SUPPLEMENTARY MATERIAL FOR:

A network of $eIF2\beta$ interactions with eIF1 and $Met-tRNA_i$ promotes accurate start codon selection by the translation preinitiation complex

Anil Thakur, Laura Marler, and Alan G. Hinnebusch

Plasmid	Description	Parent Plasmid	
			Reference
YCplac111	sc LEU2 cloning vector		(1)
p1200	sc URA3 SUII in YCp50		(2)
YCplac112	hc TRP cloning Vector		(1)
pJCB101	sc LEU2 SUI1 in YCplac111		(3)
YEp24	hc URA3 cloning vector		(4)
ATP114	sc LEU2 sui1-Q31A in YCplac111	pJCB101	This study
ATP115	sc LEU2 sui1-Q31K in YCplac111	pJCB101	This study
ATP116	sc LEU2 sui1-Q31E in YCplac111	pJCB101	This study
ATP117	sc LEU2 sui1-F108Ain YCplac111	pJCB101	This study
ATP118	sc LEU2 sui1-F108D in YCplac111	pJCB101	This study
ATP119	sc LEU2 sui1-F108R in YCplac111	pJCB101	This study
ATP124	sc LEU2 sui1-Q31A-F108A in YCplac111	pJCB101	This study
p367	sc URA3 HIS4(ATG)-lacZ		(5)
p391	sc URA3 HIS4(TTG)-lacZ		(5)
p180	sc URA3 GCN4-lacZ in YCp50		(6)
pPMB24	sc URA3 SUI1-lacZ		(3)
pPMB25	sc URA3 SUI1 ant-lacZ		(3)
pC3502	sc $URA3^{-3}AAA^{-1}$ el uORF1 GCN4-lacZ in		(7)
pessoz	YCp50		
pC4466	sc URA3 ⁻³ UAA ⁻¹ el.uORF1 GCN4-lacZ in YCp50		(7)
pC3503	sc URA3 ⁻³ UUU ⁻¹ el.uORF1 GCN4-lacZ in YCp50		(7)
pC3505	sc URA3 el.uORF1-less GCN4-lacZ in YCp50		(7)
p1780-IMT	hc URA3 SUI2, SUI3, GCD11, IMT4	YEp24	(8)
p4385	hc TRP1- SUI2, SUI3, GCD11, IMT4	p1780-IMT	Christie Fekete
p4280/YCpSUI3- S264Y-W	sc TRP1 SUI3-S264Y	YCplac22	(9)
p4281/YCpTIF5- G31R-W	sc TRP1 TIF5-G31R	YCplac22	(9)
pTYB2-eIF1	SUI1 in PTYB2	pTYB2	(10).(10)
pPMB97	suil-K60E in pTYB2	pTYB2-eIF1	(10),(10)
ATP172	<i>sui1-031E</i> in pTYB2	pTYB2-eIF1	This study
ATP173	suil-F108D in pTYB2	pTYB2-eIF1	This study
ATP174	<i>sui1-F108R</i> in pTYB2	pTYB2-eIF1	This study
ATP175	<i>sui1-031A-F108A</i> in pTYB2	pTYB2-eIF1	This study
p921	sc URA3 SUI3	pRS316	(12)
p920	sc LEU2 SUI3	pRS315	Thomas Dever
I MP24	sc I FU2 SUI3-F1984	n920	This study
I MP27	sc I FU2 SUI3-F2170	n920	This study
I MP29	sc LEU2 SUI3-F217A/0221A	n920	This study
	50 LL02 5015-1 21711/2221A	P720	1 mo study

Table S1. Plasmids used in this study.

Plasmid	Description	Parent Plasmid	Source or
			Reference
LMP32	sc LEU2 SUI3-K170A	p920	This study
LMP33	sc LEU2 SUI3-K170A/S202A	p920	This study
LMP37	sc LEU2 SUI3-K214A	p920	This study
LMP38	sc LEU2 SUI3-S202A/K214A	p920	This study
LMP94	sc LEU2 SUI3-E189A	p920	This study
LMP95	sc LEU2 SUI3-E189R	p920	This study
LMP96	sc LEU2 SUI3-Q193A	p920	This study
LMP97	sc LEU2 SUI3-Q193R	p920	This study
LMP98	sc LEU2 SUI3-E189A/Q193A	p920	This study
LMP99	sc LEU2 SUI3-E189R/Q193R	p920	This study
pAV1089	hc URA3(6x)His-GCD11, SUI2, SUI3	YEp24	(13)
pAV1726	hc LEU2 (6x)His-GCD11, SUI2, SUI3	pRS425	(14)
LMP91	hc LEU2 (6x)His-GCD11, SUI2, SUI3-	pAV1726	This study
	F217A/Q221A		
LMP92	hc LEU2 (6x)His-GCD11, SUI2, SUI3-	pAV1726	This study
	S202A/K214A		
LMP101	hc LEU2 (6x)His-GCD11, SUI2, SUI3-	pAV1726	This study
	E189R		

Table S2. Yeast strains used in this study.

Strain	Genotype	Source
JCY03	<i>MATa ura3-52 leu2-3 leu2-112 trp1Δ-63 his4-301(ACG) sui1Δ::hisG</i> p1200 (sc URA3 SUI1)	(15)
ATY100 (PMY30)	<i>MATa ura3-52 leu2-3 leu2-112 trp1Δ-63 his4-301(ACG) sui1Δ::hisG</i> pJCB101 (sc <i>LEU2 SUI1</i>)	(3)
ATY122	<i>MATa ura3-52 leu2-3 leu2-112 trp1∆-63 his4-301(ACG) sui1∆::hisG</i> ATP114 (sc <i>LEU2 sui1-Q31A</i>)	This study
ATY123	<i>MATa ura3-52 leu2-3 leu2-112 trp1∆-63 his4-301(ACG) sui1∆::hisG</i> ATP115 (sc <i>LEU2 sui1-Q31K</i>)	This study
ATY124	MATa ura3-52 leu2-3 leu2-112 trp1 Δ -63 his4-301(ACG) sui1 Δ ::hisG ATP116 (sc LEU2 sui1Q31E)	This study
ATY125	<i>MATa ura3-52 leu2-3 leu2-112 trp1∆-63 his4-301(ACG) sui1∆∷hisG</i> ATP117 (sc <i>LEU2 sui1-F108A</i>)	This study
ATY126	<i>MATa ura3-52 leu2-3 leu2-112 trp1∆-63 his4-301(ACG) sui1∆::hisG</i> ATP118 (sc <i>LEU2 sui1-F108D</i>)	This study
ATY127	<i>MATa ura3-52 leu2-3 leu2-112 trp1∆-63 his4-301(ACG) sui1∆::hisG</i> ATP119 (sc <i>LEU2 sui1-F108R</i>)	This study
ATY128	<i>MATa ura3-52 leu2-3 leu2-112 trp1∆-63 his4-301(ACG) sui1∆::hisG</i> ATP124 (sc <i>LEU2 sui1-Q31A-F108A</i>)	This study
KAY18	$MAT\alpha \ leu2-3 \ leu2-112 \ ura3-53 \ ino1 \ sui3 \Delta \ gcn2 \Delta \ p921(SUI3, \ URA3)$	(8)
LMY103	MATα leu2-3 leu2-112 ura3-53 ino1 sui3Δ gcn2Δ LMP24(SUI3- E198A, LEU2)	This study
LMY106	MATα leu2-3 leu2-112 ura3-53 ino1 sui3Δ gcn2Δ LMP27(SUI3- F217A, LEU2)	This study
LMY108	MATα leu2-3 leu2-112 ura3-53 ino1 sui3Δ gcn2Δ LMP29(SUI3- F217A/Q221A, LEU2)	This study
LMY111	MATα leu2-3 leu2-112 ura3-53 ino1 sui3Δ gcn2Δ LMP32(SUI3- K170A, LEU2)	This study
LMY112	MATα leu2-3 leu2-112 ura3-53 ino1 sui3Δ gcn2Δ LMP33(SUI3- K170A/S202A, LEU2)	This study
LMY116	MATα leu2-3 leu2-112 ura3-53 ino1 sui3Δ gcn2Δ LMP37(SUI3- K214A, LEU2)	This study
LMY117	MATα leu2-3 leu2-112 ura3-53 ino1 sui3Δ gcn2Δ LMP38(SUI3- S202A/K214A, LEU2)	This study
LMY130	MATα leu2-3 leu2-112 ura3-53 ino1 sui3Δ gcn2Δ LMP94(SUI3- E189A, LEU2)	This study
LMY131	MAT α leu2-3 leu2-112 ura3-53 ino1 sui3 Δ gcn2 Δ LMP95(SUI3-E189R, LEU2)	This study
LMY132	MATα leu2-3 leu2-112 ura3-53 ino1 sui3Δ gcn2Δ LMP96(SUI3- Q193A, LEU2)	This study
LMY133	MAT α leu2-3 leu2-112 ura3-53 ino1 sui3 Δ gcn2 Δ LMP97(SUI3-Q193R, LEU2)	This study

Strain	Genotype	Source
LMY134	MATα leu2-3 leu2-112 ura3-53 ino1 sui3Δ gcn2Δ LMP98(SUI3- E189A/Q193A, LEU2)	This study
LMY135	MATα leu2-3 leu2-112 ura3-53 ino1 sui3Δ gcn2Δ LMP99(SUI3- E189R/Q193R, LEU2)	This study
LMY142	$MAT\alpha$ leu2-3 leu2-112 ura3-53 ino1 sui3 Δ gcn2 Δ p920(SUI3, LEU2)	This study
H3840	MATα leu2-3 leu2-112 ura3-52 ino1 sui2Δ gcn2Δ pep4::leu2::NatMX4 sui3::KANMX4 <his4-lacz, ura3-52=""> pAV1089(SUI2, SUI3, [6x]- GCD11, URA3)</his4-lacz,>	(16)
LMY128	MATα leu2-3 leu2-112 ura3-52 ino1 sui2Δ gcn2Δ pep4::leu2::NatMX4 sui3::KANMX4 <his4-lacz, ura3-52=""> LMP92(SUI2, SUI3- S202A/K214A, [6x]-GCD11, URA3)</his4-lacz,>	This study
LMY129	MATα leu2-3 leu2-112 ura3-52 ino1 sui2Δ gcn2Δ pep4::leu2::NatMX4 sui3::KANMX4 <his4-lacz, ura3-52=""> LMP91(SUI2, SUI3- F217A/Q221A, [6x]-GCD11, URA3)</his4-lacz,>	This study
LMY137	MATα leu2-3 leu2-112 ura3-52 ino1 sui2Δ gcn2Δ pep4::leu2::NatMX4 sui3::KANMX4 <his4-lacz, ura3-52=""> LMP101(SUI2, SUI3-E189R, [6x]-GCD11, URA3)</his4-lacz,>	This study

Table S3. Oligonucleotide primers used in this study.

SUBSTITUTION	SEQUENCE 5' -3'
eIF1-Q31A FOR*	CTATATTCATATTCGTATCGCACAGAGAAATGGTAGAAAAAC
	TTTAACTAC
eIF1-Q31A REV*	GTAGTTAAAGTTTTTCTACCATTTCTCTGTGCGATACGAATAT
	GAATATAG
eIF1-Q31KFOR	CTATATTCATATTCGTATCAAACAGAGAAATGGTAGAAAAAC
	TTTAACTACGG
eIF1-Q31K REV	CCGTAGTTAAAGTTTTTCTACCATTTCTCTGTTTGATACGAAT
	ATGAATATAG
eIF1-Q31E FOR	CAAACTATATTCATATTCGTATCGAACAGAGAAATGGTAGAA
	AAACTTTAAC
eIF1-Q31E REV	GTTAAAGTTTTTCTACCATTTCTCTGTTCGATACGAATATGAA
	TATAGTTTG
eIF1-F108A FOR	GAAGAACATTAAAATTCATGGGGCTTAAGTTCAAGGCTTACG
elf1-f108A KEV	GACTCGGCGTAAGCCTTGAACTTAAGCCCCATGAATTTTAAT
elf1-f108D fOk	GAAGAACATTAAAATTCATGGGGATTAAGTTCAAGGCTA
- IE1 E140D	
еlf1-f100D dev	GAUIUGGUGIAAGUUIIGAAUIIAAIUUUUAIGAAIIIIAAI
KEV	
elf 1-f lvon run	CCACTC
△JF1-F108R REV	GACTCGGCGTAAGCCTTGAACTTAACGCCCATGAATTTTAAT
	GTTCTTC
eIF26-E198A	TTCAATATCTCTTCGCAGCATTAGGTACGTCCGGTTC
FOR	
eIF2β-E198A	GAACCGGACGTACCTAATGCTGCGAAGAGATATTGAA
REV	
eIF2β-F217A	GAAAAGATTAGTCATTAAGGGTAAGGCTCAATCCAAACAAA
FOR	TGGAGAATGTC
elf2p-f217A	
KEV	AAICIIIIC
aIF28-	GTCAGAAAAGATTAGTCATTAAGGGTAAGGCTCAATCCAAA
F217A/O221A	GCAATGGAGAATGTCTTAAGAAGATACATTT
FOR	
eIF28.	AAATGTATCTTCTTAAGACATTCTCCATTGCTTTGGATTGAGC
F217A/O221A	CTTACCCTTAATGACTAATCTTTTCTGAC
REV	

SUBSTITUTION	SEQUENCE 5' -3'
eIF2β-K170A	CTCCTGTTTGTTTGCGTGATGGTGCGAAGACTATTTTCTCGAA
FOR	TAICC
eIF2β-K170A	GGATATTCGAGAAAATAGTCTTCGCACCATCACGCAAACAA
REV	ACAGGAG
eIF2β-S202A	CGCAGAATTAGGTACGGCCGGTTCTGTTGACGG
FOR	
eIF2β-S202A REV	CCGTCAACAGAACCGGCCGTACCTAATTCTGCG
KE V	
eIF2β-K214A	TTCTGTTGACGGTCAGAAAAGATTAGTCATTGCGGGTAAGTT
FOR	ICAAICC
eIF2β-K214 REV	GGATTGAAACTTACCCGCAATGACTAATCTTTTCTGACCGTC
	AACAGAA
eIF2β-E189A	CGAAAAATTGCATAGATCTCCGGCACATTTGATTCAATATCT
FOR	CTTCG
eIF2β-E189A	CGAAGAGATATTGAATCAAATGTGCCGGAGATCTATGCAATT
REV	TTICG
eIF2β-E189R	GCCGAAAAATTGCATAGATCTCCGAGACATTTGATTCAATAT
FOR	CICITCGC
eIF2β-E189R	GCGAAGAGATATTGAATCAAATGTCTCGGAGATCTATGCAAT
REV	TTTTCGGC
eIF2β-Q193A	CATAGATCTCCGGAACATTTGATTGCATATCTCTTCGCAGAA
FOR	TTAGGTA
eIF2β-Q193A	TACCTAATTCTGCGAAGAGATATGCAATCAAATGTTCCGGAG
REV	ATCTATG
eIF2β-Q193R	GATCTCCGGAACATTTGATTCGATATCTCTTCGCAGAATTAG
FOR	G
eIF2β-Q193R	CCTAATTCTGCGAAGAGATATCGAATCAAATGTTCCGGAGAT
REV	C
eIF2β-	CGAAAAATTGCATAGATCTCCGGCACATTTGATTGCATATCT
E189A/Q193A FOR	
TUN	

SUBSTITUTION

SEQUENCE 5' -3'

eIF2β- E189A/Q193A REV	TACCTAATTCTGCGAAGAGATATGCAATCAAATGTGCCGGAG ATCTATGCAATTTTCG
eIF2β- E189R/Q193R FOR	CGAAAAATTGCATAGATCTCCGAGACATTTGATTCGATATCT CTTCGCAGAATTAGGTA
eIF2β- E189R/Q193R REV	TACCTAATTCTGCGAAGAGATATCGAATCAAATGTCTCGGAG ATCTATGCAATTTTTCG

*FOR, forward primer ; REV, reverse primer

REFERENCES FOR SUPPLEMENTAL MATERIAL

- 1. Gietz RD & Sugino A (1988) New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. *Gene* 74(2):527-534.
- 2. Yoon HJ & Donahue TF (1992) The suil suppressor locus in Saccharomyces cerevisiae encodes a translation factor that functions during tRNA(iMet) recognition of the start codon. *Mol Cell Biol* 12(1):248-260.
- 3. Martin-Marcos P, Cheung YN, & Hinnebusch AG (2011) Functional elements in initiation factors 1, 1A, and 2beta discriminate against poor AUG context and non-AUG start codons. *Mol Cell Biol* 31(23):4814-4831.
- 4. Parent SA, Fenimore CM, & Bostian KA (1985) Vector systems for the expression, analysis and cloning of DNA sequences in S. cerevisiae. *Yeast* 1(2):83-138.
- 5. Donahue TF & Cigan AM (1988) Genetic selection for mutations that reduce or abolish ribosomal recognition of the HIS4 translational initiator region. *Mol Cell Biol* 8(7):2955-2963.
- 6. Hinnebusch AG (1985) A hierarchy of trans-acting factors modulates translation of an activator of amino acid biosynthetic genes in Saccharomyces cerevisiae. *Mol Cell Biol* 5(9):2349-2360.
- 7. Visweswaraiah J, Pittman Y, Dever TE, & Hinnebusch AG (2015) The beta-hairpin of 40S exit channel protein Rps5/uS7 promotes efficient and accurate translation initiation in vivo. *Elife* 4:e07939.
- 8. Asano K, Krishnamoorthy T, Phan L, Pavitt GD, & Hinnebusch AG (1999) Conserved bipartite motifs in yeast eIF5 and eIF2Bepsilon, GTPase-activating and GDP-GTP exchange factors in translation initiation, mediate binding to their common substrate eIF2. *EMBO J* 18(6):1673-1688.
- 9. Valasek L, Nielsen KH, Zhang F, Fekete CA, & Hinnebusch AG (2004) Interactions of eukaryotic translation initiation factor 3 (eIF3) subunit NIP1/c with eIF1 and eIF5 promote preinitiation complex assembly and regulate start codon selection. *Mol Cell Biol* 24(21):9437-9455.
- 10. Acker MG, Kolitz SE, Mitchell SF, Nanda JS, & Lorsch JR (2007) Reconstitution of yeast translation initiation. *Methods Enzymol* 430:111-145.
- 11. Martin-Marcos P, *et al.* (2013) beta-Hairpin loop of eukaryotic initiation factor 1 (eIF1) mediates 40 S ribosome binding to regulate initiator tRNA(Met) recruitment and accuracy of AUG selection in vivo. *J Biol Chem* 288(38):27546-27562.
- 12. Dever TE, Yang W, Astrom S, Bystrom AS, & Hinnebusch AG (1995) Modulation of tRNA(iMet), eIF-2, and eIF-2B expression shows that GCN4 translation is inversely coupled to the level of eIF-2.GTP.Met-tRNA(iMet) ternary complexes. *Mol Cell Biol* 15(11):6351-6363.
- 13. Pavitt GD, Ramaiah KV, Kimball SR, & Hinnebusch AG (1998) eIF2 independently binds two distinct eIF2B subcomplexes that catalyze and regulate guanine-nucleotide exchange. *Genes Dev* 12(4):514-526.
- 14. Gomez E, Mohammad SS, & Pavitt GD (2002) Characterization of the minimal catalytic domain within eIF2B: the guanine-nucleotide exchange factor for translation initiation. *EMBO J* 21(19):5292-5301.

- 15. Cheung YN, *et al.* (2007) Dissociation of eIF1 from the 40S ribosomal subunit is a key step in start codon selection in vivo. *Genes Dev* 21(10):1217-1230.
- 16. Martin-Marcos P, *et al.* (2014) Enhanced eIF1 binding to the 40S ribosome impedes conformational rearrangements of the preinitiation complex and elevates initiation accuracy. *RNA* 20(2):150-167.

Fig. S1. Distinct interactions of eIF2 β with tRNA_i in py48S-open versus py48S-closed should enable eIF2 β to restrict transition to the closed/P_{IN} conformation of the PIC in a manner facilitated by eIF1. (A) Interactions between eIF2 β and the tRNA_i ASL and D-loop in the py48S-open complex. (B) Interactions of eIF2 β with tRNA_i in py48S-closed differ from those in (A) and are restricted to the D-loop. (C) An overlay of eIF2 β in py48S-open with tRNA_i in py48S-closed reveals predicted clashes throughout the ASL. These clashes are alleviated during the open-to-closed transition by movement of eIF2 β both laterally and toward the D-loop. The predicted clashes suggest that eIF2 β performs a steric role in ensuring accurate start codon selection, undergoing a conformational change that allows tRNA_i to assume the P_{IN} state of the closed conformation only when a perfect AUG:anticodon duplex is formed in the P-site. (D) A network of interactions between eIF2 β and both eIF1 and tRNA_i in py48S-open enhances TC recruitment and stabilizes the open, scanning conformation of the PIC prior to AUG selection.

Fig. S2

Fig. S2. eIF1 substitutions Q31E and F108D decrease discrimination against the *GCN4* uORF1 AUG codon in suboptimal context. (A) Transformants of JCY03 harboring WT *SUI1*, *sui1-Q31E* or *sui1-F108D* and el.uORF1 *GCN4-lacZ* reporters (pC3502, pC3503 or pC4466) containing, respectively, optimum, weak or poor context of uAUG-1, or an uORF-less *GCN4-lacZ* reporter with a mutated uAUG-1 (pC3505), were assayed for b-galactosidase activities as in Fig. 2D. Mean expression values with SEMs were determined from six transformants and asterisks indicate significant differences between mutant and WT as judged by a two-tailed, unpaired Student's t test (*P < 0.05; **P < 0.01). (**B**, **C**) The percentages of scanning ribosomes that translate el.uORF1 (B) or leaky-scan uAUG-1 and translate *GCN4-lacZ* (C) were calculated from the data in (A) by comparing the amount of *GCN4-lacZ* expression observed for each uORF-containing reporter to the uORF-less construct, yielding the percentages in (C), and subtracting the values in (C) from 100 to obtain the percentages in (B).

		e>	GCN4-lacZ expression(U)		% translating GCN4-lacZ			% translating el. uORF1		ting =1
	RF1_GCN4-lacZ	(1) WT	(2) Q31A	(3) F108A	(4) WT	(5) Q31A	(6) <i>F108A</i>	(7) WT	(8) Q31A	(9) F108A
(1) Optimum: ÁAÁ AUG	AUG	5±0.7	2±0.6 ^{**}	3±0.2 [*]	0.5	0.2	0.3	99.5	99.8	99.7
(2) Weak : <u>U</u> AA AUG		66±11	17±2 ^{**}	8±5 ^{**}	8	2	1	92	98	99
(3) Poor : <u>UUU</u> AUG		327±43	80±7 ^{**}	158±15 ^{**}	33	9	16	67	91	84
(4) No el.uORF1: AAA AGC	GCN4-lacZ	1000±150	900±200	1000±100	>99	>99	>99	<1	<1	<1
	AUG									

Α

13

Fig. S3. eIF1 substitutions Q31A and F108A decrease discrimination against the *GCN4* uORF1 AUG codon in suboptimal context. (A) Transformants of JCY03 harboring WT *SUI1*, *sui1-Q31A* and *eIF1-F108A* and the el. uORF1 *GCN4-lacZ* reporters containing optimum (row 1), weak (row 2) or poor (row 3) context of uAUG-1, or an uORF-less *GCN4-lacZ* reporter with a mutated uAUG-1 (row 4), were analyzed as in Fig. 3C. (B) b-galactosidase activities from columns 1-3 of (A) plotted in graphical format for WT *SUI1*, *sui1-Q31A* or *sui1-F108A* transformants containing the el. uORF1 *GCN4-lacZ* reporters with optimum, weak or poor context of uAUG-1, or an uORF-less *GCN4-lacZ* reporter with a mutated uAUG. Mean expression values with SEMs were determined from six transformants and asterisks indicate significant differences between mutant and WT as judged by a two-tailed, unpaired Student's t test (*P < 0.05; **P <0.01). (C, D) The percentages of scanning ribosomes that translate el.uORF1 (C) or leaky-scan uAUG-1 and translate *GCN4-lacZ* (D) were calculated from the data in (B) as described in Fig. S2B-C.

Fig. S4. Plots of TC dissociation assays with error. (A-E) To measure TC dissociation kinetics, as summarized schematically in Fig. 5D, partial 48S complexes were assembled with eIF1A, model mRNA containing an AUG or UUG start codon, radiolabeled TC containing either WT or mutant eIF2b, and either WT or mutant eIF1. Following incubation at 26° C for two hours, each reaction was chased with excess unlabeled TC for increasing periods of time and the fraction of labeled Met-tRNA_i bound to the PIC at each time-point was determined via EMSA. Data from each gel were plotted individually to determine a dissociation rate (k_{off}). Representative plots are shown in Figs. 5E, 5H, 7C, 8G, and 9E. The rates from three independent experiments were averaged to determine the k_{off} values shown in Figs. 5F, 5I, 7D, 8H, and 9F. In order to give a visual representation of the variability across gels, we have averaged together values at each time point across three independent experiments and plotted an average curve with SEMs for eIF2b-F217A/Q221A (A), eIF1-F108D (B), eIF1-Q31E (C), eIF1-F108R (D), eIF2b-S202A/K214A (E), and eIF2b-E189R (F).

Α

Fig. S5. Representative results from TC dissociation assays. (A-C) To measure TC dissociation kinetics, as summarized schematically in (A), partial 48S complexes were assembled with radiolabeled TC, eIF1A, model mRNA containing an AUG or UUG start codon, and either WT eIF1 (B) or eIF1-Q31E (C). Following incubation at 26° C for two hours, each reaction was chased with excess unlabeled TC for increasing periods of time (between 0.0084 and 24 hours as indicated above gel image) and the fraction of labeled Met-tRNA_i bound to the PIC at each time-point was determined by resolving radiolabeled 48S complexes (upper band) from free radiolabeled tRNA_i (lower band) by EMSA. As a control, one reaction was chased with buffer only ('mock chase') for each eIF1/mRNA pair, representing the maximum possible PIC-bound radioactivity. One reaction was also conducted in which unlabeled chase was added before labeled TC ('negative control'), demonstrating the least possible PIC-bound radioactivity. The upper band from each lane was quantified and normalized to total radioactivity in the lane (after background subtraction). These values for each time point were normalized to the negative control and plotted as shown in Fig. 5H.

Fig. S6

19

Fig. S6. Representative results from TC association assays. (A, B) To measure TC association kinetics, as summarized schematically in (A), radiolabeled TC was mixed with pre-formed $40S \cdot eIF1A \cdot eIF1 \cdot mRNA$ complexes containing either WT eIF1 or eIF1-Q31A/F108A and incubated for increasing times (as indicated). Reactions for WT and mutant eIF1 were carried out at each of four concentrations of 40S ribosomal subunits (2 μ M, 4 μ M, 8 μ M, and 16 μ M, as shown). Reactions were terminated with a chase of excess unlabeled TC. The fraction of labeled Met-tRNA_i bound to the PIC at each time-point was determined by EMSA, as in Fig. S5. As a control, one reaction was chased with buffer only ('mock chase'), representing the maximum possible PIC-bound radioactivity. One reaction was also carried out in which unlabeled chase was added before labeled TC ('negative control'), demonstrating the least possible PIC-bound radioactivity. For each time point, the upper band was quantified and normalized to total radioactivity in the lane (after background subtraction), followed by normalization to the negative control. These values were plotted to obtain the pseudo-first-order rate constant (k_{obs}) at each 40S concentration. The resulting k_{obs} values were plotted versus 40S concentration, as in Fig. 6B, to obtain the second-order rate constant (k_{on}).

Fig. S7

Fig. S7. Model describing the effects of eIF2 β interactions on the conformational rearrangements of the PIC during start codon selection. As described in Fig. 1A, eIF1 and eIF1A promote an open, scanning conformation of the PIC to which TC loads (i). Mutations that destabilize the open conformation slow TC loading, resulting in a Gcd⁻ phenotype. Following TC binding, the PIC scans the mRNA leader in the open conformation (ii). When a start codon is recognized, the PIC transitions to the closed state, accompanied by release of eIF1 and P_i (iii). Mutations that favor the closed complex, either by destabilizing the open state or by removing an impediment to transition to the closed state, decrease the fidelity of initiation, allowing selection of non-AUG codons including the near cognate UUG. Such mutations confer a Sui⁻ phenotype. (Above) The arrows summarize the contributions of eIF2 β to ensuring accurate start codon selection indicated by our findings here. The interactions of $eIF2\beta$ with eIF1 and the ASL of tRNA_i (Fig. S1D) stabilize and promote the open state, either by anchoring eIF1 to the complex or by stabilizing tRNA_i binding, while impeding transition to the closed state. For this reason, substitutions at these interfaces confer both Gcd⁻ and Sui⁻ phenotypes. The clash of open-state eIF2β with the closedstate tRNA, D-loop (Fig. S1C), however, enforces a strict requirement for an AUG start codon and inhibits transition to the closed state in its absence, but does not stabilize the open state. Thus, substitutions at this interface produce Sui phenotypes without any accompanying Gcd phenotype.