the N-terminus of BCL-XL. A PGK promoter driving neomycin resistance gene cassette was also included 
in the same plasmid. TetON-3G transactivator (Clontech) was cloned into a separate piggyBac plasmid 
between a CAG promoter and an IRES-puro resistance gene cassette. H9 hESCs were transfected with PB-
TRE3G-3HA-BCL-XL and PB-CAG-TetON-3G together with a plasmid expressing the piggyBac 
transposase (a gift from Sanger Institute) to facilitate stable integration. Stable clones were obtained by 
neomycin and puromycin double selection. Constitutive BCL-XL overexpressed H9 cell line was constructed 
with the pCAG-BCL-XL-IRES-Puro plasmid. H9 cells were transfected with the plasmid by electroporation 
and stable clones were obtained by puromycin selection.



NOXA Knock Out Using CRISPR
Cas9 nickase system was used to generate NOXA knock-out H9 cells in order to minimize the off-target
effect. crRNAs targeting NOXA gene exon 1 and 2 were designed using the online Crispr design tool
(http://crispr.mit.edu/). Two pair sgRNAs targeting NOXA exon1 and 2 were selected and ligated into
pX335-U6-Chimeric_BB-CBh-hSpCas9n (D10A) Plasmid (Cong et al., 2013). H9 cells were transfected by
electroporation. Single colonies were picked and expanded followed by genome PCR verification. The
absence of NOXA protein was verified by western blot. The targeted sequences are 5’-
ACGCTCAACCGAGCCCCGCGCGG-3’ and 5’-TTCTTCCCAGGCATCTCCGCCGG-3’, 5’-
AGTAGGCCAGCGGTAATCTTCGG-3’ and 5’-GTCATTAGACTG GGCGGCTGGG-3’ in the
downstream. To verify the deletion in NOXA gene, two primers were designed flanking the nicking site in
exon2, so that clones with NOXA deletion would not have PCR products while clones with intact NOXA
would have a 434bp DNA band. The primer sequences are: 5’- TGTGAAGGTGCATTCATGGG-3’ and 5’-
CAACAACAATGCACTGAACT-3’.

RNA Collection, High-throughput Sequencing and Data analysis
Cells were collected and washed by PBS. Then RNA was extracted with Trizol. 200ng RNA was used for
reverse-transcription followed the SMART-seq2 protocol (Picelli et al., 2014). Then cDNA was fragmented
by sonication using the Covaris sonicator. Fragmented cDNA was end-repaired, ligated with A base. After A
base addition, the pre-indexed Illumina adapters were ligated. cDNA with adapters were enriched for another
11 cycles. Finally, the acquired cDNA libraries were sequenced on HiSeq X Ten platform.
Raw reads were trimmed with trim_galore. Then clean data were mapped to human reference genome(hg38)
by STAR. Sequencing read coverage per gene was counted using HTSeq-count. FPKM values were
calculated using Cufflinks. Differential gene expression analysis was performed using R packages “DESeq2”
(Fold change >1.5, P value < 0.05). Subsequent gene ontology analysis was done by DAVID
( https://david.ncifcrf.gov/summary.jsp ). Gene set enrichment analysis was done with software downloaded
online (http://software.broadinstitute.org/gsea/index.jsp) (Subramanian et al., 2007). PCA plot, heatmap and
venn diagram were performed using R(http://www.r-project.org/).

Teratoma Analysis
All animal experiments were conducted in accordance with the Guide for the Care and Use of Animals for
Research Purposes. The protocol of teratoma formation assay in severe combined immunodeficiency (SCID)
mice was approved by Institutional Animal Care and Use Committee and Internal Review Board of Tsinghua
University. One million wild type, BCL-XL OE or NOXA-/- H9 cells were injected into the groin region of
the mouse (6 weeks old male and female mice were used without randomization). Two months later,
teratomas were dissected, photographed, fixed with 4% PFA for 1 day, embedded in paraffin and sectioned
at 10μm thickness to check differentiated tissue types. Experiments were repeated at least 3 times with more
than 10 mice injected for each group.

http://crispr.mit.edu/)
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