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Systems genetics identifies a macrophage cholesterol network associated 
with physiological wound healing (by Bagnati M. et al.) 

Supplemental Figures 

Supplemental Figure 1. Related to Figure 2. A. Box plot graphs showing the 
median expression of all the genes included in M30 (macrophage-mediated healing 
network, MMHN), Runx2, Supt3 and ear healing distribution (y-axis, left to 
right respectively) according to the genotype of the M30 regulatory SNP 
(chr17_45131552, either TC or CC, x-axis). The expression level plotted corresponds 
to the normalised variance-stabilised gene counts (VST) after correcting for covariate 
effects. For each graph (left to right), the non-parametric Mann–Whitney U test p-values 
are P=0.025, P=0.102, P=0.167 and P=0.337. B. DNA topologically associated 
domain (TAD) containing the human RUNX2/SUPT3H locus obtained from human 
macrophage Hi-C data (Phanstiel et al., 2017). This TAD which contains the mouse 
regulatory SNP associated with the macrophage-mediated healing network (highlighted 
in yellow), is highly conserved across tissues and species (Barutcu et al., 2014; Harmston 
et al., 2017; Robertson et al., 2009). 
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Supplemental Figure 2. Related to Figure 2 and Supplemental Table 3. Nearest gene 
approach identifies candidate trans-acting regulators of healing co-expression modules (A-
E). Left, shows a graph with the relationship between predicted regulatory gene-module and 
healing-module. Y-axis shows the correlation of the expression level of each gene in the co-
expression module with the expression levels of the predicted trans-regulator by the nearest 
gene approach. X-axis shows the correlation between the expression levels of each gene in 
module and the rate of healing. Right, network graphs with the genes (nodes) in 
each module highlighting STRING protein database connections (the largest 
connected component is shown). Genes annotated with the top Gene Ontology (GO) 
functional term in each module are highlighted in green (See also 
Supplemental Table 2; M18 no enrichment, M24 “positive regulation of protein 
localization to nucleous”, M10 “biological adhesion”, M35 “mitotic cell cycle process” 
and M8 “oxoacid metabolic process”). trans-acting regulatory genes are shown in diamond 
shape.  
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Supplemental Figure 3. Related to Figure 4. M30 gene expression at day 8 following 

wounding. qRT-PCR for a subset of MMHN network genes in control (vehicle) and cerulenin-

treated rats (n=7 controls, n=8 cerulenin, two-tailed Student’s t-test p-value). 

Supplemental table files 

Supplemental Table 1. Ear wound phenotyping measurements in 146 mice. Related to 

supplemental methods. 

Supplemental Table 2. List of all the co-expression modules computed from 146 outbred 

mice macrophages' transcriptome. Related to Supplemental methods. 

Supplemental Table 3. Co-expression modules genome-wide Bayesian mapping results 

in 146 outbred mice. The mapping was generated using the first principal component of the 

modules and 10,778 mouse SNPs. Only associations with a Bayes factor higher than 100 
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Supplemental Figure 3. Related to Figure 4. M30 gene expression at day 8 following wounding. qRT-

PCR for a subset of MNHN network genes in control (vehicle) and cerulenin-treated rats (n=7 controls,

n=8 cerulenin, two-tailed Student’s t-test p-value).
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are included. Closest gene to the associated SNPs (nearest-gene-approach trans-regulatory 

gene) are also included. Spearman correlation and correlation P-value between candidate 

trans-regulatory gene and healing associated genes in the module are also shown. Related 

to Supplemental methods. 

Supplemental Table 4. Annotation of the genes belonging to the macrophage-mediated 

healing network (M30). Related to Supplemental methods. 
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Supplemental methods 

Animals and phenotyping 

The 1378 outbred mice used were part of a study comprising a total of 2,117 outbred 

mice (Crl:CFW(SW)-US_P08 (CFW); 1,065 males and 1,052 females), purchased from 

Charles River Laboratories, at 4–7 weeks of age over a period of 2 years. Mice 

were selected from the breeding colony to avoid the selection of siblings and half-

siblings. Shipment and husbandry details are previously described (Nicod et al., 2016).   

Wound healing phenotype was studied using the ear punch model. A 2mm ear punch 

was performed on the ears of each mice and the reduction in wound size has been 

measured after 5 weeks as ear area after healing. We tested the effect of all potential 

covariates on the variance in the ear area to regress them for the expression and mapping 

analyses. We found that the strongest effect was dependent on sex and year of 

measurement. The year of measurement refers to the year (2012, 2014) during which the 

ear area was measured from 2117 outbred mice. Indeed, there was a difference in the ear 

area according to the year of measurement, possibly because the time the collected 

tissues spent in formalin before the measurement was performed. Ear area measurements 

were therefore corrected for sex and year of measurement using a linear regression 

model. 146 mice were then selected at the extreme of the ear area 

distribution (62 fast healers and 84 slow healers) and their BMDMs profiled for RNA 

sequencing. 

C57BL/6J mice used for BMDMs extraction for Runx2 in vitro blockage were 

purchased from Jackson Laboratory, UK. Lewis (LEW) rats for in vivo wound healing 

experiment were purchased from Charles River, UK. All mice and rats were used 

straight from the source by housing them until the appropriate experimental age. All procedures were 

performed in accordance to institutional guidelines and procedures approved by the UK 

Home Office (United Kingdom Animals Scientific Procedures Act, 1986). 

Genotyping and imputation 

We used the genotypes published by (Nicod et al., 2016) in a 1378 outbred mice 

population. We downloaded the imputed allelic dosages from http://outbredmice.org/ 

(359,559 single nucleotide polymorphisms, SNPs) and selected the samples for which 

macrophage RNA-sequencing was performed (146 mice in total). To avoid the presence 

of outlier SNPs in the subpopulation, we carried out a linkage disequilibrium (LD) and 

minor allele frequency (MAF) extra filtering steps. To perform these filtering steps, we first 

recoded the imputed allelic dosages (0-1) as 0, 1, 2 (representing the number of copies of 

the minor 
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allele). We used the function snpgdsLDpruning from R package SNPRelate 1.8.0 (Zheng et 

al., 2012) and the method “r”, with a LD threshold of 0.8 and a MAF threshold of 0.01 was 

applied. This resulted in a final number of 10,778 SNPs that were used for genetic mapping.  

Sample selection and macrophage culture 

Average ear area (average between left and right ear) was normalized for sex and year of 

measurement using a linear regression model. Only mice kept in cage density of 3 and 

having consistent measurements of ear area between left and right ears were considered. 

146 mice showing extreme phenotypes in their rate of healing were chosen for 

subsequent analyses (62 fast healers and 84 slow healers, Supplemental Table 1). 

Bone marrow-derived macrophages (BMDMs) from 1378 genetically outbred mice were 

isolated by allowing bone marrow cells to differentiate in DMEM (Thermo Fisher Scientific, 

Waltham, MA) containing 25 mM HEPES buffer (Sigma), 25% L929-conditioned medium, 

25% fetal bovine serum (Labtech, batch 40811), penicillin (100 units/ml; Thermo Fisher 

Scientific) and streptomycin (100 µg/ml; Thermo Fisher Scientific), and cultured for 5 days in 

Petri dishes (Nunc) (Behmoaras et al., 2015; Lai et al., 2014). 

RNA extraction and RNA sequencing (RNA-seq) 

Total RNA was extracted from BMDMs using Trizol (Invitrogen) and RNeasy mini 

kit (Qiagen) according to manufacturer's instructions, with an additional purification step 

by on-column DNase treatment using the RNase-free DNase Kit (Qiagen) to 

ensure elimination of any genomic DNA. The integrity and quantity of total RNA was 

determined using a NanoDrop 1000 spectrophotometer (Thermo Fisher Scientific) and 

Agilent 2100 Bioanalyzer (Agilent Technologies). In total 500 ng of total RNA was 

used to generate RNA-seq libraries using TruSeq RNA sample preparation kit 

(Illumina) according to the manufacturer's instructions. Briefly, RNA was purified and 

fragmented using poly-T oligo-attached magnetic beads using two rounds of purification 

followed by the first and second cDNA strand synthesis. Next, cDNA 3' ends were 

adenylated and adapters ligated followed by 15 cycles of library amplification. Finally, the 

libraries were size selected using AMPure XP Beads (Beckman Coulter) purified and 

their quality was checked using Agilent 2100 Bioanalyzer. Samples were randomized to 

avoid batch effects and multiplexed libraries were run on a single lane (6 samples/lane) 

of the HiSeq 2500 platform (Illumina) to generate 
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100bp paired-end reads. An average coverage of 64M reads per sample was achieved. 

Raw reads were mapped to the reference mouse genome (GRCm38/mm10, 

Ensembl version v74) using TopHat 2.0.11 (Trapnell et al., 2009). Read counts per 

gene were calculated for each sample using HTseq 0.6.1 (Anders et al., 2015), (only 

genes with the “gene_biotype” type “protein coding” were considered for quantification).  

The average mapping percentage was >80%. Sequencing and mapping were controlled 

for quality using the FastQC software. A filtering criterion was added removing lowly 

expressed genes (i.e. only genes with more than 5 counts in all samples were 

considered for further analysis; 10,893 genes). Gene counts were normalised and 

variance-stabilized transformed (VST) by using DESeq2 1.14.1 R package (Love et al., 

2014). VST-normalised gene counts were adjusted for batch, lane, year of measuring and 

lane by taking the residuals of a linear model in which the normalized gene counts were 

explained by these four variables.  

Co-expression module inference and functional enrichment 

To infer gene co-expression modules in the macrophage mouse transcriptome 

(10,893 genes), we used the WGCNA 1.61 R package (Langfelder and Horvath, 2008). 

WGCNA was run using the soft threshold beta value automatically generated 

by the pickSoftThreshold function (beta 6). We used Spearman ranked correlations 

and the “ward.D2” agglomeration method. To avoid extremely large clusters, the 

deepSplit parameter was set to the maximum, 4. Minimum module size was set to 30 and 

the module merging parameter (MEDissThres) was set to 0.15. This resulted in 40 

co-expression modules each containing a range of transcript sets from 30 to 1,151 genes. 

The obtained co-expression modules with the assigned genes are included in Supplemental 

Table 2.  

Gene Ontology (GO) (Ashburner et al., 2000) functional enrichment of all the inferred 

modules was computed by using the function gprofiler from R package gProfileR 0.6.1 

(Reimand et al., 2016). The background was set to the input set of genes in all modules and 

non-clustered gene identified by WGCNA. Electronic annotations were excluded, the 

p-value correction method was set to “fdr” and only results with FDR smaller than

0.01 were considered. The full list of enriched terms in each co-expression module can

be found in Supplemental Table 2. M30 GO enriched terms were visualized in a graph

(Figure 3A, to avoid some redundancy, only terms with relative.depth=3 and the term

with the largest overlap (“lipid biosynthetic process”) are presented.
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Genetic mapping of co-expression modules 

Graphical Unit Evolutionary Stochastic Search (GUESS) genetic mapping tool was used to 

map the co-expression modules to the mouse genome (GUESS version 1.1). GUESS is a 

sparse Bayesian multiple linear regression method in which one outcome variable is 

regressed against all SNPs to identify the minimum (non-redundant) set of SNPs that 

predict the variability. For each SNP-outcome variable pair, GUESS returns a Marginal 

Posterior Probability of Inclusion (MPPI) which can be interpreted as the posterior strength 

of association between a single SNP and the outcome variable (Bottolo et al., 2013). 

Thus, we map the expression levels of the genes in each co-expression module 

summarized by the first principal component (1st PC). This first principal component was 

computed on the covariate-adjusted normalized counts by using the R function prcomp. 

Independent jobs of the algorithm were run for each co-expression module, each time 

for 20,000 sweeps and 5,000 burn in. From the output MPPI, we computed the Bayes 

Factor (BF) for each 1st PC-SNP pair. BF is defined as the ratio between the posterior 

and prior odds. The prior odds in GUESS is defined as 𝜋 = 𝐸(𝑝!)
𝑝, where 𝑝 is the input 

number of SNPs and 𝐸(𝑝!) is the expected number of control points for the 𝑔th outcome (in 

our case the first principal component of the co-expression module). In GUESS, 𝐸(𝑝!) is set 

by default to 2. Thus the BF formula becomes: = !""#!" (!!!""#!")
! (!!!)

 , where 𝑀𝑃𝑃𝐼!" is the 

marginal posterior probability of inclusion for the 𝑔th outcome and the 𝑖th SNP. The BF of 

the most highly associated SNP to each co-expression module can be found in 

Supplemental Table 3 (only modules with a BF higher than 100 are shown). Locus fine 

mapping was carried out for the module with the strongest genetic control point 

(macrophage-mediated healing network or M30). We used Hierarchical Evolutionary 

Stochastic Search (HESS) model (Bottolo et al., 2011; Lewin et al., 2016), which implements 

a hierarchical regression model in a Bayesian framework using a stochastic search 

algorithm. This allows jointly regressing a set of response variables (i.e. genes in a co-

expression module) against a set of SNPs. As output HESS computes an individual 

MPPI for each gene and SNP, HESS was run for 25,000 sweeps and 5,000 burn in. We 

mapped the individual expression levels of all genes in M30 (VST gene counts after 

adjusting for covariates effects) to the SNPs present in a ±1Mb window from the 

location of the most significant SNP identified by ESS analysis for M30 (region mapped: 

mouse chromosome 17 from 43,997,787 to 46,194,647, comprising 14 SNPs in our data). 

The MPPI for each gene and SNP can be found in Supplemental Table 4 (find also 

annotation of M30 gene network). 
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TAD computation 

Processed Hi-C data for mouse ESC (Bonev et al., 2017) and human macrophages 

(Phanstiel et al., 2017) were obtained from JuiceBox (Durand et al., 2016). TADs were 

identified using the directionality index calling algorithm implementation in tadtool (Kruse et 

al., 2016). Gviz and GenomicInteractions (Harmston et al., 2015) were used for visualisation 

purposes.  

Functional analysis of macrophage-mediated healing network MMHN 

We predicted Runx2 transcription factor binding sites (TFBS) in the promoter of the genes 

in MMHN by using the R package TFBSTools 1.10.3 (Tan and Lenhard, 2016). This 

package queries JASPAR database and provides tools to predict TFBS in a list of 

provided sequences. As there is no matrix for the Runx2 mouse gene in JASPAR 

database, we investigated one-to-one human orthologs of all murine genes present in 

the module and computed genes with binding sites for RUNX2 human gene. Promoter 

sequences were defined as 200 bp upstream of the 5’ flanking region of each gene. 

Ortholog genes and promoter sequences were retrieved from Ensembl v74 using the R 

library biomaRt (Durinck et al., 2009). In the function searchSeq of TFBSTools 

package, both strands were considered (strand parameter=”*”) and the minimum score 

was set to 80%. This resulted in 70 genes predicted to carry a RUNX2 TFBS in the module.  

To inspect the relationship between Runx2 transcriptional regulation and healing, we first 

correlated the VST gene counts of the genes in the module with Runx2 expression levels. 

We then correlated the VST gene counts of the module genes with the negative sex and 

year-adjusted average ear areas (i.e. rate of wound healing). The correlation of these two 

outputs resulted in 𝜌 = 0.74 (𝑃 = 1.04!!"). The correlations (and P-values) were computed 

with the R function corAndPvalue. In all cases Spearman’s ranked correlations (𝜌) 

were taken into account.  

The 177 genes of the module were entered into STRING protein-protein interaction 

database 10.0 (Szklarczyk et al., 2015) (queried on the 27/02/2018). Experimental, co-

expression and databases connections with a minimum interaction score of 0.15 were 

retrieved and the largest connected component was visualized using Cytoscape (Smoot et 

al., 2011) (Figure 3A). In the module graph, genes annotated with the functional term “lipid 

biosynthetic process” (22 genes) were colored in green and genes predicted to have a 

RUNX2 TFBS were highlighted with yellow border color. Gene node size was mapped to the 

probability of association of each gene with the SNP chr17_45131552 (HESS output). 
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Identification of candidate trans-regulators of co-expression modules by nearest gene 

approach 

We inspected trans-regulatory genes for the transcriptional programs through an 

associated SNP (BF>100) in the GUESS Bayesian analysis (Supplemental Table 

3). We carried out the nearest gene approach and annotated each of these networks 

with the nearest gene expressed in our macrophage RNA-seq data (i.e. candidate trans-

regulator gene, n=146, 10,893 genes). To further inspect the association of the candidate 

gene transcriptional regulation and healing, we first correlated the VST gene counts of the 

genes in the module with candidate trans-regulator gene expression levels. We then 

correlated the VST gene counts of the module genes with the  sex and year-adjusted 

average ear areas (i.e. rate of wound healing). These results are included in 

Supplemental Table 3. For the top 5 modules (ranked by absolute correlation with 

healing and without considering M30), we visualised these correlations 

(Supplemental Figure 2, right) and further inspected known connections between 

the genes in the Modules and the candidate trans-regulatory genes (Supplemental 

Figure 3). In this  analysis, we input all genes in each of these 5 modules in addition to 

the trans-regulatory candidate gene into STRING protein-protein interaction database 

10.0 (Szklarczyk et al., 2015) (queried on the 27/11/2018). Experimental, co-

expression, database and text-mining connections with a minimum interaction score 

of 0.15 were retrieved and the largest connected component was visualized using 

Cytoscape (Smoot et al., 2011) (Supplemental Figure 2, right). In each graph, genes 

annotated with the top enriched functional term in the module (i.e. most significant FDR 

as in Supplemental Table 2) were colored in green. The trans-regulatory candidate gene 

was highlighted with diamond shape and orange color.  

In vitro blockage of Runx2 and qRT-PCR 

BMDMs were cultured using tibias and femurs isolated from C57BL/6J mice for 4 days in 

Petri dishes, after which they were seeded in 6-well plates (0.5 million cells/well).  

The following day cells were treated with CADD522 for 48h (Chembridge Corporation) 

at a concentration of 20 µM in full culture medium. 

Complementary DNA (cDNA) was obtained from 500 ng of total RNA using the Bio-

Rad iScript kit (Bio-Rad, UK) according to manufacturer’s instructions. qRT-PCR reactions 

were performed using the Viaa 7 Real-Time PCR system (Life Technologies). A total of 10 

ng of cDNA per sample was used for PCR using Brilliant II SYBR Green qPCR 

Master Mix (Agilent). QuantStudio Real Time PCR Software (Life Technologies) was 

used for the determination of Ct values. Results were analyzed using the 

comparative Ct method (Schmittgen and Livak, 2008) and each sample was 

normalized to the reference gene (HPRT), to account for any cDNA loading differences.  
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Wound healing and histological analysis 

13-week-old Lewis (LEW) rats were divided into two groups as controls (n=6) 

and cerulenin treated (n=8) animals. Hair was removed from the back of the rats 

using a depilatory cream at least one day prior to surgery. Surgeries were 

performed under anesthesia using pre-operative analgesic (0.1 mg/kg Buprenex). One 

10mm full thickness wound was excised from the dorsum of the rat using a biopsy 

punch along the midline. A donut-shaped silicone splint was placed around the wound 

and attached to the skin with interrupted sutures. Splints are required to 

promote healing via epithelialization rather than contraction. Following secure 

attachment, the wounds/splints were covered with appropriate Tegaderm dressings to 

minimize the risk of infection. Cerulenin (Sigma Aldrich, UK) (300µg in 100µl of 

propylene glycol) was applied topically at days 0, 3 and 6 after excision. Wounds were 

monitored and imaged every 3 days and wound tissue was collected at day 8 

after excision for total RNA extraction and histological analysis.

Tissues were fixed in formalin for 48h. H&E slides and unstained slides were taken at all 

levels for the analysis of the healing tissue. Data analysis was performed using 

Image J. CD68 immunohistochemistry was performed on paraffin-embedded 

sections with rat anti-CD68 antibody (Biorad) and developed using EnVision+ System-

HRP (K4007, Dako). Pictures were taken with Leica Microscope Camera 

DFC7000T. Pictures were further merged using Adobe Photoshop and analysed 

using Image J software. Reported values represent the average of the quantification of 5 

different High Power Field (HPF) per animal. 

Data availability 

Mouse macrophage RNA-seq data has been deposited at GEO database under accession 

number GSE112171. Phenotype data is available in Supplemental Table 1.  

Statistics overview 

Two-tailed Student's t test was used in the experimental comparisons. See statistical 

methods used in the RNA-seq data analysis in the section “RNA extraction and RNA 

sequencing (RNA-seq)”. 
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Study approval 

This study was performed in accordance with the Home Office Guidance on the Operation of 

the Animals (Scientific Procedures) Act 1986, published by Her Majesty’s Stationery Office 

(London, United Kingdom). All animal protocols were approved both by Imperial College's 

Animal Welfare and Ethical Review Body (AWERB) and the Home Office. 
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