Whole-genome resequencing reveals Brassica napus origin and genetic loci
involved in its improvement

Lu et al.
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Supplementary Figure 1. Workflow performed in this study.
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Supplementary Figure 2. The demographic models evaluated with dadi'. The

Log-likelihood value is indicated under each model.
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Supplementary Figure 3. The demographic history of the A subgenome of B.
napus. The Log-likelihood value is indicated under each model. All the red lines
indicate the migration events from B. rapa into the B. napus winter landraces. The
generation number of B. napus was set to 7500 to 125002 The divergence time for
different split events was estimated using fastsimcoal2®, and marked on the right of
the corresponding event. Three deduced ancient populations were marked as

NPOPAO to NPOPAZ.
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Supplementary Figure 4. AK based on rate of change of LnP(K) between
successive K values. (a) Comparison of 4K for population structure of B. napus
landraces and B. rapa accessions; (b) comparison of 4K for population structure of B.

napus landraces and B. oleracea accessions.
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Supplementary Figure 5. Comparison of different demographic models of the C

subgenome of B. napus. The Log-likelihood value is indicated under each model. No

migration was considered in a and b. Recent migration from B. oleracea into the B.

napus landraces was considered in models ¢ and f; middle-term migration from B.

oleracea into B. napus landraces was considered in models d and g; long-term

migration from B. oleracea into B. napus landraces was considered in model e. The

generation number of B. napus was set to 7500 to 125002 All the red lines indicate

the migration events. Four deduced ancient populations were marked as NPOPAO to

NPOPAS.
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Supplementary Figure 6. The demographic history of the C subgenome of B.
napus. The Log-likelihood value is indicated under the model. All the red lines
indicate the recent migration events from B. oleracea into the B. napus landraces. The
generation number of B. napus was set to 7500 to 125002 The divergence time for
different split events was estimated using fastsimcoal2* and marked on the right of the
corresponding event. Four deduced ancient populations were marked as NPOPAO to

NPOPAS3.
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Supplementary Figure 7. Comparison
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of LD decay at the genome- and

subgenome-wide level. (a) Comparison of genome- and subgenome-wide LD decay

for the B. napus accessions. The LD decay from the A and C subgenomes is indicated

by black and red lines, respectively, and that from the B. napus genome is indicated in

blue. (b) Comparison of subgenome-wide LD decay for B. napus landraces and

improved cultivars. The LD decay from the A and C subgenomes of B. napus

landraces is indicated by black and blue-violet lines, and that from B. napus improved

cultivars is indicated by red and navy blue lines, respectively. (c) Comparison of

subgenome-wide LD decay for B. napus with different uses. The LD decay from the



A subgenome of B. napus accessions cultivated for fodder, vegetable, and oil
purposes is indicated by red, black, and navy blue lines, and that from the C
subgenome is indicated by blue-violet, dark green, and brown lines, respectively. (d)
Comparison of subgenome-wide LD decay for B. napus with different ecotypes. The
LD decay from the A subgenome of B. napus for winter, semi-winter, and spring
ecotypes is indicated by red, black, and navy blue lines, and that from the C
subgenome by blue-violet, dark green, and brown lines, respectively. The LD decay

of different groups of accessions was calculated using the Bna SNP set.
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Supplementary Figure 8. Comparison of LD decay based on BraA SNP sets. (a)

LD decay of B. rapa, and the A subgenomes of B. napus landraces and improved

cultivars. (b) LD decay of B. rapa, and the A subgenomes of B. napus with oil,

vegetable, and fodder purposes, respectively. (c) LD decay of B. rapa, and the A

subgenomes of B. napus with winter, semi-winter, and spring ecotypes, respectively.

The LD decay of different groups of accessions was calculated using the BraA SNP

set.
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Supplementary Figure 9. Comparison of LD decay based on BolC SNP sets. (a)
LD decay of B. oleracea, and the C subgenomes of B. napus landraces and improved
cultivars. (b) LD decay of B. oleracea, and the C subgenomes of B. napus with oil,
vegetable, and fodder purposes, respectively. (¢) LD decay of B. oleracea, and the C
subgenomes of B. napus with winter, semi-winter, and spring ecotypes, respectively.
The LD decay of different groups of accessions was calculated using the BolC SNP

set.
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Supplementary Figure 10. Divergence history of different ecotype and usage of B.
napus. (a) Divergence between B. napus winter and semi-winter ecotype; (b)
Divergence between B. napus winter and spring ecotype; (c) Divergence between
oilseed and non-oilseed (Combined fodder and vegetable accessions) B. napus. The
historical effective population sizes (Ne) and divergence time were estimated using
SMC++*. Generation estimates were inferred by assuming that the upper and lower

mutation rates were 1.5 x 10® and 9 x 10 per synonymous site per generation,

respectively, and that the generation time was one year.
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Supplementary Figure 11. Genome- and subgenome-wide comparison of

nucleotide diversity and Fst during the FSI and SSI of B. napus.
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Supplementary Figure 12. Whole-genome analysis of the selection signatures in
A subgenome during the FSI of B. napus. The upper and lower panels show the
genome-wide screening of FSl-selection signals of Fst (auaa) and ROD (auaa),
respectively. Horizontal dashed lines show the significance level of o = 0.05,
corresponding to z = 1.645. Genes involved in abiotic response are labeled in red;
disease defense response genes are labeled in blue. Full descriptions of these genes

are shown in Supplementary Data 29.
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Supplementary Figure 13. Whole-genome analysis of the selection signatures in
C subgenome during the FSI of B. napus. The upper and lower panels show the
genome-wide screening of FSl-selection signals of Fst cuca) and ROD (cuica),
respectively. Horizontal dashed lines show the significance level of o = 0.05,
corresponding to z = 1.645. Genes involved in morphogenesis are labeled in red. Full

descriptions of these genes are shown in Supplementary Data 29.
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Supplementary Figure 14. Whole-genome scanning of the improvement-selection

signatures

between B. napus improved cultivars and landraces.

Improvement-selection signals detected using (a) Fst, (b) ROD, (c) XPCLR, and (d)

XP-EHH comparisons.
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Supplementary Figure 15. Whole-genome scanning of the improvement-selection
signatures between double-low (DL) and double high (DH) B. napus cultivars.
Improvement-selection signals detected using (a) Fst, (b) ROD, (c¢) XPCLR, and (d)

XP-EHH comparisons.
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Supplementary Figure 16. Evaluation of imputation accuracy. Correlations (r%)
between true and imputed genotypes were calculated at each locus for two biological

replicates of 20 B. napus accessions in intervals of 5% of the MAF. Missing SNPs in

the true genotypes were excluded when calculating the correlations.
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Supplementary Figure 17. Manhattan and quantile-quantile (QQ) plots of
GWAS for BLUP of 11 traits. (a) Palmitic acid content; (b) stearic acid content; (c)
oleic acid content; (d) linoleic acid content; (e) eicosenoic acid content; (f) erucic acid
content; (g) oil content; (h) seed yield; (i) total glucosinolate content; (j) silique length;
and (k) flowering time. The lower and upper dashed horizontal lines depict the
suggestive (—logl0O(P) = 5.31) and significance thresholds (—loglO(P) = 6.61),

respectively.
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Supplementary Figure 18. Number of DEGs in the indicated tissues between

double-high and double-low B. napus accessions.
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Supplementary Figure 19. GO enrichment analysis results of DEGs between

roots of double-high and double-low B.

napus accessions.

(@ and (c)

Overrepresented GO terms in up- and down-regulated DEGs, respectively. (b) and (d)

Enrichment results of up- and down-regulated DEGS, respectively. Only the top 30

significantly enriched GO terms were included in this figure.
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Supplementary Figure 20. GO enrichment analysis results of DEGs between

stems of double-high and double-low B. napus accessions.

(@ and (c)

Overrepresented GO terms in up- and down-regulated DEGs, respectively. (b) and (d)

Enrichment results of up- and down-regulated DEGS, respectively. Only the top 30

significantly enriched GO terms were included in this figure.
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Supplementary Figure 21. GO enrichment analysis results of DEGs between
leaves of double-high and double-low B. napus accessions. (a) and (c)
Overrepresented GO terms in up- and down-regulated DEGs, respectively. (b) and (d)

Enrichment results of up- and down-regulated DEGS, respectively. Only the top 30

significantly enriched GO terms were included in this figure.
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Supplementary Figure 22. GO enrichment analysis results of DEGs between

flowers of double-high and double-low B. napus accessions. (a) and (c)

Overrepresented GO terms in up- and down-regulated DEGs, respectively. (b) and (d)

Enrichment results of up- and down-regulated DEGS, respectively. Only the top 30

significantly enriched GO terms were included in this figure.
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Supplementary Figure 23. GO enrichment analysis results of DEGs between
seeds at 7 days after flowering of double-high and double-low B. napus
accessions. (a) and (c) Overrepresented GO terms in up- and down-regulated DEGs,
(b) and (d) Enrichment results of up- and down-regulated DEGs,

respectively.

respectively. Only the top 30 significantly enriched GO terms were included in this

figure.
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Supplementary Figure 24. GO enrichment analysis results of DEGs between
seeds at 10 days after flowering of double-high and double-low B. napus
accessions. (a) and (c) Overrepresented GO terms in up- and down-regulated DEGs,
respectively. (b) and (d) Enrichment results of up- and down-regulated DEGS,

respectively. Only the top 30 significantly enriched GO terms were included in this

figure.
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Supplementary Figure 25. GO enrichment analysis results of DEGs between
seeds at 14 days after flowering of double-high and double-low B. napus
accessions. (a) and (c) Overrepresented GO terms in up- and down-regulated DEGs,
respectively. (b) and (d) Enrichment results of up- and down-regulated DEGS,

respectively. Only the top 30 significantly enriched GO terms were included in this

figure.
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Supplementary Figure 26. GO enrichment analysis results of DEGs between

seeds at 45 days after flowering of double-high and double-low B. napus

accessions. (a) and (c) Overrepresented GO terms in up- and down-regulated DEGs,

respectively.

(b) and (d) Enrichment results of up- and down-regulated DEGs,

respectively. Only the top 30 significantly enriched GO terms were included in this

figure.
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Supplementary Figure 27. GO enrichment analysis results of DEGs between
silique pericarps at 7 days after flowering of double-high and double-low B.
napus accessions. (a) and (c) Overrepresented GO terms in up- and down-regulated
DEGs, respectively. (b) and (d) Enrichment results of up- and down-regulated DEGs,

respectively. Only the top 30 significantly enriched GO terms were included in this

figure.
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Supplementary Figure 28. GO enrichment analysis results of DEGs between
silique pericarps at 10 days after flowering of double-high and double-low B.
napus accessions. (a) and (c) Overrepresented GO terms in up- and down-regulated
DEGs, respectively. (b) and (d) Enrichment results of up- and down-regulated DEGs,

respectively. Only the top 30 significantly enriched GO terms were included in this

figure.
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Supplementary Figure 29. GO enrichment analysis results of DEGs between

silique pericarps at 14 days after flowering of double-high and double-low B.

napus accessions. (a) and (c) Overrepresented GO terms in up- and down-regulated

DEGs, respectively. (b) and (d) Enrichment results of up- and down-regulated DEGs,

respectively. Only the top 30 significantly enriched GO terms were included in this

figure.
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Supplementary  Figure  30. Whole-genome  scanning of  ecotype
improvement-selection signatures between spring and winter ecotype of B. napus.
Ecotype improvement-selection signals detected using (a) Fst, (b) ROD, (c¢) XPCLR,

and (d) XP-EHH comparisons.
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Supplementary  Figure  31.  Whole-genome  scanning of  ecotype
improvement-selection signatures between semi-winter and winter ecotype of B.
napus. Ecotype improvement-selection signals detected using (a) Fst, (b) ROD, (c)

XPCLR, and (d) XP-EHH comparisons.
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Gene flow events were estimated using fastsimcoal2® and marked with red arrows.



Supplementary Table 1. Classification of the 588 B. napus accessions.

Improvement Group Asia Europe  North America Oceania  Total
SSI Landrace 28 23 3 3 57
Improved cultivar 55 19 0 1 74
Seed quality Double high 102 26 1 3 132
Double low 207 51 7 2 267
Ecotype Winter 14 53 0 0 67
Spring 12 46 13 7 78
Semi-winter 440 3 0 0 443
Usage Qil 462 92 13 6 573
Vegetable 4 0 0 0 4
Fodder 0 10 0 1 11




Supplementary Table 2. Comparison of LD decay among different groups of materials.

Comparison  Classification BraA (kb) BolC (kb) A subgenome of Bna (kb) C subgenome of Bna (kb)
rr=0l1 r’=03 r=01 r=03 rr=0.1 r=0.3 rr=01 rr=03
Organism B. rapa 25.50 2.10 NC NC NC NC NC NC
B. oleracea NC NC 432.20 27.90 NC NC NC NC
B. napus 179.60 4.30 1,172.40 121.40 322.70 19.30 - 1,365.30
Ecotype Winter 167.70 6.90 767.40 67.40 362.30 31.90 1,356.10 411.00
Spring 185.10 6.20 1,307.70 109.00 383.40 34.80 - 1,634.40
Semi-winter 239.90 4.50 1,198.40 108.70 411.00 31.70 - 3,142.50
Usage Oilseed 263.80 4.50 1,285.60 109.50 438.90 33.30 - 3,592.50
Fodder 2,127.00 21.30 - 160.70 4,686.80 98.40 4,659.10 641.40
Vegetable - 216.40 - 1,381.00 - 3,093.80 - 3,032.10
SSi Landrace NC NC NC NC 393.10 23.80 4,743.50 660.30
Improved NC NC NC NC 417.30 32.70 - 1,365.30
Cultivar

BraA denotes the SNP set called from B. napus and B. rapa accessions; BolC is the SNP set called from B. napus and B. oleracea accessions (Methods). Negative
sign indicates that the LD does not drop below the threshold of r* = 0.1 or 0.3; NC indicates no calculation, since the LD decay is not accurate calculated from

corresponding SNP sets.
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