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1 Appendix	Figures	Captions		
 
Appendix Fig. S1. (a-e) Synthetic rescues functional truth tables: The truth tables of the four SR 

interaction types and the SL interaction. Each truth table denotes the cell viability states - viable (green), 

non-rescued (i.e., lethal -- red), and rescued (blue) - as a function of the activity state of each of the SR pair 

genes (down regulated, wild-type and up-regulated). The activity states are enumerated as 1 to state 9.: (a) 

(DU-SR): Down-regulation of a vulnerable gene is lethal but the cancer cell is rescued (retains viability) by 

the up-regulation of its rescuer partner; (b,d,e): Analogous functional truth tables for (DD, UD, and UU) SR 

types. (c) In a synthetic lethal interaction, in difference, the down-regulation of either gene alone is viable 

but the down-regulation of both genes together is lethal. (f) The pan-cancer DU-SR network, with red 

nodes denote vulnerable genes and green rescuer genes; the size of nodes is proportional to the number of 

interactions they have. (g) The pan-cancer DD-SR networks, with (red nodes denote vulnerable genes and 

green rescuer genes; the size of nodes is proportional to the number of interactions they have).  

 

Appendix Fig. S2. (a-d) Network characterization of pancancer SR network: (a,b) Degree distribution 

of DU-SR network for rescuer genes (a) and vulnerable genes (b).  (c,d) : Degree distribution of DD-SR 

network for rescuer genes (c) and vulnerable genes (d). (e) Functional similarities between gene pairs in 

DD SR network.  Comparison of functional similarities between (i) SR: DD-SR network (ii) Random-pair: 

network generated by random pairing between protein coding genes degree distribution similar to DD-SR 

network (iii) shuffled-pair: network generated by shuffling pairing of DD-SR network. Functional 

similarities of a pair were evaluated in terms of (i) GO similarity (left panel), (ii) distance between the partner 

gene in PPI network (middle panel), and (iii) distance between the partner gene in STRING network (right 

panel). The significance of difference of each of above measure between SR and random and shuffled 

controls are displayed. (f) Pairwise gene enrichment analysis: The figure shows relationship between the 

biological processes to which many vulnerable genes belong (red) and the biological processes to which 

many of their rescuer partners belong. Edges between a vulnerable process and a rescuer process represent 

the enrichment of SR interactions between the vulnerable and rescuer processes higher than expected. (g,h) 

The functional activity of DU-SR increases with advanced cancer. (g) The trend of number of 

functionally active SRs (green) and random gene pairs (red) as cancer progresses. (h) The number of rescued 

inactive vulnerable genes with varying number of active rescuers (from single rescuer with darkest blue line 
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to five rescuers with the lightest blue line) as cancer progresses. (i) DU-SR network predicts patient’s 

survival in an independent dataset. A Kaplan-Meier (KM) analysis comparing the survival of patients 

whose tumors have many functionally active SRs (top 10 percentile (N=200), rescued) to those with a few 

(bottom ten percentile (N=200), non-rescued). The difference in the areas under the curve between rescued 

(blue) and non-rescued (red) samples (ΔAUC) and their log rank p-values are denoted, in addition to Hazard 

ratios and their significance obtained from a Cox regression. (j) Survival prediction by integrating both SL 

and SR networks. The subset of non-rescued patients in Figure S2i that also have many co-inactive SLs (top 

10 percentile (N=87); Appendix 3.3) shows remarkably better survival than the subset of rescued patients 

that additionally have very few co-inactive SLs (bottom ten percentile (N=158)). (k) DD-SR networks 

predict cancer patient's survival: A Kaplan-Meier (KM) analysis comparing the survival of patients whose 

tumors have many functionally active DD SRs (top 10 percentile (N=200), rescued) to those with a few 

(bottom ten percentile (N=200), non-rescued). The difference in the areas under the curve between rescued 

(blue) and non-rescued (red) samples (ΔAUC) and their log rank p-values are denoted. (l) Pan-cancer 

clinical significance of SR network. X axis shows 23 different cancer types (with >50 samples in each 

type), and Y axis shows the fraction of significant pan-cancer SR interactions in each cancer type. Pan-

cancer TCGA dataset was divided into two halves. DU-SR network was identified by applying INCISOR 

using one half of the data, and clinical significance was determined in the other half of the data. (m,n) PPI-

SR (DU) network: (m) The pan-cancer DU-SR network mediated by protein-protein physical interactions 

(with red nodes denote vulnerable genes and green rescuer genes; the size of nodes is proportional to the 

number of interactions they have). (n) The PPI-SR network successfully predicts cancer patient's 

survival.  

 

Appendix Fig. S3. Validation of INCISOR predicted SR interactions using seven published datasets 

identifying DU-SR rescuers of seven drugs(IFong et al, 2015; Mills et al, 2013; Rathert et al, 2015; 

Stuhlmiller et al, 2015; Zhang et al, 2016). INCISOR’s prediction accuracy in identifying the rescuers of 

each of following seven drugs are quantified using receiver operator curves (ROC) and precision-recall (P-

R) curves: ABT-737(Mills et al, 2013) (a,e), BET-inhibitor(IFong et al, 2015; Rathert et al, 2015)(b,f), 

Lapatinib(Stuhlmiller et al, 2015)(c,g), Estrogen receptor inhibitor(Zhang et al, 2016)(d,h), Vemurafenib 

(Hugo et al, 2015)(i,j), BRAF inhibitor(k,l) and Tamoxifen(Gonzalez-Malerva et al, 2011)(m,n). (o) 

Summary figure of validation of INCISOR predicted SR interactions using four published datasets 

identifying DU-SR rescuers of four drugs (IFong et al, 2015; Mills et al, 2013; Rathert et al, 2015; 

Stuhlmiller et al, 2015; Zhang et al, 2016). AUCs quantifying INCISOR accuracy in identifying the rescuers 

of each of four drugs screened, including ABT-737, BET inhibitor, Lapatinib and an Estrogen receptor 

inhibitor. (p) The contribution of each step of INCISOR to its overall prediction, assessed via using 
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four published datasets identifying DU-SR rescuers of four drugs(IFong et al, 2015; Mills et al, 2013; 

Rathert et al, 2015; Stuhlmiller et al, 2015; Zhang et al, 2016). The coefficients estimated (Y-axis) by a 

multi-variate logistic regression for each INCISOR step (X-axis), for the same four datasets. The significance 

of the coefficients is displayed (“*” < 0.05, “**” < 0.01, “***” < .001).  

 

Appendix Fig. S4.  Validation of INCISOR predicted SR interactions using published in vivo and in 

vitro data. (a,b) INCISOR’s performance in identifying drugs that mitigate resistance to EGFR or 

ALK inhibitors (Crystal et al, 2014). (a) The association between the INCISOR scores (Y-axis, Methods) 

and the experimentally observed drug efficacy (X-axis).  (b) An ROC curve depicting the accuracy of 

INCISOR to identify drugs that sensitize the cells derived from resistant to EGFR or ALK inhibitors. (c) 

Targeting predicted DD rescuers enhances tumor size in mouse xenografts (Gao et al, 2015): The X 

axis shows the tumor size increase/decrease following DD-rescuer inhibition by drug treatment in all mice 

xenografts (general effect) where there is no copy number loss of their corresponding vulnerable gene. The 

Y axis shows the corresponding conditional effect of DD-rescuer pharmacological inhibition, measured only 

in the xenografts where the corresponding vulnerable gene is lost. As predicted, targeting predicted rescuers 

(red) results in significantly larger tumors in the conditional cases (where the vulnerable gene is lost, and the 

rescue indeed happens, Y axis) than in the general cases (where the vulnerable gene is not loss, and no rescue 

occurs, X-axis) ((Wilcoxon P-value <2.2 E-16)). This differential effect is generally not observed when 

targeting random control genes. Circles denote pairs that have a significant (P-value < 0.01) and crosses 

denote insignificant rescue effects. The Inset displays the synthetic rescue effects of HSP90 treatment. (d) 

Same as (c), except the PDX tumor growth displayed in terms of cumulative tumor growth. (e) Progression 

free survival (PFS) decrease in PDX with synthetic rescue: The figure compares the PFS of the general 

(vulnerable gene not lost) and conditional (vulnerable gene lost) PDXs following the drug treatment (DD-

rescuer inhibitor). (f,g) Validation of SR DD network using large-scale drug treatments in cell lines 

CTRP(Basu et al, 2013) and CCLE (Cheung et al, 2011):  Density distribution of the conditional 

normalized IC50 of 145 drugs in CTRP (f)  and 24 drugs in CCLE (g) rescuer inhibitors in cell lines having 

a copy number loss of corresponding vulnerable genes for predicted DD-pairs (yellow line) and for random 

pairs (grey line).  The IC50 values of the conditional IC50 DD-pairs are significantly higher than that of the 

random pairs, testifying to the predicted rescue effects.  The figure additionally displays the normalized 

conditional IC50 of DD-rescuer inhibitors for the top 500 DD-interactions, with red and green dots 

respectively denoting significant and insignificant decrease of anti-proliferative effects of the drugs, 

testifying to predicted rescue effects. The significance of the rescue effect is quantified by the deviation of 

conditional IC50s from the expected value (shown in vertical the black line). (h) Validation of predicted 

DD-SR interactions employing in vitro shRNA knockdowns (KD)(Marcotte et al, 2016): The X axis 
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shows the general phenotypic effect of DD-rescuer inhibition across all cell lines where there is no copy 

number loss of their corresponding vulnerable gene. The Y axis shows the corresponding conditional effect 

of DD-rescuer down regulation, measured only in the cell lines where the corresponding vulnerable gene is 

lost. The phenotypes measured are the post knockdown (KD) essentiality of shRNA (Marcotte et al, 2016). 

 

Appendix Fig. S5. (a-d) Experimental shRNA screening validates (DD) rescue effects of mTOR. (a) 

Summary of pooled shRNA experiment. Time points, treated and control samples are explained in the figure. 

(b-d) Rescue effect of top 11 predicted DD-SRs of mTOR. The Y axis shows the cell count fold change 

in Rapamycin-treated vs. untreated cells (i.e., in the rescued versus the non-rescued state) for the top 11 

predictions. Significance was quantified using a one-sided Wilcoxon rank-sum test over three technical 

replicates with at least two independent shRNAs knockdowns per each gene. For 8 of these KDs, at least 

two shRNA individually show the rescue effect. The black horizontal line indicates the median effect of 

Rapamycin treatment as a reference point.  (c) Cell viability following shRNA(red) and shRNA+Rapamycin 

(blue) treatments are displayed. 11 predicted DD vulnerable partners of mTOR are knocked down using 

shRNA. Several sets of control genes (5 genes in each set that is the total of 25 genes) that are not the 

predicted SR partners of mTOR were additionally knocked down and screened in a similar manner for 

comparison. These control sets include proteins known to interact physically with mTOR, computationally 

predicted SL and synthetic dosage lethal (SDL) partners of mTOR, predicted DD-SR vulnerable partners of 

non-mTOR genes, and DD-SR predicted rescuer partners of non-mTOR genes. (d) Same as Appendix Fig. 

S5c, except the cellular viability is shown per shRNA. (e,f) Procedure followed for experimental 

validation of predicted synergistic SR-based combinational therapies in head and neck cancer via a 

representative combination(Dasatinib + BYL19) in a representative cell line (HN12): (e) Dose matrix 

combinatorial drug treatment (48h) with a KIT inhibitor (Dasatinib) and an inhibitor of a predicted rescuer 

PIK3CA (BYL719) in HN12 cells. Numbers indicate % Cell Viability (n = 3) (f) Fa-CI curves created based 

on the matrix data. Dasatinib: BYL719 dose ratios are indicated by green and red curves. The Y axis displays 

the combination index (CI; synergism CI < 1, additivity effect CI = 1, antagonism CI > 1) at different levels 

of growth inhibition (Fraction affected, X axis).  Similar procedure was applied to estimate synergism for 

other combinations in all cell lines tested (Appendix Fig. S6,7).   

 

Appendix Fig. S6 (a-g). Experimental validation of proposed  SR-based combinational therapies in 

head and neck cancer: Dose matrix combinatorial drug treatment (48h) with seven predicted drug 

combinations (displayed a top of each panel) in five head and neck cancer cell lines (Cal27, Cal33, HN12, 

Detroit 562 and SCC47). Numbers indicate % Cell Viability (n = 3). Drug combination tested is displayed 

at the top of each panel. Cell line used are displayed in each subpanel.  
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Appendix Fig. S7(a-g). Experimental validation of proposed SR-based combinational therapies in 

head and neck cancer (contd.): Fa-CI curves created based on the matrix data of Appendix Fig. S6. Drug 

combination dose ratios are indicated by green and red curves. The Y axis displays the combination index 

(CI; synergism CI < 1, additivity effect CI = 1, antagonism CI > 1) at different levels of growth inhibition 

(Fraction affected, X axis).  Each panel displays corresponding drug combination and cell line. The 

experiments that failed to show synergism as per on Fa-CI analysis are marked red.  h. Experimental 

validation of seven predicted synergistic SR-based combinational therapies in head and neck cancer.  

Ref. to main text Fig 2b. 

 

Appendix Fig. S8. Experimental validation of proposed SR-based combinational therapies in head 

and neck cancer via siRNA and drug treatment:  (a-h) Sensitization of four cell-lines (Cal27, HN12, 

Detroit 562 and SCC47) to two combinations (Dasatinib treatment & PIK3CA-siRNA; BYL719 & 

mTOR−siRNA). Drug response curves (DRC) (Y-axis) for Dasatinib/BYK719 cells, following the 

knockdown of PIK3CA/mTOR with siRNA versus a control siRNA KDs (cell lines and combinations are 

displayed above each panel). (i) The increase in sensitivity of the four cell-lines to BYL719 treatment with 

siRNA knockdown of mTOR and increase in its sensitivity to Dasatinib treatment with siRNA knockdown 

of PIK3CA: Percentage increase in sensitivity of the primary therapy (Y-axis) following the combinational 

treatment denotes the decrease in IC50 of the primary therapy observed in the combination setting relative 

to the primary therapy alone.  

 

Appendix Fig. S9. Harnessing SR interactions to Identify Drugs Sensitizing Cancer Cells to the 

Primary Treatments: (a,b) INCISOR’s performance in identifying drug combinations re-sensitizing 

resistant cell-lines in melanoma dataset for 108 drugs(Friedman et al, 2015), in terms of (a) ROC and (b) 

precision recall curves.   (c-f) In vivo survival improvement with combinational treatments involving 

the MEK inhibitor Binimetinib and SR-predicted drugs in mouse PDXs. The Kaplan-Meier (KM) 

analyses compare the survival of mice xenografts treated with the predicted combinations (blue) vs those 

treated with Binimetinib alone (red) and with drugs inhibiting the predicted DU(c-e) or DD (f) rescuer genes 

alone (green). The difference in the areas under the curve (ΔAUC) and log rank p-values are denoted. 

 

Appendix Fig. S10. (a-d) Rescuer activation associated with the vulnerable gene inactivation due to 

somatic mutations. (a) SCNA levels of rescuer genes in the samples where their vulnerable partner is 

mutated (red) vs not-mutated (blue). (b) Rescuer activation per each vulnerable gene mutation. The 

horizontal axis lists vulnerable genes with somatic mutations in TCGA samples, and the vertical axis denotes 
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the significance of increase in the rescuer gene activity (mRNA:red, SCNA:blue) between samples with and 

without vulnerable gene mutations. (c) Rescuer activation per each rescuer (in difference from (b)), all 

vulnerable partners of a rescuer were considered). The horizontal axis lists rescuer genes with somatic 

mutations in TCGA samples and the vertical axis denotes the significance of rescuer gene-activity 

(mRNA:red, SCNA:blue) between samples with vs. without vulnerable gene mutations. (d) The KM plot 

depicts the aggregate clinical predictive power of rescuers of CDH11 gene, among patient with CDH11 

mutation). (e) The drug-DU-SR network includes 224 interactions between 48 drug cancer drug target genes 

(red) and 105 rescuer genes interacting with them (green). The drugs (purple) are linked to their targets. (f) 

The DU-SR network identifies key molecular alterations associated with tumor relapse after Taxane 

treatment. Post-treatment expression of the predicted rescuer genes in the relapsed tumors (red) compared 

to their activation level in pre-treatment primary tumors (green). Significantly altered genes (10 out of 14, 

all in the predicted direction) are marked by stars (one-sided Wilcoxon rank-sum P<0.05). (g) Pre-treatment 

rescuers expression successfully predicts future relapse among initial responders in breast cancer. An 

ROC plot in breast cancer shows the prediction accuracy obtained by a linear SVM (AUC=0.74) compared 

to the accuracy obtained based on 13 random genes (red line, AUC=0.57). (h,i) The transcriptomic 

alterations of rescuer genes on-treatment PDL1 & CTLA4 blockade in on-treatment tumor biopsies: 

on (vs pre) treatment expression changes of DU and DD  rescuers during anti-PD1 (h) or anti-CTLA4 (i) 

therapy regiment. Each panel displays the expression fold change of each predicted rescuer gene (rows) for 

different tumor samples (columns) and the P-value of over-all paired Wilcoxon test of the expression 

changes observed in paired samples. (j) A comparative analysis of the performance of supervised (red) 

and unsupervised (blue) SR-based predictors in predicting patients drug response (TCGA). The area 

under curve (Y-axis) displays the predictive performance of two methods. The SR-based supervised 

predictor was constructed by using expression and SCNA of DU rescuer as features to train Random forest. 

The AUCs of supervised predictors were determined using two-fold cross validation.  

 

 

Appendix Fig S11. (a) Robustness of thresholds used in KM analyses. KM analysis comparing the 

survival of patients whose tumors have many functionally active SRs (rescued) to those with a few (non-

rescued). Different thresholds (5%, 15% and 25%) were tested to check the robustness of thresholds to 

identify rescued and non-rescued tumors. The differences in the areas under the curve between rescued and 

non-rescued samples (ΔAUC) and their log rank p-values are denoted for each threshold, in addition to 

hazard ratios and their significance obtained from a Cox regression. (b-d) Survival prediction: Breast 

cancer DU-SR (a) and DD-SR (b) network predict patient’s survival in an independent Metaberic dataset. 

A KM  analysis comparing the survival of patients whose tumors have many functionally active SRs (top 



 8 

10 percentile (N=200), rescued) to those with a few (bottom ten percentile (N=200), non-rescued). The 

difference in the areas under the curve between rescued (blue) and non-rescued (red) samples (ΔAUC) and 

their log rank p-values are denoted, in addition to hazard ratios and their significance obtained from a Cox 

regression. (d) The Y axis displays logrank p-values per drug, denoting how well the response is predicted 

by DU-SR network in terms of survival difference between predicted responder and non-responders. (e) 

Survival prediction of SL (ISLE (Lee et al, 2018)). The KM plot shows that patients with high SL-scores 

(solid line) have better prognosis than those with low SL-scores (dashed line), using five different SL score 

thresholds, namely top/bottom 10% (red), 20% (orange), 30% (green), 40% (blue), and 50% (purple). (f) 

Overlap of predicted (DU) SR pairs using INCISOR with gene activation thresholds of 0.33 and 0.25 (g) 

Using SR strength to predict cancer drug response in patients.  The Y-axis denotes the sum of SR 

strengths (SR-scores) of the DU-SR upregulated rescuers in tumors of responders (orange) and non-

responders (green). Significant results are marked by stars. (h) Western blot analysis of signaling events 

in HN12 after knock down of the PIK3CA and mTOR.  Top, HN12 (left) and SCC47 (right) cells were 

transfected with negative control or the corresponding PIK3CA siRNAs for 72 hours, and lysates were 

analyzed as indicated. Bottom, HN12 (left) and SCC47 (right) cells were transfected with negative control 

or the corresponding mTOR (FRAP1) siRNAs for 72 hours, and lysates were analyzed as indicated. In 

every case, the ‘-‘ indicates control cells without transfected siRNA. 

 

 

2 INCISOR	pipeline	and	SR	network	

2.1 INCISOR	for	SR-	DU	and	DD,	UD	and	UU	types	

 

During cancer progression, fitness-reducing alterations in a particular gene may be compensated by 

subsequent alterations in the activity of another gene, restoring cancer progression and proliferation. In this 

type of genetic interaction, we term the former gene a vulnerable gene, the latter gene a rescuer gene, and 

the functional relation between them a synthetic rescue (SR). There are potentially four types of SRs: (1) 

down-regulation of both the vulnerable and the rescuer gene (DD); (2) down-regulation of the vulnerable 

gene and up-regulation (i.e., over-activation) of the rescuer (DU); (3) up-regulation of the vulnerable gene 

and down-regulation of the rescuer (UD); and (4) up-regulation of both vulnerable and rescuer genes (UU) 

(see Appendix Fig. S1a-d). 

For a pair of gene (vulnerable-rescuer) with DU-SR interaction between them, we define its non-

rescued state as molecular state when a cancer cell is at stress due to down-regulation of the vulnerable 
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gene, but the cell is not rescued because the rescuer gene is not up-regulated (Appendix Fig. S1a, Dataset 

Table E1). Similarly, its rescued state is defined as the case where the vulnerable is down regulated but the 

cellular stress is relieved by rescuer up-regulation.  As shown in Dataset Table E1, different molecular 

states represent rescued and non-rescued state for different type of SR interactions (Appendix Fig. S1a-d).  

 

 

type rescued state non-rescued state 

 Activity 

States  

Vulnerable 

gene 

Rescuer gene Activity 

States 

Vulnerable 

gene  

Rescuer gene 

DU 3 Down-

regulated 

Up-regulated 1,2 Down-

regulated 

Not Up-regulated 

DD 1 Down-

regulated 

Down-

regulated 

2,3 Down-

regulated 

Not Down-

regulated 

UD 7 Up-regulated Down-

regulated 

8,9 Up-regulated Not Down-

regulated 

UU 9 Up-regulated Up-regulated 7,8 Up-regulated Not Up-regulated 

Dataset Table E1:  Definition of rescued and non-rescued states in each of the four types of SR 

interactions. The pair-wise gene activity states (based on Appendix Fig. S1a) of each rescued/non-rescued 

state are also displayed.  

 

 

We applied INCISOR to mine TCGA tumor molecular and survival data of 8,749 cancer patients 

across 28 different cancer types, and analyze genome-wide shRNA screens composed of 2.2 million 

measurements in 220 cancer cell lines (Cheung et al, 2011; Cowley et al, 2014; Marcotte et al, 2012; 

Marcotte et al, 2016). 

 Figure 1c and Appendix Fig. S1f displays predicted DU-SR network, composed of 1033 interactions 

between 1109 genes, with 614 vulnerable and 598 rescuer genes. Dataset Table E2,3 shows for each DU-SR 

interaction in the network, pan-cancer clinical significance and the significance in each of 28 cancer types.  

Appendix Fig. S1g displays DD-SR network, composed of 1967 interactions between 1084 genes, 

with 645 vulnerable and 597 rescuer genes. Dataset Table E4,5 shows for each DD-SR interaction in the 

network, pan-cancer clinical significance and the significance in each of 28 cancer types.  
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2.2 Accommodating	INCISOR	for	synthetic	lethality	

We modified INCISOR to predict synthetic lethal (SL) interactions (Appendix Fig. S1c). Specifically, we 

adopted different statistical screens in INCISOR to identify SL that occurs in a patient’s tumor and is 

likely to have a therapeutic value. The resultant approach, termed ISLE (Identification of clinically 

relevant Synthetic Lethality), which is currently under review, adopts following modifications over 

INCISOR: 

(1) In vitro screening: By definition, it is expected that gene A will be essential only when its SL 

partner gene B is inactive in a given cancer cell line. Accordingly, ISLE uses genome-wide 

shRNA/CRISPR screening to identify a gene pair A and B as candidate SL partners if 

participating genes show conditional essentiality based on its partner’s low gene 

expression/SCNA. In addition, ISLE takes the experimentally identified published SL 

interactions from double knockout or isogenic cell line experiments to create the initial pool of 

candidate SL interactions. 

 

(2) Molecular survival of the fittest (SoF): A SoF-SL-pattern between two genes (A and B) 

denotes that samples, where both gene A and B are inactive, are significantly less frequent 

than expected. Analogous to SR identification, we employ a simple hypergeometric test to 

identify depletion of samples in the bin, where both genes A and B are down-regulated, 

followed by standard false discovery correction. 

 

(3) Patient Survival screening:  Co-inactivated of a SL gene pair (A and B) in a tumor is lethal, 

and hence patients with co-inactive SL gene pair will have better survival. Accordingly, ISLE 

employs a Cox multivariate regression analysis to identify candidate SL partners whose co-

inactivation is associated with improved survival to a greater extent compared to the additive 

effect of the individual gene inactivation of the candidate SL partners. We also control for 

various confounding factors including cancer types, sex, race, genomic instability, and age. 

 

(4) Phylogenetic screening: Analogous to SR phylogenetic screen  

 

ISLE identified 2,326 SL interactions between 2,153 genes. And none of these interactions overlaps with 

predicted DU-SR interactions by INCISOR.  
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2.3 Verifying	partner	genes	in	predicted	SR	interaction	does	not	lie	in	same	chromosome	

INCISOR uses gene expression and SCNA data from patient tumors to infer SR interactions. This 

may lead to the inference of false positive SRs due to correlations between the expression of different 

genes and from correlations in the copy number alterations of proximally located genes. To demonstrate 

that SR identified by INCISOR are not confounded by genomic linkage arising due to such false positive 

inference, we verified that the SR interactions are not biased towards genes lying on the same chromosome 

as follows.  

 

We first estimate percentage of SR interactions where both the partnered genes will lie in the same 

chromosome by random chance. This was estimated by creating gene pairs selected randomly from all 

protein coding genes. For 5.4% among all randomly selected pairs, partnered genes lie in same 

chromosome. Out of 1195 predicted DU-SR interactions, 2.9% lie in same chromosome. Out of 1195 

predicted DU-SR interactions, 5.9% lie in same chromosome, which is not significantly greater than 5.4% 

expected by the random chance (Hypergeometric P > 0.1).  

2.4 Check	the	robustness	of	parameter	used	in	INCISOR	
INCISOR uses the threshold of 1/3 (2/3) across the samples in each cancer type for down-regulation (up-

regulation) of genes. It seems a natural choice since we consider three levels of activity (down, WT and 

up) for each gene, as usually is conceived by biologists. We tested the robustness of these cut-offs 

(thresholds) as follows:   

We rerun INCISOR by using a 25% threshold for gene activation (i.e, top 25% of samples were considered 

over-expressed, while the bottom 25% were considered down-regulated and the rest 50% as WT).  The 

result is shown in Appendix Fig. S11f. The overlap for two thresholds was significant (Hypergeometric P 

< 2.2E-16). 

3 Analyzing	and	characterizing	SR	networks	

In this section, we will provide the first a brief overview of utility of SR networks in predicting clinical 

prognosis (survival) and other characterization of the networks. Then we discuss in details each of the 

characteristics. 

We turned to application of SR networks to predict survival. We applied INCISOR to mine TCGA 

tumor molecular and survival data of 8,749 cancer patients across 28 different cancer types, and analyze 

genome-wide shRNA screens composed of 2.2 million measurements in 220 cancer cell lines (Cheung et al, 

2011; Cowley et al, 2014; Marcotte et al, 2012; Marcotte et al, 2016).  We studied the ability of the SRs 

identified to predict patient survival using the transcriptomics and copy number data of individual tumors in 
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an independent METABRIC Breast Cancer (BC) dataset(Curtis et al, 2012) in Appendix Section 3.1, 3.2. 

Combining SR interactions with SL interactions further improves the patient survival predictive power 

(Appendix Section 3.3). The analysis of subset of DU-SR interactions having direct protein-protein 

interactions are detailed in Appendix Section 3.4. 

Gene enrichment of DU-SR network is provided in Section 3.5. Analyzing the DU-SR network 

revealed: (i) it is a scale-free network (Appendix Fig. S2a-d, Details in Section 3.6), (ii) partnering genes are 

closer in Gene Ontology tree network (Appendix Fig. S2e, Details in Appendix Section 3.7), (iii) a certain 

pathway genes have higher propensity to rescue by the genes that belong to specific pathways (Appendix 

Fig. S2f, Details in Appendix Section 3.8), and (iv) the number of functionally active SR interaction in tumor 

increases with advanced cancer stages (Appendix Fig. S2g,h, Details in Appendix Section 3.9), (v) the 

predicted DU-rescuer genes are specifically up-regulated in patients’ tumor with mutated vulnerable genes 

(Appendix Fig. S10a-d, Details in Appendix Section 3.10).  

 

3.1 Evaluating the predictive survival signal of the inferred SR networks 

 

We evaluated the aggregate survival predictive signal of a pancancer SR network by testing their 

clinical significance in a completely independent METABRIC dataset (test set) to avoid potential risk of 

over-fitting. The METABRIC dataset includes the gene expression, SCNA, and survival of 1981 breast 

cancer patients. We first describe in this Section a general method to evaluate the capability of any SR 

network in predicting patient survival. Then, we present a description of survival prediction of pancancer 

in Section 3.2.  

 

We define an SR pair to be functionally active in a tumor when its gene expression and SCNA are in 

rescued state (defined in Dataset Table E1). For an SR network if F as number of functionally active SR in 

a tumor, the predictive signal was evaluated using two complimentary approaches: (i) The predictive 

power of F in determining survival is estimated using a Cox regression after controlling for various 

confounding factor including age, sex and race. (ii) Based on F in each tumor sample, the top 10 percentile 

of samples were considered as rescued and the bottom 10 percentile as non-rescued. We then estimated the 

significance of improvement of survival in the rescued vs. non-rescued samples using a Kaplan Meier 

analysis.  

3.2 Evaluating the predictive survival signal of pan-cancer SR networks	

We studied the ability of the SRs identified to predict patient survival using the transcriptomics and copy 

number data of individual tumors in the independent METABERIC Breast Cancer (BC) dataset(Curtis et al, 
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2012). To this end, we characterized the functional activity of the predicted SRs in each individual tumor: A 

predicted DU-SR is considered to be functionally active in a given tumor if the vulnerable gene is down-

regulated and its rescuer is up-regulated in that tumor. Analyzing the METABRIC collection, we find that 

tumors with many functionally active DU-SRs exhibit markedly worse patient survival than tumors with few 

functionally active DU-SRs, as predicted (Appendix Fig. S2i, ∆AUC = 0.20, logrank P < 4E-09, Cox-P < 

7.1E-10). Similar findings hold for the DD SR types (Appendix Fig. S2k), albeit to different extent.    

 

To illustrate that the survival prediction is not limited to breast cancer (BRCA), but also to other 

cancer types, we determine pancancer DU-SR survival predictive power in TCGA dataset using 2-fold cross 

validation. Specifically, we divided TCGA sample into two equal sets for training and testing. Applying 

INCISOR to training set we identified DU-SR network. Appendix Fig. S2l show fraction of SR interaction 

inferred (from training set) clinically significant in testing sample within each cancer types individually. 

To check the robustness of the threshold used in Fig S2i (10%), we also tested thresholds: 5%,15%, 

and 20%. As seen in Fig S11a the AUC and logrank P-value of the KM analysis are robust with respect to 

the different thresholds: (i) 5% (∆AUC=0.27 P=2.6E-06), (ii) 15% (∆AUC=0.12 P=1.5E-06) and (iii) 20% 

(∆AUC=0.17 P=1.5E-10). 

3.3 Pancancer	SL	network	and	combined	clinical	impact	of	SL	and	SR	

The functional activity of SL and SR networks determines tumor aggressiveness and patient survival. 

First, applying modified INCISOR (ISLE, Appendix Section 2.2) we identified SL network using pancancer 

TCGA samples. The survival prediction of SL is displayed in Fig S11e. We found that the clinical impact of 

the combined SR and SL networks is more significant than any of their individual impacts (Appendix Fig. 

S2j, compared with Appendix Fig. S2i) in the independent breast cancer dataset, METABERIC (Curtis et 

al, 2012). We assigned an SL/SR score to each patient, which combines the number of functionally active 

SL/SRs. We confirmed that the patients (87 samples) with both higher SL score (>90 percentile) and low 

SR score (<10 percentile) have significantly better survival than the patients (158 samples) with both lower 

SL score (<10 percentile) and high SR score (>90 percentile) (logrank p-value<6.59E-6). This combined 

impact is stronger than any of the single interactions. 

3.4 SR	network	with	physical	protein	interactions	

This section summarizes synthetic rescue (SR) interactions which are mediated by human protein-protein 

interactions (PPI) network compiled from (Goel et al, 2012; Schaefer et al, 2012). Starting with all gene 

pairs with known human PPI interactions, we identified SR interactions by applying INCISOR to TCGA 

data. Overall, we identified 257 DU-SR interactions (with FDR < 0.1 for all INCISOR screen) mediated by 

direct PPI (SR-PPI); the emerging predictions are displayed in Appendix Fig. S2m (Dataset Table E6 
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provides the full network). The SR-PPI network was also predictive of patient’s survival (Hazard Ratio =1.2, 

Cox P < 4.7E-7, ΔAUC = 0.17, Appendix Fig. S2n). Surprisingly, the SR-PPI network is highly enriched 

with cancer driver genes (Fisher exact test P < 6.5E-8, Appendix Fig. S2m). And accordingly, the rescuer 

and vulnerable genes are highly enriched for pathways associated with cell signaling, viral carcinogenesis, 

estrogen signaling, PI3K-AKT etc. (Dataset Table E7,8).  

 

3.5 DU-SR	network	GO	enrichment	

GO and KEGG enrichment analysis was conducted using R-packages clusterprofiler (Yu et al, 2012) and 

GOFunction (Wang et al, 2011). The rescuer genes are enriched with ERBB/EGFR pathways, Cell cycle, 

Mapk and PI3k-Akt signaling pathways (full list is provided in Dataset Table E21). Processes enriched in 

vulnerable genes are shown in Dataset Table E22.   

 

3.6 DU	and	DD	SR	network	sparsity	and	characteristic	

 

DU-SR network is a scale-free network, i.e degree distribution of SR network follows power law !		 ∝ $% 

with exponential coefficient b = 1.7 (Appendix Fig. S2a).  Both the degree distribution of rescuers and 

vulnerable gene are (Appendix Fig. S2a,b indegree exponential coefficient b = 2.1 and outdegree 

exponential coefficient b = 1.8).  

 

In comparison with DU network, DD network appears to have higher density (Appendix Fig. S2c,d). This 

is also evident from their degree distributions. As the these networks were derived with a shared statistical 

tests in a symmetric manner, one may assume cautiously that this may reflect an underlying increased 

abundance of DD vs DR rescue interactions in cancer, but this is too early to call and further analysis is 

required in this regards.  

 

3.7 SR	interaction	between	pathways	(pathway-SR	network)	

Next, we identified DU-SR interactions at pathway level (pathway-SR network), i.e. the genes that belong 

to a certain pathway are frequently rescued by the genes that belong to another pathway. The procedure 

involved three steps: (i) initialization: we find enriched pathways in all DU-SR rescuers, (ii) vulnerable-

enrichment: for each rescuer pathways identified, we perform gene enrichment of corresponding 

vulnerable genes, and (iii) rescuer-enrichment: for each vulnerable pathway identified, we perform gene 

enrichment of corresponding rescuer genes. The vulnerable-enrichment and rescuer-enrichment are 
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repeated till convergence, which we define as 95% of vulnerable and rescuer pathways remains the same 

as its previous iteration. The resultant pathway-SR network is displayed in Appendix Fig. S2f.  

 

In all the above pathway enrichment analyses we conducted both KEGG pathway enrichment using (using 

R package clusterProfiler with default parameters).   

3.8 Functional	similarity	of	DD-SR	pairs		

Gene ontology similarity: In order to estimate functional relationship between a rescuer and its vulnerable 

gene partner of DD-SR network, we used most common gene ontology (GO) distance measure(Yu et al, 

2010), which  quantifies  semantic similarity between GO terms. When multiple GO terms were associated 

with a single gene similarity score, the maximum similarity score was taken as combined similarity score 

(when we change the combining method to average we obtain similar significance). We used control 

networks analogous to those used in case of DU-SR network (Figure S2e). 

PPI and STRING distance was estimated for DD-SR network analogous to DU-SR network shown in Figure 

3e. 

 

3.9 SR	events	increase	in	tumor	with	advanced	cancer		

To study the functional activation of SRs as cancer progresses we divided the breast cancer patients in 

METABRIC dataset into 6 classes of cancer (removing censored data), by dividing them equally into 6 

bins according to their survival times (N=627). First, in each bin, we counted the mean fraction of 

functionally active SRs. Second, we defined a vulnerable gene as rescued if more than N number of 

rescuers are over-activated with the threshold N running from 0 to 4, and counted the mean fraction of 

rescued vulnerable genes in the six bins.  

 

We find that the number of SR events increases with advanced cancer stages, both in term of functionally 

active SRs (Appendix Fig. S2g) and mean fraction of rescued vulnerable genes (Appendix Fig. S2h), 

insinuating number of SR events relation with tumor resiliency. 

3.10 TCGA	(single	nucleotide)	mutation	analysis		

We examined the TCGA mutation profile to provide validation of SR interactions (DU-type) in pancancer-

scale. (The single nucleotide polymorphism mutation profile has not been used in the SR prediction pipeline 

and hence can serve for independently validating INCISOR predictions.). This analysis is based on the 

observation that the large majority of mutations in cancer inactivate the original function of the (vulnerable) 

gene, and here we find that the predicted (DU-SR) rescuers of these inactivated genes indeed become 
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activated (via their increased expression and/or copy number alterations). If the vulnerable gene’s 

inactivation leads to selection for rescuer activation, we expect more rescuers will be active (over-expressed 

and/or increased copy number) when their vulnerable partner suffers deleterious mutations. We tested this 

hypothesis using TCGA mutation profile that spans 5,031 patients of 23 cancer types, and we considered SR 

interactions of 341 genes that have mutations in at least 30 patients. Using Wilcoxon test, we statistically 

compared the GE and SCNA of the rescuers in patients with and without vulnerable gene mutations. The 

copy number of predicted DU rescuer genes is significantly higher when their vulnerable genes are mutated 

vs. wild type (data not used in the INCISOR inference, Wilcoxon rank-sum P <1.2E-100, cohen.d = 0.68, 

Appendix Fig. S10a), and so is the rescuers' gene expression (Wilcoxon rank-sum P<1.1E-17, cohen.d = 

0.73). Appendix Fig. S10b shows the key vulnerable genes, when mutated, whose rescuers show significant 

increase both in copy number and gene-expression. Appendix Fig. S10c shows the key rescuer genes that 

show significant increase both in copy number and gene-expression when their vulnerable gene partners are 

mutated. 

 

Our analysis revealed that CDH11, a membrane protein that mediates cell-cell adhesion and is related to 

ERK signaling pathways(Marie et al, 2014), is highly rescued when mutated. It was mutated in 2.1% of 

TCGA samples. INCISOR predicts IFT172 and MSH2 as DU rescuers of CDH11. MSH2 protein is part of 

mismatch repair complex (MutS), whose deregulation is associated with emergence of drug resistance. In 

samples where CHD11 is mutated, these rescuers show significant increase in copy number (Wilcoxon 

P<2.6E-6) and expression (Wilcoxon P<0.03). To investigate whether the cells are indeed functionally 

rescued by over-expression of rescuers genes, we examined the patients with CDH11 mutation and 

compared the survival of these patients when rescuers of CDH11 are highly activated to their survival 

when they are not. As anticipated, patients whose inactivated CHD11 is rescued show much poorer 

survival (Appendix Fig. S10d). This analysis demonstrates that a somatic mutation that inactivates a key 

cancer driver gene can be buffered/rescued by activation of rescuer genes.  

 

3.11 Breast	cancer	DU	and	DD	SR	interaction	
 
We applied INCISOR to TCGA 1098 breast cancer (BC) patient data to identify the DU-SR networks 

specific to breast cancer.  In vitro filtering (step 1) of INCISOR was conducted using subset of in vitro 

screens that were performed on breast cancer cell lines. We chose breast cancer as it has the largest number 

of samples in the TCGA collection, and has another large cohort METABRIC(Curtis et al, 2012) on which 

we could test the emerging predictions in an independent manner. INCISOR identified 419 DU 

interactions in breast cancer (Dataset Table E32), 123 of these interactions overlap with pan cancer DU-SR 
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interactions. The breast cancer rescuers are enriched in EGFR tyrosine kinase inhibitor resistance, PI3K-

AKT, RAS, Jak-stat and MapK signaling (Dataset Table E34). The vulnerable genes are enriched in 

adherens junction, proteoglycan, and carbon metabolism (Dataset Table E34). The interactions were 

predictive of patient survival, which we validated using Metaberic dataset (Fig S11b).  

 

We also used breast cancer DU-SR network to predict the clinical response of 3873 patients in the TCGA 

dataset. Using the network and transcriptomics data of cancer patients we classified each patient to be a 

non-responder (or a responder) to a given drug if one or more of the rescuer partners of that drug target are 

over-active (and as a responder otherwise). We then compared the survival rates of the predicted 

responders to those of non-responders, to examine how well our predictions separated true responders and 

non-responders. As demonstrated, breast cancer DU-SR accurately classify patients into responder and 

non-responders for 15 of the drugs (Fig S11d). 

 

We also applied INCISOR to identify DD-SR interaction specific to breast cancer. We identified 341 DD-

SR interactions, 89 of these interactions were common with pancancer DD-SR interactions. The complete 

list of DD breast cancer specific interactions is provided in Dataset Table E33.  The breast cancer DD 

rescuers and vulnerable genes are enriched in PI3K-AKT signaling, Human papillomavirus infection and 

cell cycle (Dataset Table E35).  The breast cancer DD-SR interaction predict patient survival in Metaberic 

dataset (Fig S11c). 

 

4 Validation	of	SR	prediction	

4.1 Benchmarking	INCISOR	using	published	SR	interactions	

Here, we show that INCISOR can identify with a high accuracy the molecular underpinnings of emergence 

of resistance to various drugs discovered by multiple extensive clinical and experimental studies. Performing 

literature survey of multiple clinical and experimental studies, we compiled, a large set of causal SR 

interactions (Methods, Dataset Table E9) that are known to determine emergence of resistance, assuming 

drug target of a drug as a vulnerable gene and genes causally involved in the resistance to the drug as its 

rescuers. Each dataset consists of experimentally validated genes whose over-expression rescues the cancer 

cells from a particular drug treatment in patient samples/cell lines (Datasets and associated publications are 

listed in Dataset Table E9, composed in total of 274 positively validated DU-SR pairs and 857 negative 

pairs). 
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The published SR dataset consists of 7 large datasets with 1132 total interactions (Dataset Table E9) 

for drugs ABT-737(Mills et al, 2013), BET-inhibitor(IFong et al, 2015; Rathert et al, 2015), 

Lapatinib(Stuhlmiller et al, 2015), Estrogen receptor inhibitor(Zhang et al, 2016), Vemurafenib (Hugo et al, 

2015), Vorinostat (Falkenberg et al, 2016), BRAF inhibitor and Tamoxifen.  Synthetic rescue interactions 

of ABT-737, Lapatinib, Estrogen receptor inhibitor and BET-inhibitors are predicted with a high accuracy 

with average precision >10 % at 25% recall rate (Appendix Fig. S3e-h, average AUC  > 0.8, ROC curves 

are displayed in Appendix Fig. S3a-d, and summarized in Fig S3o).  INCISOR also predicts, with moderate 

accuracy, the synthetic rescues in other 3 datasets (Appendix Fig. S3i-n, AUC > 0.7). Thus, INCISOR can 

provide a reliable set of SR pairs, which, if further validated in experiments, would have strong therapeutic 

impact (because they are inferred directly from patient clinical data).  

 

To systematically evaluate the contribution of each screening step of INCISOR, we built a 

multivariate logistic regression based classification model, regressing the (log) p-values from the INCISOR 

screens. We conduct this analysis on 4 datasets, where INCISOR exhibited predictive power AUC > 0.8. Fig 

S3p summarizes the results obtained from the multivariate analysis, which provides an estimation of the 

prediction power of each INCISOR step in the overall prediction. As evident, because the contribution to 

the overall prediction of each screen is different across datasets, combining these screens is a good 

unsupervised strategy. In particular, all four screens contribute to the final prediction in INCISOR. Note that 

the analysis also suggests that with the availability of a larger training dataset, a supervised model could 

improve the accuracy of INCISOR.   

 

4.2 In vitro validation	of	INCISOR	via	shRNA	inhibition	of	DD-rescuers		

Using a genome-scale shRNA screen(Marcotte et al, 2016), we validate INCISOR-predicted SR interactions 

in a genome-scale. Specifically, we demonstrate that when cells that have a vulnerable gene inactive due to 

copy number loss, a subsequent shRNA knockdown of its predicted DD-rescuer increases the cell fitness 

(hence show increase cell proliferation), testifying to emerging synthetic rescue in cells. The shRNA dataset 

composes of single knockdown of 15486 genes in 85 breast cancer cell lines(Marcotte et al, 2016). For this 

analysis, we removed the in vitro-screening from INCISOR to avoid any possible circularity. Applying 

INCISOR to TCGA data, we identified DD vulnerable partners of the genes that are knocked down in the 

breast-cancer cell line shRNA screen (N=15486) (Marcotte et al, 2016).     

 

For each top predicted vulnerable-rescuer (V-R) gene pairs, we then classify cell lines as conditional cases 

where the V is lost (Y axis in Appendix Fig. S4h) due to copy number loss (SCNA is in bottom 10th quantile 
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of all cell lines for that gene); and classified the remaining cell lines as general cases (X axis in Appendix 

Fig. S4h). We predicted that the knockdown of the rescuer gene R would lead to the increase in cell growth 

specifically in the conditional cases due to DD-SR synthetic rescue effect. The rescue-effect for the pair is 

accordingly quantified as the increase in cell growth following the knockdown of the rescuer gene in 

conditional versus general cases. The significance of the rescue-effect is estimated using Wilcoxon rank 

sum test.   

 

The KD of predicted DD-rescuer genes reduces cell growth in general across most cell lines (Appendix Fig. 

S4h). However, in the specific cell lines where the vulnerable partners of the DD-rescuers are lost, the 

knockdown of DD-rescuers increases cell growth, manifesting the predicted rescuing effect. Overall 65% 

of the predicted DD-rescuers exhibit such rescuing effects in the shRNA screen(Marcotte et al, 2016) 

(aggregate Wilcoxon P < 1.7 E-33, Cohen.d = 1.47, Methods, Appendix section 3.2) 

 

For instance, ZNF263, a known transcriptional repressor gene, is an essential gene in cell lines (i.e, 

knockdown of ZNF263 in general case cell lines leads to decrease in cell growth, average essentiality = -

0.7). However, in cell lines when its DD-vulnerable partner TAOK2 is lost, knockdown of ZNF263 

promotes cellular growth (Appendix Fig. S4h inset, Wilcoxon P-value < 5.83E-05). The validation 

presents a large scale validation of the identified SR interactions identified by INCISOR. 

4.3 In	vitro	validation	of	INCISOR	via	drug	response	data	DD-rescuer	inhibitors	

Next, we provide a large-scale operative validation of the SR interactions using in vitro drug response 

screening data.  Specifically, we show, akin to shRNA knockdown of DD-rescuers, drug inhibition of DD-

rescuers results in predicted synthetic rescue in cell lines.  To this end, using multiple in-vitro drug 

treatment compendiums(Basu et al, 2013; Cheung et al, 2011), we analyzed the anti-proliferative effect 

(measure in terms of IC50) of  drug inhibitors of predicted DD-rescuers (Methods)  in cell lines, which are 

known anti-tumor drugs. First, applying INCISOR to TCGA, we identified significant DD vulnerable 

partner genes of drug targets (rescuers) of 169 drugs in CCLE(Cheung et al, 2011)(24 drugs and 29 drug 

targets),  and CTRP(Basu et al, 2013)(145 drugs and 185 drug targets). Using cell line SCNA, for each top 

predicted drug-vulnerable gene pair, we classified a cell lines exhibiting copy number loss (i.e, SCNA of 

the cell line falls in bottom 10% percentile all cell line and SCNA < -0.3) of the vulnerable gene as 

conditional case and all other cell lines as general case.   

 

For a drug, we first convert its IC50 values across cell lines to their corresponding quantiles (qIC50). The 

“normalized IC50” is then defined as the mean of the qIC50 in conditional case  (defined as cell line with 



 20 

an inactive vulnerable gene).  For example, normalized IC50=80% implies that conditional IC50 is larger 

than IC50 of 80% of all cell lines. This was done because the baseline IC50 of different drugs differ a lot, 

and the qIC50 allows to compare of the effects of vulnerable gene inactivation on the IC50 of different 

drugs. In the CTRP cell-line collection(Basu et al, 2013), 51% of the top 500 predicted drug-gene DD 

interactions show a conditional loss of effectiveness, i.e. IC50 was significant lower in conditional case as 

compared to general case (Appendix Fig. S4f, aggregate Wilcoxon P < 2.2E-16, as opposed to 0.5% 

significant random gene-pairs), while in the CCLE(Cheung et al, 2011) collection 35% of top predicted 

drug-gene pairs show such loss of effectiveness (Appendix Fig. S4g, aggregate Wilcoxon P < 2.2E-16, as 

opposed to 0.5% significant random gene-pairs). 

In addition to the validating INCISIOR prediction, the result suggests a potential hazard of drug inhibitors 

of DD-rescuers, first certain anti-proliferative drugs may become ineffective or in cases may increase 

proliferation in patients’ tumors with specific genetic background (i.e, inactive vulnerable gene); and 

network identified by INCISOR along with patient’s tumor transcriptomic may help to proscribe specific 

drugs to specific patients.  

4.4 In	vivo	validation	of	DD-SR	interactions	using	drug	response	data	

Next, we provide a large-scale in vivo validation of the DD-SR interactions using patient derived 

xenograft (PDX) response screening data in mice model (Gao et al, 2015). The in vivo drug response 

dataset is composed of 375 samples of mouse models of tumors treated with 38 targeted drugs totaling 

2,652 patient-derived mouse xenografts (PDX) experiments (Gao et al, 2015). 

 

Applying INCISOR to TCGA data, we identified DD vulnerable partners of gene targets of the 38 drugs.  

 Analogous to drug-treatment analysis (See Section 4.3), PDX were classified into conditional 

cases or general cases depending on whether the vulnerable gene is lost or not for each top predicted 

vulnerable-rescuer gene pair. We predicted that a drug inhibiting of the rescuer gene would lead to an 

increase in tumor growth in the conditional cases due to DD synthetic rescue effect. Indeed, 

pharmacological inhibition of predicted DD-rescuer genes show marked increase in tumor proliferation in 

the particular PDX where the partnered vulnerable genes are lost (conditional case), both regarding mean 

(Wilcoxon P-value < 2.2E-16, Appendix Fig. S4d) and maximum (Appendix Fig. S4c, Wilcoxon P-value < 

2.2E-16) tumor size reduction, affirming the predicted rescues. The rescue-effect for the pair is quantified 

as the difference of tumor growth following the treatment of the drug inhibitor of rescuer gene in 

conditional versus general cases.  
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The analysis suggests that drug treatments targeting genes whose DD vulnerable partner genes may be down-

regulated in specific tumors, may be counter-productive and in cases hazardous. To showcase this, we 

compare between conditional and general cases progression free survival (PFS) of mice xenograft treated 

with the 36 drugs. As illustrated in Appendix Fig. S4e conditional xenografts exhibits 49.7 % decrease in 

mean PFS as compared to general xenografts.  

4.5 Re-sensitizing	patient-derived	resistant	cell	lines	to	ALK/EGFR	inhibitor	

We analyzed a large-scale drug screen identifying drugs sensitizing patient-derived cell lines from 

tumors resistant to ALK and EGFR inhibitors (Crystal et al, 2014).  We conjectured that a drug targeting a 

predicted DU rescuer of ALK (or EGFR) would successfully sensitize the corresponding treatment-

resistant cells. Indeed, we find that the strength of the DU-SR interaction between the drugs’ targets and 

ALK/EGFR is significantly correlated with the observed in vitro efficiency of the drugs tested (Fig S4a).   

Moreover, INCISOR accurately identifies top 2% drugs that re-sensitize patient-derived resistant cell lines 

to treatment with EGFR and ALK inhibitors (AUC = .82, Appendix Fig. S4b, Methods), evaluated by a 

standard ROC analysis. 

 Conducting a large-scale in vitro drug screen experiment on cell lines derived from the tumors of 

EGFR-resistant patients and ALK-resistant patients, Crystal et. al. (Crystal et al, 2014) experimentally 

determined the potential of each drug to sensitize the tumors back to the EGFR or ALK therapy. To predict 

sensitization potential of a screened drug, we estimate the strength of DU-SR interactions (interaction-score; 

described above) between the targets of the drug and EGFR/ALK using INCISOR. The maximum of the 

drug targets interaction-scores was estimated to be the drug’s sensitization potential. Fig S4a compares the 

INCISOR-predicted and experimentally determined sensitization potentials for the drugs screened.  

 

4.6 Experimental	validation	of	DD-SR	in	head	and	neck	cancer	cell	lines	

 

We conducted a large-scale double gene knockdown experiment combining in vitro shRNA knockdowns 

(KDs) and drug treatments (Appendix Fig. S5a) to evaluate the percentage of (DD) SR interactions predicted 

by INCISOR that exhibit significant rescue effects. To test our ability to predict and experimentally validate 

predicted SR interaction of a key rescuer gene, we studied the role of mTOR as a predicted rescuer gene in 

head and neck squamous cell carcinoma (HNSC), where is it thought to play an important role(Iglesias-

Bartolome et al, 2013). Rapamycin specifically targets mTOR in HNSC(Amornphimoltham et al, 2008; 

Iglesias-Bartolome et al, 2013; Yamaguchi et al, 2016) (particularly in the HN12 cell line we used in our 

experiment). Specifically, Rapamycin targets mTOR complex1 indirectly by binding to FKBP12 

gene(Amornphimoltham et al, 2008; Iglesias-Bartolome et al, 2013; Yamaguchi et al, 2016).  And hence the 
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rapamycin enables to target a predicted rescuer gene by a highly specific drug, combined with the ability to 

knock down predicted vulnerable genes in a clinically-relevant lab setting. To this end we studied DD-SR 

predictions in a HNSC cell-line HN12, which, like most HNSC cells, is highly sensitive to 

rapamycin(Amornphimoltham et al, 2005). Detailed information on the shRNA sequence and cell counts are 

listed in Dataset Table E10. 

Appendix Fig. S5a summarizes the overall experimental procedure. After which mTOR was 

inactivated via Rapamycin treatment, 2200 genes were knocked down by pooled shRNA in HN12 cell lines. 

HN12 cells were infected with a library of retroviral barcoded shRNAs at a representation of ~1,000 and a 

multiplicity of infection (MOI) of ~0.3, including at least 2 independent shRNAs for each gene of interest 

and controls. At day 3 post infection cells were selected with puromycin for 3 days (1µg/ml) to remove the 

minority of uninfected cells. After that, cells where expanded in culture for 3 days and then an initial 

population-doubling 0 (PD0) sample was taken. For in vitro testing, the cells were divided into 6 populations, 

3 were kept as a control and 3 where treated with rapamycin (100nM). Cells where propagated in the 

presence or not of drug for an additional 12 doublings before the final, PD13 sample was taken. shRNA 

barcode was PCR-recovered from genomic samples and samples sequenced to calculate abundance of the 

different shRNA probes. From these shRNA experiments, we obtained cell counts for each gene knock-

down at the following three time points:  (a) post shRNA infection (PD0, referred as initial count), (b) 

shRNA treatment followed by either Rapamycin treatment (PD13, referred as treated count, 3 replicates) or 

control (PD13, referred as untreated count, 3 replicates) (c) shRNA infected cell injected to mice (tumor, 

referred as in-vivo count, 2 replicates). To obtain normalized counts at each time point, cell counts of each 

shRNA at each time point were divided by corresponding total number of cell count.  

 

Appendix Fig. S5a shows overall experimental design of the pooled-shRNA+Drug treatment experiment. 

The rescue effect of mTOR inhibition was quantified as the observed increase in cell growth post rapamycin-

treatment + knockdown relative to the cell growth observed after the knockdown without rapamycin 

treatment. Fig S5b show rescue effect of top 11 vulnerable partner of mTOR due to rapamycin treatment. 

Appendix Fig. S5c shows the cellular viability (in terms of cell count) of these genes following the rescuer-

shRNA and rescuer-shRNA + rapamycin treatment for each gene KD(shRNAs of same gene were 

combined). Appendix Fig. S5c (measurements per gene) and S5d (measurements per shRNA level) display 

the cellular viability post-rapamycin treatment with and without shRNA.  
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4.7 Experimental	validation	of	SR-based	combinational	therapies	in	head	and	neck	cancer	

4.7.1 Validating	synergism	of	SR	based	drug	combinations		

Each of drug combination for multiple concentration combination and was carried in 3 technical replicates. 

Raw data is provided in Dataset Table E11-17 and Appendix Fig. S6, for each of 7 drug-combinations, 

dose matrix combinatorial drug treatment (48h) in 5 HNSC cell lines (Cal27, Cal33, HN12, Detroit 562, 

HN12 and SCC147). Numbers in the matrix represents percentage cell viability following drug treatment 

(mean viability of the three replicates). Appendix Fig. S7 shows show Fa-CI curves created based on the 

matrix data by using dose ratios for each combination are indicated.  The Y axis displays the combination 

index (CI; synergism CI < 1, additivity effect CI = 1, antagonism CI > 1) at different levels of growth 

inhibition (Fraction affected, X axis). Combination index for quantitation of drug synergy was constructed 

by CompuSyn software(Chou, 2006; Chou, 2010). CI values represent synergism (CI<1), additivity 

(CI=1), and antagonism (CI>1), respectively.  

Appendix Fig. S5e and S5f are representative dose matrix combinatorial treatment and FA-CI curve shown 

for a representative predicted combination (Dasatinib + BYL719) in a representative cell line (HN12). 

Similar analysis was conducted to for each combinations and each cell lines  tested (Fig S6, S7) to 

generate Figure 2b.     

4.7.2 Validating	synergism	of	SR	based	drug	combinations	via	siRNA	experiments	 	

We tested the re-sensitization of treatment with BYL719 by siRNA knockdowns of its predicted rescuer 

gene mTOR in four cell lines (Cal33, HN12, Detroit 562, and SCC147; Appendix Fig. S8i, left four columns; 

Appendix Fig. S8e-h; Dataset Table E18) and similarly, the re-sensitization of treatment with Dasatinib by 

siRNA knockdowns of its predicted rescuer PIK3CA (Appendix Fig. S8i, right four columns; Appendix Fig. 

S8a-d, Dataset Table E19). As evident, these knockdowns significantly enhance the cell lines sensitivity to 

the primary drugs in all 4 of cell lines tested, as predicted (Appendix Fig. S8i). We also  further validate the 

knock down efficiency of the siRNA library used in prior studies (Lee et al, 2014), which were used in the 

combinatorial drug evaluation analysis. These results are now reported in Figure S11h. Appendix Fig. S8a-

h show drug response curves of Dasatinib (or BYL719) in cell lines following the treatment of rescuer or 

control siRNA, constructed using DRC package.   
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5 Applications	of	DU-SR	network	

5.1 Drug-specific	SR	network	

Appendix Fig. S10e display the DU-SR of 28 targeted drugs (Methods). The triangles in figure display 

targeted drugs. Red circle are vulnerable gene, green circles show predicted DU rescuer genes.  

5.2 Tumor	relapse	prediction	in	ovarian	and	breast	cancer	

Beyond initial drug response, our overarching hypothesis suggests that SR circuits might contribute 

to adaptive evolution in tumors after a drug insult, and thus to tumor relapse. To test this, we analyzed (a) 

longitudinal expression and sequencing data of 81 stage-II, III ovarian cancer patients (OC81 dataset) 

treated with Taxane(Patch et al, 2015); and (b) 155 primary breast cancer patients treated with 

Tamoxifen(Chanrion et al, 2008). 

To test the utility of SRs in predicting the emergence of resistance to cancer therapy we analyzed 

the expression data from tumors of 81 ovarian cancer patients. The patients had been treated with Taxane, 

which has 14 predicted DU rescuer genes linked to 3 drug targets in the treatment specific DU-SR 

network(Patch et al, 2015). Six out of these genes were significantly over-expressed in pretreatment tumor 

data of non-responder versus responder patients (Wilcoxon rank-sum P<1.5E-4). Ten out of the 14 predicted 

rescuers had increased rescuers’ activation in tumors of patients that initially responded but then relapsed 

(overall Wilcoxon rank-sum P< 5E-32, Appendix Fig. S10f). Among those are some previously known 

modulators of resistance to taxane including TPX2(Warner et al, 2009), EREG(Galletti et al, 2014), and 

SLCO1B3(de Morree et al, 2016).  

Among them the TPX2 gene has been shown to be essential for resistance emergence to taxane and 

its knockdown is shown to be re-sensitize the taxane-resistant-tumors to taxane treatment(Warner et al, 

2009).  The over-expression of EREG(Galletti et al, 2014) or SLCO1B3(de Morree et al, 2016) have also 

been independently shown to reduce sensitivity to Taxane therapy. 

We further analyzed the expression data of 155 primary breast cancer patients who were treated with 

Tamoxifen(Chanrion et al, 2008), where tumor relapsed in 52 patients within 5 years. With the activity states 

of 4 rescuers of Tamoxifen’s drug targets, we built a SVM classifier to predict if patient will relapse or not 

based on gene expression from their tumor. The binary classifier was able to accurately predict the patients 

whose tumor will remerge (fivefold cross-validation AUC=0.74, Appendix Fig. S10g). 

 

5.3 INCISOR	successfully	identifies	drugs	re-sensitizing	resistant	cell	lines	to	the	primary	cancer	drugs	

We present a large-scale validation that inhibition of DU rescuer of target of a drug re-sensitize the cell line 

to the drug using a large-scale in vitro drug combination dataset spanning all combinations of 108 drugs in 
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melanoma cell-lines (approximately 6000 drug combinations tested)(Friedman et al, 2015). For each drug, 

we first identified the cell-lines resistant to it. Second, we conjectured that cells resistant to the drug would 

be sensitized by inhibition of its (DU) rescuer gene, implying that drug combination of the drug and inhibitor 

of its DU rescuers will be synergistic in resistant cell lines. Indeed we find that the pharmacological 

inhibition of these predicted DU-rescuers are synergistic (AUC > .86, Appendix Fig. S9a,b).   Technical 

description of analyses is provided below.  

 
We first compiled a positive set of synergistic combination of primary and secondary drugs in the resistant 

cell lines. For each primary drug treatment, we first identified cell lines resistant to it. A cell line was 

considered resistant to the drug if its individual treatment does not decrease cellular viability in the cell line. 

Next, we identify secondary drugs that exhibit significant synergism with the primary drug in the resistant 

cell lines. The significance of the synergism is determined as follows. 

We used a novel method to call the significance of synergism from the screen, which shows better 

consistency in the data and drastically reduces false positives compared to the simple application of the Bliss 

formula (Amzallag et al, submitted). Briefly, the measured cell viability was median polished to avoid bias 

linked to the rows and columns of each plate (Mosteller et al, 1983). Then, for each cell line screen at a given 

fixed drug dose, we fit a linear model to the combination viabilities based on Bliss Independence assumption 

(Bliss, 1939). We recomputed the singlet viabilitites and estimated their standard error. We then generated 

a null hypothesis and estimated synergism as the deviance from the Bliss independence (i.e. the residuals of 

the linear system). We estimated the noise in the data using the variance on the DMSO wells on each plate 

and the squared standard error of the estimated singlets. The P value represents as the likelihood of a 

residual's absolute value of being greater than observed given the null hypothesis of independent drug effects 

and the noise in the data. We corrected the P values for FDR with the Benjamini-Hochberg procedure and 

called synergism combinations with P values less than 0.05 and positive Z values, that is, combinations with 

viability significantly lower than the null hypothesis combination viability. The manuscript describing the 

statistical estimation of the drug synergism from the experiment is currently under review (Amzallag et al, 

submitted).  

We determine SR ability to accurately predict the positive set of synergetic combinations. For each drug 

combination screened (Friedman et al, 2015), we estimated strength of DU-SR interaction (interaction-

scores) of all drug-target pairings of the combination and used the maximum of interaction-scores as a 

prediction of its synergism. Finally, we evaluated the accuracy of estimated synergism to predict the positive 

set using ROC analysis and prediction-recall statistics (Appendix Fig. S9a,b). 
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5.4 Identification	of	in	vivo	synergistic	drug	combinations	involving	Benemitib	(MEKi)	
 

INCISOR successfully predicts synergistic treatments in vivo in a patient-derived mouse xenografts (PDX) 

dataset (Gao et al, 2015). We studied eight drugs that were combined with the MEK inhibitor Binimetinib 

(Waterfall et al, 2014) in 375 mouse models, with 1103 xenografts with individual drug treatment  and 930 

xenografts with one of the combinations 8 drug with Binimetinib. Among 8 combinations three target 

predicted DU and one targets predicted DD rescuer of MEK (Dataset Table E20). 

For testing SR-based synergistic combination in vivo, we analyzed a collection of in vivo mouse xenograft 

models that cover eight drug combinations involving, MEK inhibitor, Benemitib in 375. For each predicted 

rescuer gene, we compared progression-free survival of PDXs treated with (i) Benmitinib alone, (ii) a drug 

inhibitor of the rescuer alone and (iii) the drug combination of both (i) and (ii).  

Remarkably, compared with PDXs treated with Binimetinib alone, all three predicted DU-SR combination 

treatments increased progression-free survival in the PDXs (Figure S9c-e), while the predicted DD-SR 

combination decreased progression-free survival, as expected (Appendix Fig. Sf). This point out the 

targeting DU rescuer are synergistic while targeting DD inhibitors are antagonistic, suggesting that predicted 

sensitizations translate to actual in-vivo survival benefits in mice model. 

 

 

5.5 SR	based	supervised	prediction	of	resistance	to	immune	checkpoint	blockades		

We analyzed three independent datasets to show role of SR in immunotherapy (Figure 4a): 

	

5.5.1 Hugo	et	al.	(Hugo	et	al,	2016)	

The dataset composed of 37 metastatic melanoma patients treated with anti-PD1 therapy. We first 

predicted DU and DD rescuers of PD1/PDL1 by applying INCISOR to TCGA dataset. Using expression of 

these rescuers as features, we built an SVM based supervised model. We conducted 5 fold cross-validation 

to determine the accuracy of the predictor in predicting resistance to anti-PD1. Feature selection was 

conducted on predicted rescuers using half of the training data. The other half of training data was used to 

train the model.  The test data used to determine accuracy was neither used for feature selection nor 

training to avoid any over-fitting. 
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5.5.2 Prat	et	al.	(Prat	et	al,	2017)	

The dataset composed of 65 patients with melanoma, lung non-squamous, squamous cell lung or head and 

neck cancer treated with anti-PD1 therapy. The pre-treatment transcriptome was conducted using 

Nanostring nCounter technology in the dataset. Analogous to Hugo et al. dataset analysis, we built a 

supervised predictor for the dataset by training an SVM using rescuers of PD1/PDL1 as features. The 

accuracy of the predictor was estimated using 5 fold cross-validation. 

5.5.3 Van	Allen	et	al.	(Van	Allen	et	al,	2015)	

The dataset composed of 40 metastatic melanoma patients treated with anti-CLTA4. An SVM was trained 

using the pre-treatment expression of rescuers of CTLA4 as features. Analogous to the previous analysis 

described above, feature selection was conducted before training the SVM.  The accuracy of predictor was 

estimated using 5 fold cross-validation. The test data used to determine the accuracy neither used for 

training nor for feature selection to avoid any overfitting. 

 

5.6 Using	SR	strength	to	predict	drug	response	in	TCGA	
We checked if using the strength of SR improves the prediction. Specifically, we weight the functionally 

active rescuers by the SR strength, i.e, the SR score assigned by INCISOR. As shown in Fig S11g, this 

strategy shows significant predictive power for 13 drugs. compared to 14 drugs whose response can be 

predicted using the unweighted SR counts (the number of upregulated rescuer). 

 

6 SR	based	therapeutics	opportunities		

The functional activity of SL and SR networks determines tumor aggressiveness and patient survival. We 

demonstrate here that the clinical impact of the combined SR and SL networks is more significant than their 

individual impacts (Appendix Fig. S2j). The SL network provides information on the selectivity and efficacy 

of a given drug(Jerby-Arnon et al, 2014). As pointed out above, the SR network provides complementary 

information on the likelihood to incur resistance. Combining SL and SR networks, we can predict a drug 

that has the highest efficacy/selectivity and lowest chance of developing resistance. 

 

SR reprogramming can be used to develop two novel classes of sequential treatment regimens of anticancer 

therapies. First, almost all cancer patients who initially responded to a drug, have the potential to develop 

resistance to the treatment and experience tumor relapse. Currently, we do not have the ability to access and 

prepare for the second line of treatment for the relapsed tumors, till it happens to the patients, which is often 

too late. SR provides a way to infer, together with pretreatment expression screening, whether resistance 
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will emerge quickly and, more importantly, the possible mechanisms of the emergence of resistance and 

how they can be mitigated by subsequent treatments. Therefore, SR can guide decisions on the second line 

of action without biopsies from the relapsed tumors. 

 

Second, some of the targeted anti-cancer therapies are known to be more efficient and effective in treating 

cancer (eg. kinase inhibitors) than other drugs, provided tumors are homogenously addicted to their target 

gene. Using SR interaction between the target gene (as rescuer) and its vulnerable partners, it is possible to 

make the tumor population homogeneous by targeting the vulnerable partners of the rescuer. In response to 

the vulnerable gene inactivation, cancer cells will over-activate the rescuer, which will lead to oncogenic (or 

non-oncogenic) addiction(Weinstein, 2002). In the second line of treatment, the rescuer can be targeted to 

eradicate the homogeneous tumor population, thus efficiently treating cancer. 

7 Limitation	of	INCISOR	

 

INCISOR has limitations arising from the scarcity of available data, the specific design of the pipeline, and 

the diverse mechanisms of the emergence of drug resistance.  

It is well-known that many genes are correlated based on their expression and the proximal genes have 

correlated SCNA values, which make it difficult to identify the true rescuers from spurious ones. INCISOR 

mitigates some of these problems by selecting pairs only when they are supported by both gene expression 

and SCNA. Also, combination of shRNA and phylogenetic screening are less prone to this confounder. 

INCISOR is also based on patient survival data, which is known to be noisy. INCISOR does not incorporate 

other genetic, epigenetic and post-transcriptional mechanism of gene inactivation partly due to the 

unavailability of these data for cancer patients. 

INCISOR is designed to identify the rescuer genes for targeted therapies, so it cannot be used to predict drug 

response/resistance analysis for non-targeted therapies such as generic chemotherapy (e.g. Cisplatin). By 

definition, SR reprogramming events are context-specific to a cancer type or a sub-type. Our pancancer SR 

network focuses on the generic SR interactions that are prevalent across multiple cancer types, and the same 

pipeline can be applied to specific cancer types or sub-types as presented in the main text and Appendix for 

specific cancer types and subtypes.  

It must be noted that resistance does not always emerge due to SR reprogramming. This is because there are 

multiple mechanisms for development of resistance including drug efflux via multi-drug resistance 

mechanism or the modification of drug target that makes drug ineffective. We nonetheless note that SR 

interactions are so widespread in multiple cancers that they are highly likely to be a contributing factor. Our 
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analysis shows that only a small subset of SR interactions is mediated by physical contacts, and further 

studies are needed to identify the mechanism of SR reprogramming in giving rise to drug resistance.  

 

The in-vitro and in-vivo evidence supports a future role of SRs in devising anti-resistant combination 

therapies. However, further experimental and clinical studies will be obviously required to study this further.  

 

We expect the fast growth of the publically available omics/survival patient data, both within the TCGA 

collection and beyond would help us designing a better pipeline and improving our identification of the SR 

interactions, and lead to a deeper understanding of their mechanism in a context-specific manner.  
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HN12 infection with pooled shRNA viruses!
 (MOI = 1, representation = 1,000)!

Master Pool!

Day 0!

Day 6!

Ctrl #1!

Ctrl #1!

Start Pellet!

End 
Pellet!

Ctrl #2!

Ctrl #2!

End 
Pellet!

Master Pool!

Ctrl #3!

Ctrl #3!

End 
Pellet!

Rap#1!

Rap#1!

End 
Pellet!

Rap#2!

Rap#2!

End 
Pellet!

Rap#3!

Rap#3!

End 
Pellet!

Note: each pellet must contain sufficient cells for a representation of 1,000.!

Split cells for 10- 12 PDs. !
Maintain a rep of at least 1,000 at each split!

Puro selection!
 (day 2-6)!

Allow >1 day recovery 
from Puro selection 

before treatment!
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Dasatinib and MK2206
0.00 0.003 0.01 0.03 0.10 0.30 1.00 3.00 Dasatinib(µM)

0 100 92 89 86 74 60 49 42
0.1 92 86 86 85 66 51 43 28
0.3 89 87 89 83 62 49 37 25
1 80 79 77 75 51 39 29 20
3 71 63 59 56 37 29 22 16
10 45 43 42 36 20 14 9 5

MK2206(µM)

Cal27

0.00 0.003 0.01 0.03 0.10 0.30 1.00 3.00 Dasatinib(µM)
0 100 91 81 74 59 59 52 51
0.1 96 80 74 57 44 34 32 35
0.3 69 66 51 46 32 24 24 25
1 54 52 43 33 24 19 17 17
3 38 38 30 23 17 14 14 13
10 20 19 17 13 10 9 10 8

MK2206(µM)

Cal33

0.00 0.003 0.01 0.03 0.10 0.30 1.00 3.00 Dasatinib(µM)
0 100 89 82 61 31 26 26 23
0.1 105 89 74 53 23 18 15 14
0.3 86 74 62 36 15 12 10 7
1 67 57 44 25 10 8 6 4
3 48 37 31 18 8 7 6 4
10 25 21 17 11 5 4 2 1

MK2206(µM)

Detroit 562

0.00 0.003 0.01 0.03 0.10 0.30 1.00 3.00 Dasatinib(µM)
0 100 98 93 88 68 58 56 51
0.1 101 96 89 77 67 57 53 47
0.3 94 93 85 73 57 46 46 40
1 88 87 74 68 47 42 39 35
3 85 79 70 54 41 32 29 29
10 60 59 48 35 22 16 12 12

MK2206(µM)

HN12

0.00 0.003 0.01 0.03 0.10 0.30 1.00 3.00 Dasatinib(µM)
0 100 100 95 86 50 38 27 22
0.1 100 97 96 86 55 37 24 19
0.3 91 93 89 74 49 32 21 18
1 88 85 80 70 45 30 21 18
3 79 76 69 62 36 25 18 15
10 46 35 35 24 17 15 11 11

MK2206(µM)

SCC47

Dasatinib: 50-140 mg once daily
Reference: Rapamycin 5 mg once daily
MK2206: 40-200 mg once daily

0 0.003 0.01 0.03 0.1 0.3 1 3 Dasatinib(µM)
0 100 101 95 95 82 62 57 49
0.1 97 101 96 99 78 58 51 44
0.3 103 104 102 94 75 50 44 33
1 97 101 94 86 60 40 31 24
3 83 79 79 76 52 33 23 16
10 54 57 50 41 23 13 10 7

BYL719(µM)

Dasatinib and BYL719
Cal27

0.00 0.003 0.01 0.03 0.10 0.30 1.00 3.00 Dasatinib(µM)
0 100 98 94 77 68 66 65 54
0.1 96 90 83 70 61 57 59 46
0.3 85 84 75 65 49 46 46 36
1 54 58 50 36 26 26 24 20
3 26 26 23 20 14 12 15 11
10 14 14 13 10 5 5 5 4

BYL719(µM)

Cal33

0.00 0.003 0.01 0.03 0.10 0.30 1.00 3.00 Dasatinib(µM)
0 100 86 73 60 32 25 23 22
0.1 101 90 75 52 24 20 20 20
0.3 83 80 58 36 17 15 15 13
1 55 45 33 20 10 8 7 4
3 28 25 17 8 4 3 3 2
10 10 8 6 2 2 1 1 1

BYL719(µM)

Detroit 562

0.00 0.003 0.01 0.03 0.10 0.30 1.00 3.00 Dasatinib(µM)
0 100 87 85 79 63 53 46 48
0.1 102 96 93 85 53 45 40 40
0.3 88 94 81 75 50 40 37 38
1 92 90 81 65 39 29 28 29
3 81 82 75 59 27 21 20 19
10 54 49 44 32 9 7 6 6

BYL719(µM)

HN12

0.00 0.003 0.01 0.03 0.10 0.30 1.00 3.00 Dasatinib(µM)
0 100 91 92 80 49 36 27 21
0.1 102 96 93 79 42 30 23 18
0.3 99 90 87 72 32 22 19 15
1 92 82 80 63 25 19 17 14
3 81 71 72 51 20 17 15 13
10 53 48 46 31 12 11 10 8

BYL719(µM)

SCC47

Dasatinib: 50-140 mg once daily

Reference: Rapamycin 5 mg once daily
BYL719: 200-350 mg once daily

0.00 0.01 0.03 0.10 0.30 1.00 3.00 10.00 Erlotinib-(µM)
0 100 92 101 90 78 65 57 36
0.1 93 92 91 81 62 42 32 22
0.3 88 82 81 68 50 34 25 17
1 75 71 71 56 44 31 23 15
3 61 62 56 46 36 26 21 15
10 44 44 41 32 27 19 15 11

MK2206-(µM)

Erlotinib and MK2206
Cal27

0.00 0.01 0.03 0.10 0.30 1.00 3.00 10.00 Erlotinib-(µM)
0 100 99 98 90 88 80 60 47
0.1 94 95 90 89 80 68 48 34
0.3 76 74 65 65 60 46 34 29
1 55 53 47 45 40 32 24 18
3 39 38 32 30 31 24 18 13
10 18 17 18 18 18 16 14 9

MK2206-(µM)

Cal33

0.00 0.01 0.03 0.10 0.30 1.00 3.00 10.00 Erlotinib-(µM)
0 100 91 91 85 74 63 41 28
0.1 103 99 90 81 68 47 30 20
0.3 75 78 66 58 45 33 21 13
1 60 59 55 49 39 30 18 9
3 43 44 39 34 29 23 14 7
10 18 18 16 15 13 11 7 3

MK2206-(µM)

Detroit 562

0.00 0.01 0.03 0.10 0.30 1.00 3.00 10.00 Erlotinib-(µM)
0 100 92 103 100 91 89 67 54
0.1 101 110 104 101 102 86 64 44
0.3 97 93 92 89 89 76 54 42
1 96 95 91 91 88 66 53 40
3 84 85 78 78 68 59 44 37
10 57 56 51 46 42 36 32 27

MK2206-(µM)

HN12

0.00 0.01 0.03 0.10 0.30 1.00 3.00 10.00 Erlotinib-(µM)
0 100 96 86 86 80 63 41 36
0.1 92 88 86 81 71 53 38 30
0.3 85 84 81 75 64 52 37 29
1 80 81 74 69 60 51 37 29
3 79 77 77 68 58 51 36 27
10 46 48 48 45 39 36 30 22

MK2206-(µM)

SCC47

Erlotinib: 150-300 mg once daily

Reference: Rapamycin 5 mg once daily
MK2206: 40-200 mg once daily

0.00 0.01 0.03 0.10 0.30 1.00 3.00 10.00 BYL719(µM)

0 100 90 86 88 83 76 63 43
1 68 60 57 54 51 46 32 24
3 65 59 57 52 51 40 27 24
10 66 62 61 53 54 41 30 21
30 67 62 58 53 51 39 30 22
100 62 59 52 56 51 40 33 23
300 38 38 35 36 31 26 19 13

Rapamycin6(nM)

BYL719 and Rapamycin
Cal27

0.00 0.01 0.03 0.10 0.30 1.00 3.00 10.00 BYL719(µM)

0 100 96 92 78 75 56 25 14
1 62 54 56 57 45 34 20 14
3 58 55 56 54 43 30 18 13
10 50 53 44 46 43 30 20 12
30 47 45 42 42 40 28 19 10
100 45 43 42 42 39 24 16 11
300 37 38 38 33 28 19 12 9

Rapamycin6(nM)

Cal33

0.00 0.01 0.03 0.10 0.30 1.00 3.00 10.00 BYL719(µM)

0 100 95 92 84 73 48 23 8
1 90 87 86 77 68 38 21 9
3 89 91 82 79 63 38 21 10
10 82 81 76 75 66 41 23 9
30 81 76 79 73 55 39 20 9
100 66 65 67 66 54 39 20 9
300 42 42 41 42 32 21 10 5

Rapamycin6(nM)

Detroit 562

0.00 0.01 0.03 0.10 0.30 1.00 3.00 10.00 BYL719(µM)

0 100 96 95 91 85 85 73 50
1 77 75 76 71 69 62 54 37
3 75 71 72 68 65 56 48 32
10 70 72 69 66 67 57 48 35
30 74 66 73 72 69 54 49 32
100 72 70 71 67 65 51 44 30
300 47 47 46 42 41 35 33 23

Rapamycin6(nM)

HN12

0.00 0.01 0.03 0.10 0.30 1.00 3.00 10.00 BYL719(µM)

0 100 93 94 94 81 76 67 46
1 85 82 84 80 77 65 51 31
3 86 80 84 80 76 67 52 32
10 82 83 82 79 76 67 52 33
30 87 85 83 83 77 68 54 35
100 81 79 78 77 73 67 49 34
300 56 55 53 51 46 41 31 21

Rapamycin6(nM)

SCC47

Rapamycin 5 mg once daily
BYL719: 200-350 mg once daily

0.00 0.01 0.03 0.10 0.30 1.00 3.00 10.00 BYL719(µM)

0 100 94 78 81 81 66 67 49
1 94 94 76 80 70 62 55 43
3 83 84 66 71 62 50 40 30
10 55 51 43 41 36 29 25 22
30 32 31 25 25 21 18 16 18
100 26 25 20 21 19 17 14 15
300 19 17 14 15 14 13 10 10

ink1283(nM)

BYL719 and ink128
Cal27

0.00 0.01 0.03 0.10 0.30 1.00 3.00 10.00 BYL719(µM)

0 100 88 96 94 85 58 25 14
1 94 89 84 80 80 45 25 15
3 76 78 71 64 57 32 22 14
10 51 49 45 42 35 24 19 13
30 33 33 26 31 29 22 18 12
100 24 25 24 24 24 19 16 10
300 17 15 16 14 12 11 9 8

ink1283(nM)

Cal33

0.00 0.01 0.03 0.10 0.30 1.00 3.00 10.00 BYL719(µM)

0 100 94 94 92 77 47 23 9
1 101 101 96 96 76 51 26 11
3 95 93 90 83 64 38 19 10
10 64 64 62 54 41 25 18 9
30 41 40 39 34 29 20 14 8
100 31 30 30 27 23 18 12 8
300 15 14 15 14 11 8 7 4

ink1283(nM)

Detroit 562

0.00 0.01 0.03 0.10 0.30 1.00 3.00 10.00 BYL719(µM)

0 100 96 96 94 86 82 75 53
1 99 96 93 91 87 79 68 51
3 89 85 84 81 77 66 56 41
10 65 66 62 60 57 47 42 33
30 48 51 48 46 42 34 31 25
100 40 40 38 36 33 30 28 24
300 24 24 24 23 22 20 19 16

ink1283(nM)

HN12

0.00 0.01 0.03 0.10 0.30 1.00 3.00 10.00 BYL719(µM)

0 100 99 95 93 87 82 66 53
1 109 104 105 105 97 86 76 57
3 103 101 100 97 88 80 66 51
10 87 84 79 72 66 56 47 39
30 60 55 54 50 45 39 35 32
100 41 41 39 37 35 30 27 27
300 19 19 18 19 18 15 15 15

ink1283(nM)

SCC47

Reference: Rapamycin 5 mg once daily

BYL719: 200-350 mg once daily

ink128: 15-30 mg once daily

PND1186 and Rapamycin

Cal27

0 0.01 0.03 0.1 0.3 1 3 10 PND1186*(µM)
0 100 88 69 76 68 61 60 50
1 61 52 48 49 46 45 44 36
3 57 52 49 49 42 44 38 38
10 54 49 41 46 43 46 46 38
30 52 56 47 54 44 50 41 34
100 47 55 43 50 44 45 40 34
300 38 34 34 34 31 30 30 31

Rapa*(nM)

Cal33

0 0.01 0.03 0.1 0.3 1 3 10 PND1186*(µM)
0 100 91 81 78 78 61 39 29
1 78 81 69 68 69 56 34 31
3 81 74 65 64 63 56 38 29
10 76 76 66 62 60 54 39 28
30 75 69 67 63 62 54 37 28
100 68 70 61 63 60 52 37 26
300 41 41 38 39 34 32 22 21

Rapa*(nM)

0 0.01 0.03 0.10 0.30 1.00 3.00 10.00 PND1186*(µM)
0 100 100 104 100 99 95 82 58
1 68 66 65 64 61 60 55 56
3 68 67 73 68 63 63 56 56
10 67 67 69 65 61 62 54 53
30 69 68 66 65 63 59 53 50
100 68 62 64 63 55 58 52 56
300 46 43 42 41 39 39 36 36

Rapa*(nM)

Detroit 562

0 0.01 0.03 0.1 0.3 1 3 10 PND1186*(µM)
0 100 103 100 95 98 79 74 68
1 80 75 74 71 74 59 53 49
3 78 80 68 71 74 68 57 53
10 77 79 63 71 71 68 56 48
30 73 74 68 76 70 69 59 49
100 78 73 70 70 69 65 62 47
300 52 50 48 49 49 53 41 38

Rapa*(nM)

HN12

0.00 0.01 0.03 0.10 0.30 1.00 3.00 10.00 BYL719(µM)

0 100 99 95 98 89 78 66 72
1 83 86 84 84 76 70 62 62
3 85 83 82 83 75 70 60 64
10 81 84 81 81 73 70 64 60
30 82 82 82 82 76 73 65 62
100 77 78 79 79 72 67 63 58
300 55 53 52 52 46 44 39 35

Rapamycin6(nM)

SCC47

0 0.01 0.03 0.10 0.30 1.00 3.00 10.00 PND1186*(µM)
0 100 94 93 96 92 91 80 64
1 94 90 79 86 84 82 71 57
3 83 81 76 76 75 78 62 59
10 55 51 48 50 47 46 40 51
30 34 33 28 30 28 28 25 30
100 28 25 24 24 22 22 19 22
300 19 17 16 16 15 14 13 15

ink128*(nM)

PND1186 and ink128

Cal27

0 0.01 0.03 0.10 0.30 1.00 3.00 10.00 PND1186*(µM)
0 100 93 84 86 84 66 68 56
1 101 87 91 88 84 69 66 61
3 86 86 81 81 74 70 64 55
10 53 49 45 46 49 46 42 49
30 39 36 35 36 37 36 36 38
100 31 28 29 29 29 31 28 28
300 19 17 17 17 16 16 16 18

ink128*(nM)

Cal33

0 0.01 0.03 0.10 0.30 1.00 3.00 10.00 PND1186*(µM)
0 100 100 92 99 99 75 43 41
1 117 110 111 102 94 87 55 47
3 95 90 89 90 96 74 48 44
10 66 66 62 60 58 55 44 38
30 47 44 40 39 41 37 33 29
100 36 34 35 32 34 31 29 23
300 28 26 27 26 24 23 21 20

ink128*(nM)

Detroit 562

0 0.01 0.03 0.10 0.30 1.00 3.00 10.00 PND1186*(µM)
0 100 98 89 90 89 86 72 62
1 93 97 88 91 84 73 74 63
3 91 89 88 83 83 69 64 57
10 71 71 70 69 66 63 56 52
30 51 52 49 49 48 46 41 39
100 42 42 41 40 37 37 34 32
300 28 28 26 27 24 22 20 22

ink128*(nM)

HN12

0 0.01 0.03 0.10 0.30 1.00 3.00 10.00 PND1186*(µM)
0 100 95 88 96 95 86 75 70
1 102 100 101 101 101 94 81 73
3 100 96 97 98 96 92 77 71
10 81 81 77 75 75 74 68 64
30 58 54 51 53 50 50 52 54
100 40 37 38 38 39 36 36 42
300 21 20 20 20 20 20 20 24

ink128*(nM)

SCC47

Dasatinib and MK2206
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Dasatinib and MK2206

(All work)

Cal27

Cal33

Detroit

HN12

scc47

Dasatinib and BYL719

(All work)

Cal27

Cal33

Detroit

HN12

scc47

Erlotinib and MK2206

(All work)

Cal27

Cal33

Detroit

HN12

scc47

Cal27

Cal33

Detroit

HN12

BYL719 and Rapamycin

scc47

BYL719 and INK128

(work)

Cal27

Cal33

Detroit

HN12

scc47

Cal27

Cal33

Detroit

HN12

PND1186 and Rapamycin

scc47

PND1186 and INK128

(all except scc47 work)

Cal27

Cal33

Detroit

HN12

scc47

a b c

d e f

g
Rescuer

gene

Vulnerable 

gene

Rescuer 

inhibitor 
(adjuvant)

Vulnerable 

gene 
inhibitor 

(Primary)

Cell lines (Synergism)

Cal27 Cal33
Detroit 

562
HN12 SCC47

AKT KIT, SRC MK2206 Dasatinib 0.51 0.25 0.28 0.17 0.5

PIK3CA KIT, SRC BYL719 Dasatinib 0.35 0.28 0.32 0.175 0.4
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