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Appendix Figure S1 — A. A systematic analysis of HCC integrating different omics highlighted mechanistic
differences between redox genes and relationships with other processes, and permitted tumor stratification and
identification of subtype-specific features. B. Similar patterns of differentially expressed genes are observed upon
comparison of subjects displaying high vs low expression of redox genes (columns). Hierarchical clustering of
columns for all genes displaying significantly differentially expressed (Q < 0.05) and log,-fold changes >1. Columns

and rows displaying fewer than 5 statistically significant observations are

not presented. Note that differential

expression with respect to the top 10 correlated genes (Fig 1 inset) in the ALDH2 and G6PD clusters grouped the

genes in each closely together and distant from one another.
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Appendix Figure S2— GSEA performed in tumors displaying high vs low expression of genes and the first neighbors
of the ALDH?2 (left) and G6PD (right) clusters (Fig 4). Biological processes (rows) that were significantly (Q < 0.05)
enriched in more than 50% of the columns are displayed.
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Appendix Figure S3- G6PD and CAT comprise two highly correlated gene groups with inter-group negative
correlations and with opposing cellular functions. A. Redox genes that were highly correlated with CAT and G6PD
are shown (absolute Spearman p > 0.3, Q < 10°%), indicating the first neighbors of the two genes. Edges show negative
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(blue) and positive (red) correlations, with thicker lines indicating stronger correlations (highest absolute Spearman p
~0.8). The full set of correlations is displayed in Dataset 3. B. Using transcriptomics data from an independent dataset
(Chaisaingmongkol et al, 2017), we identified co-expression with CAT and G6PD (C, all absolute Spearman p > 0.4),
similar to our observations using transcriptomic data. Only statistically significant correlations (Q < 0.01) are
presented. C. Redox genes that were differentially expressed with respect to both CAT and G6PD expression were
determined (Q < 0.05), and their associated and significantly enriched processes (Q < 0.01) are indicated. Only
processes involving at least one redox gene are displayed. The full enrichment analysis is shown in Dataset 8.
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Appendix Figure S4— Co-expression analysis of the top 25 co-expressed genes (all displayed Spearman’s correlations
Q<0.01).
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Appendix Figure S5- Consensus clustering using redox gene expression from two independent datasets clusters
tumors into 2 major clusters. Relative change in area under the cumulative distribution function (CDF) and heat maps
of the consensus clustering for 2 clusters (k = 2), using data from (Lee et al, 2004; Lee et al, 2006) (A) and
(Chaisaingmongkol et al, 2017) (B).
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Appendix Figure S6-Redox genes are differentially expressed between tumor clusters, but the expression levels of
some are markedly more different than others. Gene expression in the hALDH2 (red) and hG6PD (blue) clusters are
displayed, together with log fold changes. Genes were sorted according to absolute log fold change, and the top row
comprises the best stratifying genes. ALDOB, PKM, G6PD, ALDH8A1, and MTHFS were highly differentially
expressed (Q < 1078, DESeq2). Note that the expression of MTHFS (log fold change = -1.1, Q <10-%) was clearly
distinct between groups and was thus a better stratifying gene than ALDH8A1 (log fold change = -1.2, Q <10°Y). For
all genes, Q < 0.005, with exception of GLS with Q > 0.05.
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Appendix Figure S7- hALDH2 and hG6PD tumors display substantial differences in NADPH metabolism. GEMs
for hALDH2 (A) and hG6PD (B) tumors were integrated with gene expression data for all tumors in a group.
Mitochondrial (green box) and cytosolic processes are represented. Numbers indicate enzyme-catalyzed reactions or
transport reactions (Dataset 11), e.g., glucose 6 phosphate dehydrogenase catalyzes reaction 7. Only reactions
displaying fluxes >1 in at least one of the models are shown. For bidirectional reactions (e.g., transport reactions),
fluxes were used to select the direction of that reaction. Thin arrows indicate reactions with low or null fluxes (A: 1-
3,7,9, 14, 16, 26, 27, 30; B: 6, 8, 10, 12, 13, 15, 18, 19, 22, 24, 28, 29, 31-34).
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Appendix Figure S8- Kaplan-Meier survival plots for the best separation for ALDH2 and G6PD cluster genes,
retrieved from the Human Pathology Atlas (Uhlen et al., 2017). Detailed statistics for individual genes are present in

Dataset 16.
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Appendix Figure S9— Analysis of data from two separate cohorts reproduces observations in transcriptomic data. A.
Using transcriptomics data from an independent cohort (Chaisaingmongkol et al, 2017), we identified antagonistic
gene expression similar to our observations using transcriptomic data (main text). Only statistically significant
correlations (Q < 0.01) are presented. B. Observations of another dataset were consistent between our observed
patterns of gene expression and patient survival groups (Lee et al, 2004; Lee et al, 2006). Gene expression was

10
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compared in high vs low survival groups, defined previously (Lee et al, 2004; Lee et al, 2006) as Cluster B and A,
respectively, and Q < 0.01 was considered statistically significant (Mann-Whitney U test). Gene expression is reported
with respect to matched non-tumor samples and considering samples with Cy-3 labeled cDNA (Lee et al, 2004; Lee
et al, 2006).

DOC S1 - G6PD AND CAT COMPRISE TWO HIGHLY CORRELATED
ANTAGONISTIC GENE CLUSTERS WITH OPPOSING CELLULAR FUNCTIONS

Our observations in the main text indicate that the heterogeneity in the redox metabolism in HCC tumors comprises
two antagonistic clusters, respectively including CAT and G6PD. These two genes are of particular interest not only
because they are potential prognostic markers (Table 1) but also due to their roles in redox metabolism. CAT is an
important antioxidant with catalytic activity that does not require NADPH, whereas G6PD is one of the main sources
of NADPH that may be used to maintain the antioxidant activity of peroxidases. Both proteins are often imbalanced
in cancer cells (Benfeitas et al, 2017; Glorieux et al, 2011; Ray et al, 2000; Skrzydlewska et al, 2005). We therefore
analyzed the expression patterns of these two genes in different tumors and the prognostic indications of their co-
expressed genes.

Correlation analysis indicated that CAT and G6PD expression was associated with the expression of most genes in
the two clusters (Appendix Figure S3A, absolute Spearman p > 0.4 and Q < 2x10%, compare with Fig 1B). CAT and
G6PD were positively co-expressed with 34 and 49 redox genes, respectively. Their co-expressed genes were highly
correlated with genes within each of the two groups but negatively correlated with most genes in the other group.
These observations were validated in an independent cohort (Appendix Figure S3B). Several potential markers of
favorable prognosis among genes positively co-expressed with CAT and markers of unfavorable prognosis among
genes positively were co-expressed with G6PD. Differential expression analysis showed that only 15 redox genes
were significantly (Q < 0.05) and simultaneously differentially expressed in tumors with high vs low CAT and G6PD
expression. GSTM1 and CAT-co-expressed genes (ALDOB, ALDH6A1, CAT, ALDH5A1, MTHFDL1, and MTHFS)
were positively co-expressed with CAT expression (logz-fold changes > 1.55, Q < 0.05) but negatively co-expressed
with G6PD (log.-fold changes < -1.6, Q < 0.005). In turn, the GPX8, GGT6, DUOX2 and G6PD-co-expressed genes
(ALDOA, ALDH3B1, MTH1, PFKP, PKM) were positively co-expressed with G6PD (log.-fold changes > 1.5, Q <
0.05) but negatively co-expressed with CAT (log.-fold changes <-1.6, Q <0.015). GSEA and reporter metabolite
analysis with respect to tumors displaying high vs low CAT or G6PD expression displayed similar observations to
those above (Fig 3). Importantly, no functional process was simultaneously up- or downregulated with respect to CAT
and G6PD expression. We also identified several processes involving redox genes in both clusters (Appendix Figure
S3C), including those related to the metabolism of organic compounds, lipids, cofactors, coenzymes and small
molecules, production of precursor metabolites and energy, as well as tissue development. Only organ morphogenesis
and tissue development were upregulated in high G6PD and low CAT-expressing tumors. All other terms, including
oxidation-reduction, showed the opposite trend.
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