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MATERIALS AND METHODS 

 

Scope 

Overall, the Ivy GAP cohort consisted of 41 patients (table S1), and their 42 tumors were 

used to generate ~440 tissue blocks, 270 transcriptomes, ~11,500 machine learning 

(ML)-annotated H&E images registered to ~23,000 ISH images , ~400 MRI scans, 

tumor-derived cell lines and xenografts, and supporting longitudinal clinical information. 

 

Tumor acquisition and clinical data collection 

This study was reviewed and approved by Western IRB (IRB20091429) in compliance 

with the ethical principles as set forth in the report of the National Commission for the 

Protection of Human Subjects of Biomedical and Behavioral Research entitled “Ethical 

Principles and Guidelines for the Protection of Human Subjects of Research (Belmont 

Report)”. The research protocol was also approved by the Swedish Neuroscience Institute 

research steering committee. All participants provided written informed consent 

according to IRB guidelines prior to participation in this study.  MRI data sets were 

collected at clinically determined intervals for each patient. Intra-operative photographs 

and MRI Stealth images were obtained before and after en bloc resection when 

possible. Patients received chemotherapy and radiation treatment after surgery. Clinical 

data sets that were collected included age, gender, molecular subtype, MGMT 

methylation, EGFR amplification, EGFRvIII deletion, PTEN deletion, IDH1 point 

mutation, initial KPS, neurosurgery (resection number), hemisphere, chemotherapy, 

radiation therapy, recurrence by 6 months, and multifocality (table S1). Patient samples 

used in this study were diagnosed as WHO grade IV glioblastoma. 

 

Cell line generation 

Glioma stem cell cultures were established from freshly resected tumor tissues and 

maintained in NeuroCult® NSA medium (Stem Cell Technologies) with B-27 serum-free 

supplement (Invitrogen), 20 ng/mL epidermal growth factor (EGF) and 20 ng/mL 

fibroblast growth factor (FGF-2) as described (34). In brief, tissue samples were minced 

into 1 mm
3 
fragments and digested with Accutase (Sigma) at 37 °C for 15-20 minutes. 
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NSA medium was added to quench Accutase activity and cell suspensions were passed 

through 70 μm nylon mesh. The suspensions were centrifuged at 1000 rpm for 5 minutes, 

resuspended in fresh NSA, and plated into T75 flasks pre-coated with laminin (1:100 in 

PBS; Sigma). To evaluate neurosphere formation ability of glioma stem cells, single cell 

suspensions were plated directly into ultra-low attachment dishes (Corning) and 

maintained in NSA medium. 

 

Affymetrix genome-wide SNP arrays  

Genomic DNA was extracted from tumor tissues by using ChargeSwitch gDNA mini 

tissue kit (Life Tech, CA) per company protocol. Measurement of quality and quantity of 

genomic DNA was carried out by using Nanodrop ND-1000. Samples were then sent for 

profiling on Affymetrix Genome-Wide SNP 6.0 arrays to Genome Technology Access 

Center, Washington University School of Medicine, St. Louis, MO. 

 

Tissue acquisition, subdivision, and freezing 

Immediately after en bloc resection, each tumor was placed on a surgical towel, and 

subdivided into 9 x 7.5 x 18 mm high (tumors W1-W12) or 9 x 7.5 x 9 mm high (tumors 

W13-W55) tissue blocks so that tissue sections also measured ~9 x 7.5 mm on glass 

slides.  Each block was supported in a custom-fabricated Teflon-coated metal L-bar 

assembly set on aluminum foil over wet ice, and frozen with Flash Freeze Rapid Freezing 

Spray containing 1,1,1,2 Tetrafluoroethane (Decon Laboratories).  An OCT base formed 

with a disposable cryomold was frozen to the 1-2 mm of tissue block that protruded from 

the top of the L-bars with the freezing spray to facilitate mounting of the block to a 

cryostat specimen disk.  The 18 mm high blocks were divided into two 9 mm pieces on a 

refrigerated dissection table (-15°C) using a custom fabricated block chopper equipped 

with a standard razor blade. The bottom (block .1) contained the original OCT base, 

whereas the top (block .2) was embedded in OCT at the chopped interface.  Blocks were 

stored at -80°C before processing. 

 

Tissue processing, staining, and ISH 
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Tissue processing (cryosectioning, quality control, fixation, dehydration, and 

acetylation), staining (H&E staining, Toluidine blue staining, Feulgen-HP yellow 

counterstaining after colorimetric in situ hybridization (ISH)), as well as ISH and probes 

(colorimetric in situ hybridization, PCR and IVT reactions for ISH probes, ISH controls), 

are described in detail at http://glioblastoma.alleninstitute.org/.  The core infrastructure 

developed for generating the Allen Mouse Brain Atlas (35) data (http://www.brain-

map.org) was used for processing glioblastoma tissue for the Ivy GAP. 

 

Fixation, dehydration, acetylation 

The procedures described for the Allen Mouse Brain Atlas were used without 

modification. Slides destined for ISH were fixed, dehydrated, and acetylated, whereas 

slides destined for H&E staining were fixed and dehydrated. All slides were stored in 

plastic boxes at room temperature until processed by ISH within 3 weeks or stained with 

H&E within one week. 

 

Hematoxylin and eosin (H&E) staining 

Quality control slides were stained with H&E to facilitate assessment of tissue integrity 

and to review neuropathology. Slides were processed on a Leica Autostainer XL with a 

regressive H&E staining protocol stain (36). Sections were treated in Formula 83 (10 

min), rehydrated in a graded series of 100% (2x), 95%, and 70% ethanol ending with de-

ionized water (each 1 min), stained with non-mercuric Harris Hematoxylin 

(commercially prepared and filtered before every use, 13 min), rinsed with de-ionized 

water (1 min), differentiated in 1% HCl in 70% ethanol (45 sec), rinsed with de-ionized 

water (1 min), blued with 1% lithium carbonate (1 min), rinsed with de-ionized water (1 

min), and stained in 1% eosin Y in 1% aqueous calcium chloride (6 min). Sections were 

then dehydrated in a graded series of 50%, 70%, 95% and 100% (3x) ethanol, cleared in 

Formula 83, and coverslipped with DPX. 

 

Toluidine blue staining 

After each tissue block was sectioned onto slides, one section was collected for manual 

staining and review of tissue integrity and neuropathology prior to sectioning the same 

http://glioblastoma.alleninstitute.org/
http://www.brain-map.org/
http://www.brain-map.org/
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block onto the next set of slides. Just after collection, the section was stained with 2% 

Toluidine Blue (Fisher Scientific; 1 min), rinsed in tap water twice (5 dips over 10 sec 

each), dehydrated in 100% ethanol twice (1 min each), air dried (2 min), then mounted 

with Vecta Mount, coverslipped and reviewed immediately. 

 

Tissue block, neuropathology, and RNA quality control   

Blocks passed tissue integrity criteria if 2-4 Hematoxylin and Eosin (H&E)-stained 

sections collected from the block face had less than, 10% freezing artifact and 75% 

necrosis per unit area. Tissue blocks with excessive necrosis were failed and therefore 

were not included in the studies, and as a result, some tumors did not have a sufficient 

number of passing blocks to be included in the atlas. Blocks passed neuropathology 

criteria if the H&E-stained sections had at least 25% viable cells of core tumor at a high 

density of cells (50-100 cells/100μm
2
). The remaining 75% typically consisted of viable 

cells in core tumor at low to high density, tissue at various stages of necrosis, tissue 

affected by hemorrhage, absence of cells or tissue, leading edge (tumor cell-free margin), 

or infiltrating tumor. For blocks that passed tissue integrity and neuropathology criteria, 

RNA quality was assessed. RNA Integrity Numbers (RINs) ranged from 5.6 to 8.7, with 

most measurements between 7 and 8.  

 

Cryosectioning for ISH surveys  

Fresh frozen tissue blocks were removed from -80°C, equilibrated at -15°C in cryostats, 

mounted on chilled chucks, and sectioned at 20μm with object temperature of -10°C or -

11°C to reduce chatter through the necrotic areas and folds on the leading edge that 

contacted the blade first. Each of 8 blocks of tissue (1.x – 8.x) was sectioned onto 

sequential slides for ISH and HP-Yellow counterstain (slides 1, 3, 4… 32 or 45) or H&E-

stained (slides 2, 5…44).  

 

Cryosectioning for laser microdissection 

Fresh frozen tissue blocks were removed from -80°C, equilibrated for sectioning at -

15°C, and sectioned at 14μm with the cryostat object temperature at -10°C or -11°C to 

reduce chatter through the necrotic areas and folds on the leading edge that contacted the 
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blade first. Tissue sections were mounted onto glass slides with polyethylene naphthalate 

(PEN) membranes (Leica Microsystems, Inc., Bannockburn, IL). For the Anatomic 

Structures RNA-Seq Study, 1 H&E slide with 2 sections was included as a reference for 

every 3 PEN slides with 4 sections each. For the Cancer Stem Cells RNA-Seq Study, 1 

H&E slide with 2 sections was included for every 3 PEN slides with 4 sections and 2 to 8 

ISH reference slides with 2 sections. After drying for 30 minutes at room temperature, 

PEN slides were frozen at -80°C. Slides destined for ISH were fixed, dehydrated, and 

acetylated, whereas slides destined for H&E staining were fixed and dehydrated. The 

slides were stored in plastic boxes at room temperature until processed by ISH within 3 

weeks or stained with H&E within one week. 

 

Laser microdissection 

In preparation for laser microdissection, PEN slides were removed from -80°C and 

quickly processed through cresyl violet and Eosin to lightly stain the tissue. Sections 

were fixed in ice-cold 70% ethanol for 30 seconds, washed for 15 seconds in nuclease-

free water, stained with 0.7% cresyl violet in 0.05% NaOAc, pH 3.4 for 4 minutes, rinsed 

in nuclease-free water for 10 seconds, 15 seconds in 70% ethanol, followed by 2 dips in 

0.25% Eosin, and 20 seconds each in 95%, 100%, and 100% ethanol rinses. Slides were 

air-dried for 2 minutes and desiccated by vacuum for 1 hour at room temperature, then 

frozen at -80°C until microdissection. For both RNA-Seq studies, cresyl violet/Eosin-

stained sections mounted on PEN membranes were microdissected while visually 

referring to H&E-stained sections that had been curated to identify matched target 

regions. For the Cancer Stem Cells RNA-Seq study, ISH reference gene expression 

patterns informed the curation of the H&E-stained sections. A Leica LMD6000 (Leica 

Microsystems, Inc., Bannockburn, IL) was used for microdissection, and the system 

included an upright research microscope fitted with a diode laser and a CCD camera to 

acquire live images of slides. The scope and laser were controlled via a dedicated 

computer running Leica LMD software (v.6.6.2.3552). 

 

ISH probe design, synthesis, and testing 
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For labeling target mRNA in tissue sections using ISH, digoxigenin-labeled riboprobes 

were designed and synthesized according to specific criteria. Briefly, using sequences 

obtained from RefSeq and a semi-automated process based on Primer3 software (37), 

probes were designed to be between 400-1000 bases in length (optimally > 600 bases) 

and to contain no more than 200 bp with > 90% homology to non-target transcripts. To 

facilitate cross-platform comparisons with existing Affymetrix microarray data from 

glioblastoma tissue, probes for the Ivy GAP were designed to completely overlap their 

corresponding Affymetrix array probe when possible. Secondarily, the probes were then 

designed to have >50% overlap with the existing Allen Mouse Brain Atlas probe when 

the mouse and human genes were orthologous. Riboprobes were synthesized using 

standard in vitro transcription (IVT) reactions based on PCR templates prepared from 

human cDNA clones (NIH Mammalian Gene Collection, Open Biosystems, Huntsville, 

AL) or pooled cDNA synthesized from human brain total RNA. cDNA was prepared 

from human brain RNA from prefrontal, temporal, parietal, occipital, and frontal cortical 

areas as well as medulla and cerebellum (Ambion, Austin, TX) using Superscript III RTS 

First-Strand cDNA Synthesis Kit (Invitrogen, Carlsbad, CA), then pooled in equal 

amounts to provide templates for PCR.  PCR primers were obtained from Integrated 

DNA Technologies (Coralville, IA) at a final concentration of 10μM, and designed with 

GC content between 42% – 62% and an optimal size of 22nt with lower and upper limits 

of 18nt and 26nt, respectively. For cDNA clones, the clone sequence was compared with 

RefSeq sequences, and consensus sequences with >98% homology across 80% of the 

total length were used to develop probes. When a clone was used as a template, a single 

PCR was used requiring only a forward and reverse primer with an additional SP6 RNA 

polymerase binding sequence (GCGATTTAGGTGACACTATAG). When using brain 

cDNA as a template, probes were generated against sequences within a region 3000 bp 

from the 3’ end using 3 primers: forward, reverse, and a nested reverse primer containing 

the SP6 RNA polymerase binding sequence. cDNA primers underwent a BLAST analysis 

to verify amplification of only target sequence. All cDNA reactions were run on the 

Bioanalyzer for quality control. 

 

PCR and IVT reactions for ISH probes 
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Standard conditions for PCR and IVT reactions were as described (35). IVT reactions 

were diluted to working stocks of 30ng/μl with THE (0.1mM Sodium Citrate pH 6.4, 

Ambion). Aliquots were stored in low volumes to minimize freeze/thaw cycles. IVT 

dilutions were stored at -80°C. For hybridization, the probe was diluted 1:100 (to 

300ng/ml) or 1:50 (to 600ng/ml) into in situ hybridization buffer (Ambion) in 96-well 

ISH Probe Plates. A probe was hybridized at 600ng/ml if its gene expression in The 

Cancer Genome Atlas (TCGA) dataset fell in the lowest or third quartile rank. A list of 

probes and the concentrations used for each study appear in the Gene List in 

Documentation. MECOM was always hybridized at 300ng/ml. Each well provides probe 

for one ISH slide. Probe plates were stored at -20°C until used in an ISH run.  All PCR 

and IVT products were run on the bioanalyzer for size and morphology quality control. 

Specifically, PCR products that were not of the correct size (+/- 100bp) or that showed 

multiple products were not used to generate riboprobes. IVT products that were shorter 

than their predicted size were not used. It is common to see IVT products that run slightly 

larger than their predicted molecular weight, or as multiple peaks, due to secondary 

structure of the RNA. IVT products with multiple bands were not used for ISH unless the 

additional bands were determined to result from secondary structure.  For the Anatomic 

Structures ISH Survey and the Cancer Stem Cells ISH Survey, probes were tested on the 

ISH platform optimized for glioblastoma tissue. About 90-95% of the probes passed and 

was used in the atlas. Probes were failed if they caused excessive ISH artifacts such as 

streaks, background and signal gradients, and spots on multiple tissue sections. For the 

Anatomic Structures ISH for Enriched Genes Study and Cancer Stem Cells ISH for 

Enriched Genes Study, newly designed and synthesized probes were not tested prior to 

being used in the studies. 

 

Colorimetric ISH hybridization and Feulgen-HP yellow counterstain 

The ISH procedures developed for generating the Allen Mouse Brain Atlas (35) data 

(http://www.brain-map.org) were used for glioblastoma tissue, except that the proteinase 

K concentration used was one cycle of 5 min at 0.0007U/mL, and TSA+ (2.0μl/slide) was 

used instead of TSA for all studies other than the first (Anatomic Structures ISH Survey). 

The chemistry was optimized to detect low signal levels and therefore the ISH reaction 

http://www.brain-map.org/
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product is saturated in many cases. Colorimetric ISH is semi-quantitative at best and is 

not an absolute measurement of gene expression levels; it is relative to mRNA levels in 

the range of non-saturating conditions. Feulgen-HP yellow DNA counterstain is a nuclear 

stain that adds definition to tissue with low ISH background to facilitate automated focus 

processes during image acquisition and to support gene expression analysis, whether 

done manually or informatically.  After ISH, slides were removed and treated with acid 

alcohol (70% ethanol adjusted to pH 2.1) to reduce background, 5N hydrochloric acid to 

prepare the tissue for the counterstain, HP yellow counterstain (Catalog #869, Anatech 

Ltd) to stain the nuclei, and two final acid alcohol washes to remove non-covalently 

bound HP yellow stain, all on a Leica autostainer. Slides were coverslipped with Hydro-

Matrix Mounting Medium on a Leica CV5030 coverslipper. Coverslipped slides were 

incubated overnight at 37°C to promote solidification of the mounting media. Prior to 

scanning, slides were cleaned to remove excess mounting media and debris. 

 

ISH controls 

The experimental variability of the automated ISH process was monitored with ISH run 

controls and ISH tissue controls. The run control probes Drd1a and Calb1 were 

hybridized to mouse brain tissue sections cut at 25μm thick, one slide per probe and 4 

brain sections per slide. If the hybridization pattern of intensity and density of signal, or 

the background, was considered by personnel dedicated to the quality control of the 

process to be outside the normal variability, then the experiment was failed and repeated. 

The tissue control probe MECOM was hybridized to glioblastoma tissue sections cut at 

20μm thick for the ISH studies, which contained 8 sections per slide, and 14 μm thick for 

the ISH reference slides associated with laser microdissections used for the Cancer Stem 

Cells RNA-Seq Study, which contained 2 sections per slide. MECOM is expressed at low 

levels predominately in vascular tissue, and was used to monitor ISH signal on all 

specimen sub-blocks on all ISH runs. Slides containing the mouse or glioblastoma tissue 

were also processed through hybridization without probe, which was used to monitor 

non-specific hybridization.  

 

Image acquisition and processing 
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Whole slides were scanned directly to SVS file format at a resolution of 0.5μm/pixel 

without down sampling on ScanScope® scanners (Aperio Technologies, Inc; Vista, CA) 

equipped with a 20x objective and Spectrum software. The raw image files of ~5 GB per 

image were archived after they were converted to JPEG 2000 file format. The 

preprocessed images were flipped along the horizontal axis, white balanced, and 

compressed at a rate of 0.8 to ~400 MB per image. During post-processing (Informatics 

Data Processing), colorized expression values or heat masks showing ISH signal intensity 

were generated and the closest H&E stained image of the same specimen was determined 

for each ISH section.  

 

Image and annotation quality control 

During review of images, the automated bounding box overlay was manually adjusted if 

necessary so that each of 8 bounding boxes per slide was placed over the corresponding 

tissue section, and images of slides with focus or image tile stich misalignments were re-

scanned. Images were failed if data analysis was compromised by artifacts (e.g. 

mechanical damage, mounting medium bubbles, hybridization bubbles, and NBT/BCIP 

precipitated aggregates) associated with the corresponding tissue section. 

 

Image processing pipeline 

An informatics processing pipeline was developed to support the quantification of gene 

expression in tumor features, which were labeled in the nearest H&E image with the 

semi-automated annotation application, and for which the nuclear density was counted in 

each 45 x 45 pixel grid.  

 

 

Image signal detection 

Images of ISH sections counterstained with HP-Yellow were first down-sampled by a 

factor of 2. The underlying method for ISH detection algorithm used is in principal 

similar to the one for the Allen Mouse Brain Atlas (http://www.brain-map.org), which is 

based on adaptive filtering in combination of mathematic morphology operations. 

However, the image spectral information used for detection is mainly from the Red 

http://www.brain-map.org/
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channel in order to avoid the impact of the HP-Yellow counterstain, though the contrast 

of the expressors in Red are lower than in Green channel but still deemed sufficient. 

Additional process was included to separate and remove the expressor-look-alike dark 

brown objects artifacts. There are also morphometric limitations set for expressor objects 

to exclude various other types of artifacts such as fragments of coverslip edges. 

 

Image signal unionization and search 

Classification results in feature labels and nuclear coverage fractional area for each 45x45 

pixel block for each H&E image. Automated ISH annotation was achieved by registering 

to the ISH to the nearest H&E image and warping the feature labels to fit the ISH image. 

Small features were dilated to compensate for potential misalignment.  An expression 

energy value is computed for each feature by summing expressing pixel intensity for each 

block labeled for that feature normalized by the sum of nuclear coverage fractional area.  

A search service was developed to allow users search over the whole dataset for user 

defined specimen and/or expression profiles.  Tumor feature search: find all tumor blocks 

containing a specific feature sorted by the normalized area occupied by the feature.   

Expression search: find all ISH sections containing a specific feature sorted by expression 

energy within the feature.   Differential search: find all ISH section with expression 

energy with higher expression in the target feature compared to a contrast feature.  

 

Image registration 

A multi-resolution elastic registration algorithm was developed to register the ISH image 

to the closet H&E image to enable the transfer the anatomical region annotation onto the 

expression data. Both the H&E and ISH images were first down-sampled and split into 

RGB channels. Image pyramids were then constructed on the red channel of H&E and 

the blue channel of ISH to enable multi-resolution registration.  An elastic registration 

algorithm (38) was then applied to each level of the H&E and ISH image pyramids. It 

minimized the energy function: 𝐸 = 𝑤𝑖𝐸𝑖𝑚𝑔 + 𝑤𝑠𝐸𝑠𝑚𝑜𝑜𝑡ℎ, where 𝐸𝑖𝑚𝑔is the intensity 

dissimilarity between the target (H&E) and the warped subject image (ISH); 𝐸𝑠𝑚𝑜𝑜𝑡ℎis 

the smoothness of the deformation field of the warped subject image defined by 

divergence and curl; 𝑤𝑖, 𝑤𝑠are weights of 𝐸𝑖𝑚𝑔, and 𝐸𝑠𝑚𝑜𝑜𝑡ℎ, respectively. After 
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registration, the deformation field of the warped ISH was reversely-mapped. The 

deformation field of the H&E was generated, which indicated where each pixel in the 

H&E needed to move in order to match a pixel in the corresponding ISH image. The 

H&E annotation was further mapped onto the unwarped ISH images. 

 

Machine learning algorithm and processing/annotation of H&E images 

A ML application called “Mill” was created by White Marsh Forests, Inc., and was used 

by the Ivy GAP to identify and label the anatomic features in ~12,000 histological images 

based on the statistical ML algorithm called Decision Forests (39-41). The features 

labeled included leading edge (LE), infiltrating tumor (IT), cellular tumor (CT), early 

necrosis (EN), necrosis (NE), pseudopalisading cells around necrosis (PAN), hyperplastic 

blood vessels (HBV), and microvascular proliferation (MVP). The ML application was 

trained to identify each feature in each tissue sub-block by manually labeling the features 

in about 1 of 4 to 6 high resolution JPG images derived from a series of scanned H&E-

stained tissue sections.  The training was dynamic in that a small subset of images for a 

sub-block was labeled, predicted, and reviewed by the expert.  In one to two iterations, 

the expert revised the training using positive and negative (i.e. labeling the region as “not 

X”) training, which improved the ML labeling accuracy as determined by the expert as 

well as by the ML using holdout data.  The alternative, training on a large set of images 

over several sub-blocks, blocks, or tumors, was much less accurate. The original images 

of ~15,000 x 18,000 pixels were down sampled by powers of two into image pyramids 

and then sampled by an array of image samplers. Once manually trained on a sub-block, 

Mill was used to automatically predict the features in all H&E images of that sub-block at 

a label density of one prediction point per 140 x 140 pixel area of the original image.  

The results were reviewed manually, and if the results were deemed unsatisfactory by the 

expert reviewer, the sub-block was tagged for manual editing.  The prediction spacing 

was then reduced to a 45 x 45 pixel matrix, which required four times as long as for the 

processing of the preceding prediction step. A mode sampling filter was applied to these 

predictions, which reduces noise in the predictor by taking into consideration the 

predictions of each pixel’s 8 neighbors. Then the remaining images for the sub-block 

were batched processed overnight. The errors in the tagged images were then manually 
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corrected, and the comma delimited label files were exported. A board-certified 

neuropathologist was consulted on a regular basis throughout the semi-automated 

annotation effort. 

 

The parameter settings used within the Decision Forest algorithm include: 

1. 1 forest per batch 

2. 400 trees per forest 

3. 400 random trials per split node to optimize information gain in training 

4. 30% of each training set withheld from training each tree generated for testing 

(the test confusion matrix) 

5. Image Sampling to generate train data for forest 

o   Image samples randomly sampled within 800 pixels of the point being labeled 

o   Random down-sampling using a Multi-resolution image pyramid  

o   RGB and HSV color spaces sampled  

o   Individual single samples and differences in value between two random 

samples used 

 

 

Post-processing of csv annotation files 

The final set of anatomic annotations for each H&E image was prepared in a series of 

post-processing steps, and then the CSV file was imported into the Allen Institute 

Laboratory Information Management System (LIMS).  The steps were:  (1) merged the 

CSV file of annotations with the file for nuclear count, (2) converted pseudopalisading 

cells around necrosis (PAN) to pseudopalisading cells no necrosis (PNN) if there was no 

necrosis (NE) within 900 pixels of PAN, (3) provided hierarchy for blood vessels (BV), 

hyperplastic blood vessels (HBV), and microvascular proliferation (MVP), (4) merged 

early necrosis (EN) with necrosis (NE) to make revised and final NE, (5) converted 

cellular tumor (CT) to cellular tumor perinecrotic zone (PNZ) if there was necrosis (NE) 

within 180 pixels, (6) made all labels consistent with Ivy GAP ontology, (7) replaced 

early training labels hemorrhage (HE), tissue fold (FOLD), ice damage (ICE), and space 

or no tissue (SPA) with 0, (8) replaced all predictions with 0 on selected images (<10) 

that were distorted due to sectioning artifacts and that could not be accurately registered 

to ISH, and (9) sorted files first by y coordinate and then by x coordinate.  

 

Quantitation of nuclei in H&E tissue section images  
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The rule-set based application called Developer (Definiens, Inc.) was used to count the 

nuclei in the original JPG image of each tissue section, using the same 45 x 45 pixel 

matrix used by Mill after rescaling. Two layers, representing Hematoxylin and Eosin 

stained populations, were separated from the JPG image, and nuclei were counted using 

the watershed algorithm on the Hematoxylin layer. Nuclei fraction area was calculated 

for each grid as area covered by nuclei divided by total area.  The nuclei count was saved 

in a CSV file, later merged with the post-processed CSV file of automated annotations 

from Mill, and used to normalize ISH signal intensity in each anatomic feature for the 

final gene expression calculations in the Ivy GAP web application. 

 

Neuropathology concordance analyses 

Three analyses consisted of (1) measuring variability between neuropathologists, (2) 

assessing the accuracy of manual annotations used for guiding laser microdissection, and 

(3) assessing the accuracy of the ML annotations used to label the anatomic features in 

~12,000 H&E images of the atlas.  The inter-neuropathologist variability was measured 

with a randomly organized set of 94 test images of the anatomic features curated to 

reflect the definitions (fig. S1) used throughout the construction of the atlas and training 

of the ML Decision Forest with the guidance of a neuropathologist (S.W.R.).  It was 

critical for each neuropathologist involved in the analyses to adopt these definitions, even 

though they deviate from WHO definitions (e.g. HBV vs. MVP).  If the definitions used 

for ML had not been adopted, assessing the accuracy of the ML annotations would not 

have been possible, because lack of concordance could reflect disagreement between 

neuropathologists, disagreement relative to a standard set of definitions, or disagreement 

with the ML labels.  Our goal was to assess the accuracy of the manual and ML 

annotations so that the user of the atlas would know the reliability of the data.  For each 

analysis, three neuropathologists (P.J.C., C.D.K., and M.U.) were presented with images 

of H&E-stained tissue sections and identified the main feature or agreement with the 

manual or ML label using controlled vocabulary.  Online forms for assessing the manual 

and ML annotations guided neuropathologists to the images at 

http://glioblastoma.alleninstitute.org/, and recorded survey responses automatically with a 

timestamp.  Details of the methods supporting the three analyses appear in the table 

http://glioblastoma.alleninstitute.org/
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legends.  Cohen’s kappa (κ) (42) was calculated across all features for each 

neuropathologist as a measure of concordance, and the combined accuracy was calculated 

across all neuropathologists for each feature, an approach consistent with other 

neuropathology concordance analyses (43).  Interpreting Cohen’s kappa depends on how 

challenging the measurements are, but in general, a kappa of 0.66-0.96 is considered 

good to near perfect (https://stats.stackexchange.com/questions/82162/cohens-kappa-in-

plain-english). 

 Analysis of the data collected from the neuropathologists’ assessment of the 10 

ML annotations for table S8 proceeded in four steps.  The 10 ML annotations refer to LE, 

IT, CT, PAN, PNZ, HBV, MVP, NE, HBV/MVP, and LE/IT.  All Features refers to LE, 

IT, CT, PAN, PNZ, HBV, MVP and NE.  All Features Merged refers to CT, PAN, PNZ, 

NE, HBV/MVP, and LE/IT.  Cohen’s kappa (binary) is based on Question 1 input, and 

Cohen’s kappa (Agreement >75%) is based on combining input from Question 2 and 

Question 3. 

Step 1: Calculate sensitivity, specificity and Cohen’s kappa. 

 

Neuropathologists’ input from Question 1 was collected, and true positives (TP), true 

negatives (TN), false positives (FP) and false negatives (FN) were calculated using the 

binary values as shown below.  

 ML Identified (% 

area > 1%) 

ML Not Identified (% 

area < 1%) 

Neuropathologist 

Identified 

TP FN 

Neuropathologist 

Not Identified 

FP TN 

 

 

Sensitivity = TP / (TP+FN) 

Specificity = TN / (TN+FP) 

 

https://stats.stackexchange.com/questions/82162/cohens-kappa-in-plain-english
https://stats.stackexchange.com/questions/82162/cohens-kappa-in-plain-english
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These values were then used to calculate sensitivity, specificity and Cohen’s kappa 

(binary) for All Features (LE, IT, CT, PAN, PNZ, HBV, MVP and NE) and All Features 

Merged (CT, PAN, PNZ, NE, HBV/MVP, LE/IT). 

 

Step 2: Process online form data collected from neuropathologists 

I = variable for value entered by neuropathologist for Question 2, "% of annotation 

labeling correct feature"  

 

N = variable for value entered by neuropathologist for Question 3, "% of feature not 

labeled by correct annotation" 

 

  ML 

   Identified (I) Not Identified (N) 

Neuropathologist Identified (I) I=V, N=V I=NA, N=100% 

Not identified (N) I=0%, N=NA I=NA, N=NA 

    

 V = value entered by user  

 

 

The data was processed using above table to appropriately use NA, 0% and 100% 

irrespective of neuropathologists’ input. 

 

Step 3: Generate neuropathologist %Agreement data 

 

I = value entered by neuropathologist for Question 2, "% of annotation labeling correct 

feature" 

 

N = value entered by neuropathologist for Question 3, "% of feature not labeled by 

correct annotation" 

 

True positive (TP) = I = the amount of feature correctly identified by ML  

 

False positive (FP) = 100 - I = the amount of feature incorrectly identified by ML 

 

True negative (TN) = 100 - N = the amount of feature correctly identified as other feature 

 

False negative (FN) = N = the amount of feature incorrectly identified as other feature 
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Accuracy (%Agreement) = (TP+TN) / (TP+TN+FP+FN) = (I + 100 - N) / (I+1-N+100-

I+N) = (I + 100 - N)/2 

Sensitivity = TP / (TP+FN) = I / (I+N) 

Specificity = TN / (TN+FP) = (100-N) / (100 - N + 100 - I) 

 

Example 1.   I = 76-100%, N = 1-25% 

worst-case 

Accuracy = (76+75)/2 

best-case 

Accuracy = (100+99)/2 

%Agreement range = 76-100% 

 

Example 2.  I = 51-75%, N = 26-50% 

worst-case 

Accuracy = (51+50)/2 

best-case 

Accuracy = (75+74)/2 

%Agreement range = 50-75% 

 

Step 4: Generate accuracy using multiple cutoffs 

We used %Agreement data for calculating accuracy and Cohen’s kappa 

(Agreement>75%) using stringent, moderate and relaxed cutoffs (as shown below) for 

All Features (LE, IT, CT, PAN, PNZ, HBV, MVP and NE) and All Features Merged 

(CT, PAN, PNZ, NE, HBV/MVP, LE/IT).  We also calculated accuracy, but not Cohen’s 

kappa for Question 2 and Question 3 separately. 

 

Q2 (% of annotation 
labeling correct feature) 

Q3 (% of feature not labeled 
by correct annotation) 

%Agreement Cutoff 

76-100% 0% 88-100% Stringent 
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76-100% 1-25% 75.5-99.5% Stringent 

51-75% 0% 75.5-87.5% Stringent 

76-100% 26-50% 63-87% Moderate 

51-75% 1-25% 63-87% Moderate 

26-50% 0% 63-75% Moderate 

76-100% 51-75% 50.5-74.5% Relaxed 

51-75% 26-50% 50.5-74.5% Relaxed 

26-50% 1-25% 50.5-74.5% Relaxed 

1-25% 0% 50.5-62.5% Relaxed 

76-100% 76-100% 38-62%   

51-75% 51-75% 38-62%   

26-50% 26-50% 38-62%   

1-25% 1-25% 38-62%   

0% 1-25% 37.5-49.5%   

51-75% 76-100% 25.5-49.5%   

26-50% 51-75% 25.5-49.5%   

1-25% 26-50% 25.5-49.5%   

0% 26-50% 25-37%   

26-50% 76-100% 13-37%   

1-25% 51-75% 13-37%   

0% 51-75% 12.5-24.5%   

1-25% 76-100% 0.5-24.5%   

NA 76-100% 0%   

0% NA 0%   

0% 76-100% 0-12%   

 

   

 

RNA isolation and RNA sequencing 

Microdissected tissue was collected directly into RLT buffer from the RNeasy Micro 

PLUS kit (Qiagen Inc., Valencia, CA) with 1:100 -mercaptoethanol diluation, per 

manufacturer’s instructions. Samples were volume-adjusted with water to 75μl, vortexed, 

centrifuged, and frozen at -80°C. RNA samples, after following the manufacturer’s 
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directions, were eluted in 14μl, and 1μl was run on the Agilent 2100 Bioanalyzer (Agilent 

Technologies, Inc., Santa Clara, CA) using the Pico assay. Due to low sample volume 

and incompatibility of the eluent with the Nanodrop spectrophotometer (Thermo 

Scientific, Wilmington, DE), samples were quantitated using the Bioanalyzer 

concentration output. This was done by running a 1ng/μl RNA standard on the same Pico 

chip and then dividing the sample concentration output by the output of the standard 

concentration. The average RNA Integrity Number (RIN) of all passed samples was 7.1. 

Samples were failed when the Bioanalyzer traces showed degraded 18S and 28S bands, 

with RINs typically lower than 4.5 failing. In most cases, 5ng of total RNA was used as 

the input amount for the library prep.  5ng total RNA was used as input into ClonTech 

SMARTer Ultra Low Input RNA Kit for Illumina Sequencing-HV (# 634820). 12 PCR 

cycles were used for amplification as suggested in the manufacturer’s instructions 

(ClonTech SMARTer Kit Manual 120213). The Modified Nextera DNA sample 

preparation was used after step V.B of the ClonTech SMARTer kit, instead of Covaris 

shearing and instead of step VI in the ClonTech SMARTer kit. RNA Sequencing was 

done on Illumina HiSeq 2000, producing approximately 30M 50bp paired-end clusters 

per sample. In most cases, 5 samples per lane were run.  RNA-Seq libraries were assessed 

for quality by yield and visual inspection of the presence, quality, and size of cDNA 

product on a Bioanalyzer.  Initially, 11 samples failed (7 for no product and 4 for 

majority of product <500bp) the quality control criteria.  However, upon a second attempt 

at synthesis, all 275 samples passed.  One of the 275 samples was failed for low inter-

array-correlation (IAC) and was excluded from the data set.  The average concentration 

of samples that passed the criteria was 1582 pM. 

 

RNA-Seq data alignment 

The data generation, collection, alignment, and normalization is described in detail online 

at http://glioblastoma.alleninstitute.org/ in the Documentation tab.  Raw read (fastq) files 

were aligned to the hg19 human genome sequence (44) with the RefSeq transcriptome 

version 54 (downloaded 8/25/2012 and updated by removing duplicate gene entries from 

the gtf reference file for consistency with the LIMS). For alignment, Illumina sequencing 

adapters were clipped from the reads using the fastqMCF program (45). After clipping, 

http://glioblastoma.alleninstitute.org/
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the paired-end reads were mapped using RNA-Seq by Expectation-Maximization 

(RSEM) (46) using default settings except for two mismatch parameters: bowtie-e (set to 

500) and bowtie-m (set to 100). RSEM aligns reads to known isoforms and then 

calculates gene expression as the sum of isoform expression for a given gene, assigning 

ambiguous reads to multiple isoforms using a maximum likelihood statistical model. 

Reads that did not map to the transcriptome were then aligned to the hg19 genome 

sequence using Bowtie with default settings (47). Reads that mapped to neither the 

transcriptome with RSEM nor to the genome with Bowtie were mapped against the 

ERCC sequences (in this project as a negative control). The final results files included 

quantification of the mapped reads (raw read counts, FPKM, and TPM values for the 

transcriptome-mapped reads, chromosome-wide counts for the genomic-mapped reads), 

BAM files including both transcriptome and genome-mapped reads, and fastq files for 

the unmapped reads. Anonymized BAM files (where sequence-level information has 

been removed) and gene-level quantification (TPM, FPKM, and number of reads) are 

available as part of the resource (see Download tab).  Resulting FPKM values 

(normalized for gene length and sequencing depth) used for the analyses of this paper 

were further adjusted for the total transcript count using TbT normalization as described 

below. 

 

RNA-Seq data normalization 

In the Allen Human Brain Atlas, analysis of the RNA-Seq data showed minimal process 

batch effects but improvements in variability after normalization could be made (48), and 

therefore a comparable post-hoc data normalization strategy was used for this project. 

Gene expression values were summarized as transcripts per million (TPM) and fragments 

per kilobase per million (FPKM), as described above, both of which normalize read 

counts by gene length and for the total number of reads in slightly different ways. In this 

manuscript (as well as for the heatmaps shown on the website), the FPKM data matrix 

was further adjusted for the total transcript count using TbT normalization (49), which 

scales each sample based on the summed expression of all genes that are not 

differentially expressed. FPKM values were TbT normalized in linear space, with the 

differential expression vector defined as TRUE if a sample was from cellular tumor and 
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FALSE otherwise. Sample data was then scaled such that the total log2(FPKM) across 

the entire data set remained unchanged after normalization. The result of this step was 

that expression levels for all genes in a particular sample were multiplied by a scalar 

value close to 1 (in most cases between 0.7-1.3). 

 

Differential expression between anatomic structures 

Differentially expressed genes were identified for each pair of anatomic structures 

(except IT) using the 'edgeR' library (version 3.12.1) in R (version 3.2.5) (50), in 

combination with a fold-change threshold. First, genes with low or no expression (< 98 

total counts, one per anatomic structure sample) were excluded from the data.  Next, each 

pair of anatomic structures was compared with edgeR using the standard method and all 

default settings.  Resulting p-values were corrected for multiple comparisons based on 

local false discovery rate using the "lfdr" function in the 'qvalue' library (version 2.2.2) 

(51) in R.  Genes with FDR<0.01 and at least 2-fold average enrichment were considered 

differentially expressed between one anatomic structure and another.  Markers genes for 

each structure were defined as genes with significant enrichment in that structure for all 

three other structures tested. 

 

Admixture analysis 

The proportions of CT, LE, MVP, and PAN in each tumor sample were estimated using 

"cell-type identification by estimating relative subsets of RNA transcripts" 

(CIBERSORT; https://cibersort.stanford.edu/) (52).  This program estimates the 

proportions of different populations in a mixture using a novel application of linear 

support vector regression (SVR), which is robust to noise. The expression profile of a 

mixed sample is modeled as a linear combination of the expression profile of each 

population comprising that sample, in this case CT, LE, MVP, and PAN.   

CIBERSORT takes as input a reference sample file with gene expression from 

pure cell populations, and a phenotype classes file indicating which sample corresponds 

to which population.  Using these data, a signature gene file is derived, which contains 

average gene expression of marker genes for each population, and this signature is used 

to extract estimated proportions from any uploaded mixture file.  Here, gene expression 

https://cibersort.stanford.edu/
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signatures for each feature were calculated using the 98 samples dissected from distinct 

anatomic features (excluding the 24/122 from IT).  After calculating these proportions, 15 

samples with <75% purity for the histologically defined feature were excluded, and the 

above strategy was repeated with the remaining 83 samples.  This iterative approach was 

taken because, although our anatomical structure data set was designed to specifically 

target these areas using laser microdissection, we do not have reference samples of 

known 100% purity.  The success of targeting is quite good based on the dense staining 

of ISH markers for targeted regions as well as expression levels for marker genes of each 

anatomic feature (Fig. 2).  Laser microdissection highly enriches for the desired cell 

populations, as 85% of samples have at least 75% purity for a particular anatomic 

structure. 

These final gene signatures (table S4) were then applied to all expression profiles 

of LMD samples from this resource, as well as to bulk tumor tissues from TCGA.  

Resulting estimates of the proportions of each population in each heterogeneous sample 

are provided as table S15. 

 

Multi-dimensional scaling 

We used multi-dimensional scaling, a relative of principal components analysis, to define 

two-dimensional representations of samples collected for the anatomic features 

component of the study and for all samples using all genes.  This was done by first 

converting gene expression data into logarithmic space and calculating the Pearson 

correlation across all genes for each pair of samples.  A scaled correlation distance was 

defined as √(1-COR^2), where COR is the correlation matrix described above.  Finally, 

the first two principal coordinates and corresponding percent variances explained were 

calculated using the "cmdscale" function in R, with k=2. 

 

Gene set enrichment analysis  

ToppFun tool (53) was used to detect functional enrichment of all gene lists based on 

Ontologies (GO, Pathway). The tool was used with default settings and a p-value cutoff 

of 0.05. 
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Anatomic feature fractional area calculation 

Anatomic feature area for each of the anatomic features for a given tumor was calculated 

by aggregating the grids labelled as the given anatomic feature by Mill for all tissue 

sections from that tumor and dividing it by total number of labelled grids for that tumor. 

 

Anatomic feature specific expression of a gene 

Anatomic feature specific expression of a gene for each of the features was calculated as 

median gene expression value for the subset of samples assigned as a given anatomic 

feature. 

 

Molecular subtype calculation 

The molecular subtype was calculated for each study using all samples. The set of 840 

transcripts from the RNA-Seq data as per Verhaak et al., 2010 (6) was used to calculate 

four components corresponding to each subtype: 1. Neural, 2. Proneural, 3. Classical, and 

4. Mesenchymal. The 840 genes were divided in to eight sets, four sets positively 

correlated with each subtype and four sets negatively correlated with each subtype.  The 

following was done for each of the three datasets: 1. Ivy GAP – LMD, 2. Ivy – Bulk, and 

3. TCGA – bulk.  For each gene we obtained the average ct () and standard deviation 

(). For each tissue sample we calculate standard scores (z) for 840 genes as follows: 

zg = ctg -  / g , where g  840 genes 

 

Four components: 1. Neural, 2. Proneural, 3. Classical, and 4. Mesenchymal are 

calculated by taking the average of z scores of all genes belonging to the corresponding 

subtype gene set. 

Neural =  

(zg) - (zh), where g  positively correlated with Neural, h  negatively correlated with 

Neural 

Proneural =  

(zg) - (zh), where g  positively correlated with Proneural, h  negatively correlated 

with Proneural 

Classical =  
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(zg) - (zh), where g  positively correlated with Classical, h  negatively correlated 

with Classical 

Mesenchymal =  

(zg) - (zh), where g  positively correlated with Mesenchymal, h  negatively 

correlated with Mesenchymal 

 

Copy number data analysis 

CRMA v2 vignette from http://www.aroma-project.org/vignettes/CRMAv2/ was used for 

calculation of raw copy numbers. This vignette involves the following steps that are 

described in detail at the website. 

Step 1 - Calibration for crosstalk between allele probe pairs 

Step 2 - Normalization for nucleotide-position probe sequence effects 

Step 3 - Probe summarization 

Step 4 - Normalization for PCR fragment-length effects 

Step 5 - Calculation of raw copy numbers: For reference dataset we used the Affymetrix 

SNP 6.0 data from PBMCs of TCGA glioblastoma patient cohort. 

 

We then used the non-paired Circular Binary Segmentation (CBS) (54) method for 

partitioning the copy number signals data set into segments of equal underlying copy 

number levels for segmentation. Details described at http://www.aroma-

project.org/vignettes/NonPairedCBS/. 

 

Integrated copy number and gene expression analysis 

The Ivy GAP - LMD gene expression data set was log transformed and z-score 

normalized. For each copy number segment for a given sample S with values > 0.2 or < -

0.2, the gene expression of all genes located in that segment was recalculated as an 

average of all z-scores of genes in that segment for sample S to obtain RNA-Seq derived 

copy number segment. 

 Anatomic feature study samples from the Ivy GAP – LMD data were chosen for 

this analysis. To calculate gene expression changes coordinated with copy number 

changes the following measure was used: 

Rs / Cg, where 

R is RNA-seq derived copy number for genes in set s, 

http://www.aroma-project.org/vignettes/CRMAv2/
http://www.aroma-project.org/vignettes/NonPairedCBS/
http://www.aroma-project.org/vignettes/NonPairedCBS/
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C is Copy number value for genes in set g,  

s  all genes with (R > 0.1 and C ≥ 0.2) and (R < -0.1 and C ≤ -0.2), 

g  all genes located within the copy number segments for a given sample S with 

values > 0.2 or < -0.2  

The same measure was also calculated after shuffling the copy number data tumor 

labels for 100 iterations. 

 

SNV analysis 

SNVs were calculated by using mpileup command from SAMtools (version 1.3.1) suite. 

The following parameters were used: 

samtools mpileup -Aug -t DP,AD,SP  -Q 10 -q 10 -d 100000 –f hg19.fa -r 

-A, --count-orphans     do not discard anomalous read pairs 

-u, --uncompressed      generate uncompressed VCF/BCF output 

-g, --BCF               generate genotype likelihoods in BCF format 

-t -t, --output-tags LIST  optional tags to output: 

               DP,AD,ADF,ADR,SP,INFO/AD,INFO/ADF,INFO/ADR 

-f, --fasta-ref FILE    faidx indexed reference sequence file (hg19 was used) 

-q, --min-MQ INT        skip alignments with mapQ smaller than INT 

-Q, --min-BQ INT        skip bases with baseQ/BAQ smaller than INT 

-r, --region REG        region in which pileup is generated 

The output was then parsed for variants-only data using Bcftools, version 1.3.1 

(https://samtools.github.io/bcftools/) with following command. 

bcftools call -Amv 

call         SNP/indel calling 

-A, --keep-alts                 keep all possible alternate alleles at variant sites 

-m, --multiallelic-caller       alternative model for multiallelic and rare-variant calling 

(conflicts with -c) 

-v, --variants-only             output variant sites only 

 

To assess the accuracy of using RNA-seq data for variant calling we used TCGA 

dataset of 144 glioblastoma patient samples where both DNA-seq and RNA-seq data was 

https://samtools.github.io/bcftools/
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available. We limited our analysis to eight most frequently mutated genes in 

glioblastoma, TP53, PTEN, EGFR, NF1, IDH1, PIK3CA, PIK3R1, and ATRX. Mutations 

with at least five supporting reads were included. We found that 93% of the mutations 

identified in RNA-seq data were also present in DNA-seq data. Out of nine mutations not 

detected in DNA-seq data, eight of those were mutations in the EGFR gene and one in 

TP53 gene. 

 

 

DNA-seq 
present 

DNA-seq 
absent 

All 93% (118) 7% (9) 

without EGFR 99% (89) 1% (1) 

 

 

On the other hand only 60% of mutations identified by DNA-seq were present in 

RNA-seq data. When we looked at which mutations were not detected by RNA-seq we 

found that most of them were frameshift and nonsense mutations as well as non-

synonymous mutations in EGFR. Frameshift and nonsense mutations are likely to be 

subjected to nonsense-mediated mRNA decay and that might explain that 76% of such 

mutations are not detected in RNA-seq data as compared to only 24% of undetected non-

synonymous single amino acid change mutations. Other potential reasons for lower 

sensitivity could be subclonal mutations (likely in case of EGFR mutations) and 

insufficient sequencing depth. 

 

 

  
RNA-seq 
present 

RNA-seq 
absent 

All 60% (127) 40% (85) 

non-synonymous SNV 76% (111) 24% (35) 

non-synonymous SNVs without 
EGFR 92% (81) 8% (7) 
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indel, frameshift, nonsense SNV 24% (16) 76% (50) 

 

 

SIFT tool (http://sift.jcvi.org/) was used to identify somatic mutations vs. 

germline variations. 

TCGA RNA-seq data is 75 bp paired-end reads generated using Illumina HiSeq 

with sequencing depths ranging from 27 to 126 million reads per sample which is more 

than double the Ivy GAP-LMD RNA-seq data with about 30M 50bp paired-end reads per 

sample. Also, the bulk tumor samples have better RNA quality compared to laser-

captured micro-dissected samples. So we used an additional criterion to detect SNVs. 

Only SNVs that were present in at least one of the samples with ≥ 5 reads and MSE > 0.5 

were considered. Two SNVs that were present in 13 and 26 tumors respectively were 

considered sequencing artifacts as the SNV region was low complexity region.  

We recognize important intrinsic limitations in calling SNVs from RNA-Seq data. 

SNVs in genes that are expressed at low levels not covered by sufficient sequencing 

depth will be missed.  This also results in missing out mutations that cause loss of 

expression.  Potential problems calling variants from RNA-Seq data were mitigated by (i) 

restricting analysis to the frequently mutated genes TP53, PTEN, EGFR, NF1, IDH1, 

PIK3CA, PIK3R1, and ATRX, (ii) visualizing and validating each SNV using IGV viewer, 

(iii) demonstrating excellent concordance with DNA-seq variant calls and RNA-seq 

variant calls using our method on TCGA data, (iv) showing good exome coverage from 

the FPKM table, (v) considering only those SNVs that were present in at least one of the 

samples with ≥ 5 reads and MSE > 0.5 were considered, and (vi) comparing somatic 

mutations to germline mutations in the same set of genes across anatomic features.  In 

total 93.8% of the 25,873 quantified genes show detectible expression (FPKM>0) in at 

least one of the 270 samples, and 79.8% of the genes show reliable expression 

(FPKM>1) in at least one of the 270 samples, while 58.8% of genes show reliable 

expression (average FPKM>1) in at least one anatomic feature.  The number of reads per 

SNV call ranged from 2 to 1591, with an average of 110 and a median of 23 (table S13). 

 

Single sample gene set enrichment analysis 

http://sift.jcvi.org/
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Single-sample GSEA (ssGSEA), an extension of Gene Set Enrichment Analysis (GSEA) 

(55), calculates separate enrichment scores for each pairing of a sample and gene 

set.  Each ssGSEA enrichment score represents the degree to which the genes in a 

particular gene set are coordinately up- or down-regulated within a sample. We used the 

web-based service hosted at the Broad Institute 

(http://www.broadinstitute.org/cancer/software/genepattern/modules/docs/ssGSEAProjec

tion/4) to calculate ssGSEA enrichment scores with default parameters and gene sets as 

provided in supplemental table S16. Scores for each gene set was z-score normalized. 

 

 

Validation of RNA-Seq by anatomic feature ISH for enriched genes  

ISH validation of 31 genes identified by RNA-Seq as enriched in CT, PAN, or MVP was 

performed using automated analysis of images from the Anatomic Features ISH for 

Enriched Genes Study.  Of the 37 genes in the study, 6 were excluded from analysis: 5 

“LE/IT” genes were chosen to be a part of the ISH study for reasons other than 

enrichment in LE or IT RNA-Seq samples, and 1 gene was missing from some of the 

tables.  Expected RNA-Seq enrichment of 37 genes in the anatomic features is listed in 

Gene_lists_Table2_anat_fea_vali tab (also in Table 2 of Ivy Gene Lists white paper on 

the resource’s website), and of the 31 analyzed genes in the 

ISH_gene_expression_summarizati tab, of table S3. Expression levels for ISH in each 

structure were quantified using expression energy (defined above in “Image signal 

unionization and search”), and are available on the “Download” page of the website.  

Specifically, the “Gene expression energy value for each anatomic structure in each 

tumor sub-block” file was joined with normalized values from the “Fractional area of 

anatomic structures in each tumor sub-block” file and presented in the followupISH tab 

of table S3.  For each gene, average expression energy was calculated in each anatomic 

structure across all available ISH, considering only sections with at least 1% area covered 

by CT, PAN, and MVP (columns E-G of ISH_gene_expression_summarizati tab of table 

S3).  In total 754 images were analyzed, or an average of 24 per gene.  The structure (or 

structures) with the highest expression levels are then recorded for comparison with 

RNA-Seq in column “Enrichment (ISH)” of the ISH_gene_expression_summarizati tab.  

http://www.broadinstitute.org/cancer/software/genepattern/modules/docs/ssGSEAProjection/4
http://www.broadinstitute.org/cancer/software/genepattern/modules/docs/ssGSEAProjection/4
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Genes are defined as having “good agreement” between RNA-Seq and ISH when all of 

the structures with the highest expression levels match between methods (value 1), while 

“partial agreement” is when some (but not all) regions match (value 0.5), and no 

agreement is when no regions match (value 0), as listed in column “Agree?” of the 

ISH_gene_expression_summarizati tab. 
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SUPPLEMENTARY TABLES 

 

Feature 

Neuropathologist 
1 

Neuropathologist 
2 

Neuropathologist 
3 

Combined 
Accuracy 

(%) Agree Disagree Agree Disagree Agree Disagree 

CT 30 0 29 1 30 0 99% 

IT 23 0 22 1 23 0 99% 

LE 19 0 19 0 19 0 100% 

MVP 22 3 16 9 25 0 84% 

PAN 24 0 21 3 24 0 96% 

TOTAL: 118 3 107 14 121 0 

95% Combined 
Accuracy (%) 

98% 88% 100% 

Concordance 
(κ) 0.97 0.86 1.00  

 

 Table S2.  Neuropathologist-determined accuracy and concordance of manual 

annotations supporting laser-microdissected anatomic features in atlas.  Three 

neuropathologists (P.J.C., C.D.K., and M.U.) were presented with all the images of the 

H&E-stained tissue sections that had been manually annotated with laser microdissection 

(LMD) guide lines under the supervision of a fourth neuropathologist (S.W.R.).  An 

online survey form guided neuropathologists to the 47 sub-blocks from the 10 tumors 

with the LMD guidelines for the 122 samples isolated for the Anatomic Structures RNA-

Seq study at http://glioblastoma.alleninstitute.org/, and recorded each response with a 

timestamp.  Multiple tissue sections of each sub-block contained guide lines drawn on 1-

5 anatomic features, which were easily-identified classic examples of the features.  Each 

neuropathologist independently answered two questions for each sample’s guide lines 

across multiple images of a sub-block.  In reply to “What % of a particular annotation 

labels the correct feature?" the neuropathologist selected 0, 10, 20, 30, 40, 50, 60, 70, 80, 

90, or 100%.  Selecting 70% meant that about 70% of the annotated area for a particular 

feature (e.g. PAN) labeled the feature correctly throughout the images of the sub-block, 

and 30% of the annotation labeled another feature incorrectly.  In reply to “What is the 

quality of the sub-block?” the neuropathologist selected High, Medium, Low, or 

http://glioblastoma.alleninstitute.org/
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Unsatisfactory technically (not possible to score accuracy of annotations).  The replies for 

the 10% scale were converted to a binary output, Agree/Disagree, using a cutoff of 80%, 

with the result that 80%, 90%, and 100% replies were converted to Agree (i.e. the feature 

had the correct LMD guide line), and all replies less than 80% were converted to 

Disagree (i.e. the feature had the incorrect LMD guide line).  Low quality of the sub-

block was rare, and was not correlated with Agree/Disagree outcome.  Cohen’s kappa (κ) 

(42) was calculated across all features for each neuropathologist as a measure of 

concordance, and the combined accuracy was calculated across all neuropathologists for 

each feature, an approach consistent with other neuropathology concordance analyses 

(43).  Neuropathologists’ data and confusion matrix for Cohen’s kappa calculations are 

available in table S9. 
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Table S5.  Machine learning-determined accuracy and precision of machine 

learning annotations of anatomic features in atlas.  About 12,000 images 

corresponding to 300 tissue blocks from 42 tumors were labeled by ML with expert 

supervision.  Accuracy and precision of the labeling process by the Decision Forest 

algorithm (40) are represented in confusion matrix table.  The Decision Forest trees were 

not trained on the samples that were tested so this kind of ‘holdout’ testing is a 

reasonably robust measure of the accuracy of the algorithm. In the matrix the rows 

represent the points tested and the columns the test results. For example, the entry in the 

second row of the leftmost column indicates 205 samples of tissue expertly labeled LE, 

were labeled incorrectly as CT by the algorithm. Precision summaries (percentage of 

results correctly labeled) and Recall summaries (percentage of source samples correctly 

labeled) as well as the overall accuracy (percentage of all results correct) are shown. It 

should be noted that the metrics represented in the matrix were used as a performance 

guide for the algorithm only, and final labeling was subject to expert examination in 

consultation with a board-certified neuropathologist (S.W.R.), and manual correction.  

All abbreviations: LE (leading edge), CT (cellular tumor), IT (infiltrating tumor), NE 

(necrosis), PAN (pseudopalisading cells around necrosis), MVP (microvascular 

proliferation, HBV (hyperplastic blood vessel), ED (edema), ICE (freezing artifact), 

FOLD (fold in tissue), SPA (space without tissue), and EN (early necrosis). 
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Feature: none 
merged 

Neuropathologist 
1 

Neuropathologist 
2 

Neuropathologist 
3 

Combined 
Accuracy 

(%) 
Agree Disagree Agree Disagree Agree Disagree 

CT 8 5 13 0 12 1 85% 

HBV 4 8 9 3 2 10 42% 

IT 8 3 11 0 10 1 88% 

LE 7 6 10 3 9 4 67% 

MVP 11 1 12 0 11 1 94% 

NE 9 1 6 4 8 2 77% 

PAN 8 3 7 4 8 3 70% 

PNZ 8 4 8 4 5 7 58% 

TOTAL: 63 31 76 18 65 29 

72% 
Combined 
Accuracy (%) 

67% 81% 69% 

Concordance 
(κ) 

0.62 0.78 0.65   

 

Table S6.  Assessment of inter-neuropathologist variability without merging LE and 

IT, and HBV and MVP.  Three neuropathologists (P.J.C., C.D.K., and M.U.) were 

presented with 94 test images representing various examples of each H&E-stained 

feature, and each independently identified the main feature in each image using the 

definitions developed for training the ML algorithm (fig. S1).  Each neuropathologist’s 

label for a particular image was compared to the ground truth for that image, and 

assigned Agree if they were the same and Disagree if they were different.  Ground truth 

was established by the investigator who created a reference set of images with a fourth 

neuropathologist (S.W.R.) who guided the training of the Decision Forest for the ML 

algorithm.  Distinguishing LE from IT, and HBV from MVP, were especially 
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challenging, and were analyzed independently here, or as merged features in Table S8.  

Cohen’s kappa (κ) (42) was calculated across all features for each neuropathologist as a 

measure of concordance, and the combined accuracy was calculated across all 

neuropathologists for each feature, an approach consistent with other neuropathology 

concordance analyses (43).  Neuropathologists’ data and confusion matrix for Cohen’s 

kappa calculations are available in table S10. 
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Feature: some 
merged 

Neuropathologist 
1 

Neuropathologist 
2 

Neuropathologist 
3 

Combined 
Accuracy 

(%) 
Agree Disagree Agree Disagree Agree Disagree 

CT 8 5 13 0 12 1 85% 

HBV/MVP 22 2 24 0 19 5 90% 

LE/IT 22 2 23 1 22 2 93% 

NE 9 1 6 4 8 2 77% 

PAN 8 3 7 4 8 3 70% 

PNZ 8 4 8 4 5 7 58% 

TOTAL: 77 17 81 13 74 20 

82% 
Combined 
Accuracy (%) 

82% 86% 79% 

Concordance 
(κ) 

0.78 0.83 0.74   

 

Table S7.  Assessment of inter-neuropathologist variability with merging of LE and 

IT, and HBV and MVP.  Same data set as table S6, but for analysis the 

neuropathologists’ labels of LE or IT images were merged into one measure, LE/IT, and 

labels of HBV or MVP images were merged into one measure, HBV/MVP, to 

demonstrate the degree to which concordance increases as a result of merging these 

features that are difficult to readily distinguish from one another.  Neuropathologists’ 

data and confusion matrix for Cohen’s kappa calculations are available in table S10. 
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Feature 

Neuropathologist 1 Neuropathologist 2 Neuropathologist 3 

Ave 
Agr
ee
me
nt 
(> 
75
%) 

Sen
sitiv
ity 

Spe
cific
ity 

Accuracy 

Sen
sitiv
ity 

Spe
cific
ity 

Accuracy 

Sen
sitiv
ity 

Spe
cific
ity 

Accuracy 

Q1 
(> 
75
%) 

Q2 
(< 
26
%) 

Agr
ee
me
nt 
(> 
75
%) 

Q1 
(> 
75
%) 

Q2 
(< 
26
%) 

Agr
ee
me
nt 
(> 
75
%) 

Q1 
(> 
75
%) 

Q2 
(< 
26
%) 

Agr
ee
me
nt 
(> 
75
%) 

All 
Features 0.85 0.98 0.76 0.78 0.72 0.94 0.98 0.78 0.90 0.81 0.95 0.95 0.91 0.98 0.94 0.82 

All 
Features 
Merged 

0.93 0.96 0.85 0.86 0.80 0.97 0.96 0.78 0.94 0.84 0.96 0.91 0.93 0.98 0.95 0.86 

LE 0.81 0.98 0.71 0.69 0.60 0.91 0.98 0.90 0.88 0.84 0.93 0.97 0.96 0.97 0.93 0.79 

IT 0.92 1.00 0.86 0.88 0.84 0.92 0.96 0.98 0.92 0.90 1.00 1.00 0.80 0.96 0.80 0.85 

CT 1.00 1.00 0.97 0.95 0.92 1.00 1.00 0.95 0.97 0.95 0.99 0.67 0.92 0.98 0.96 0.94 

PAN 0.79 0.90 0.75 0.66 0.63 0.90 0.93 0.72 0.88 0.73 0.86 0.91 0.95 1.00 0.95 0.77 

PNZ 0.96 0.96 0.81 0.92 0.76 0.97 0.96 0.78 0.94 0.90 1.00 0.84 0.95 1.00 0.97 0.88 

HBV 0.66 0.98 0.48 0.58 0.38 0.78 1.00 0.46 0.74 0.50 0.85 0.95 0.94 0.94 0.94 0.61 

MVP 0.39 1.00 0.33 0.37 0.34 0.94 1.00 0.44 0.76 0.53 0.88 0.99 0.93 0.94 0.93 0.60 

NE 0.97 1.00 0.86 0.90 0.82 0.97 1.00 0.66 0.95 0.79 0.96 0.95 0.88 1.00 0.96 0.86 

LE-IT 0.98 0.98 0.98 0.94 0.94 0.96 0.93 0.92 0.96 0.94 1.00 0.98 0.92 0.96 0.92 0.93 

HBV-
MVP 

0.81 0.97 0.70 0.69 0.65 0.96 1.00 0.55 0.91 0.68 0.94 0.91 0.94 0.94 0.94 0.75 

 
(bin
ary) 

All 
Fe
atu
res 

0.90 0.94 0.93 

  

All 
Fe
atu
res 
Me
rg
ed 

0.91 0.96 0.94 

(
Agr
ee
me

All 
Fe
atu
res 

0.66 0.81 0.92 
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nt 
>75
%) 

All 
Fe
atu
res 
Me
rg
ed 

0.76 0.87 0.93 

 
 

 Table S8.  Neuropathologist-determined accuracy and concordance of machine 

learning annotations of anatomic features in atlas.  The 10 ML annotations reviewed 

include LE, IT, CT, PAN, PNZ, HBV, MVP, NE, HBV/MVP, and LE/IT.  All Features 

refers to LE, IT, CT, PAN, PNZ, HBV, MVP and NE.  All Features Merged refers to CT, 

PAN, PNZ, NE, HBV/MVP, and LE/IT.  Cohen’s kappa (binary) is based on Question 1 

input, and Cohen’s kappa (Agreement >75%) is based on combining input from Question 

2 and Question 3.  The neuropathology concordance analyses showed overall combined 

accuracy was greater than 70% for all neuropathologists, while accuracy for individual 

features varied from 34% for MVP to as high as 96% for CT.  Neuropathologists’ input 

data and confusion matrices for each validation are available in tables S9-S11.   

Three neuropathologists (P.J.C., C.D.K., and M.U.) were presented with a random 

sampling of the ~12,000 ML-annotated images of all H&E-stained tissue sections of the 

atlas.  Of the 946 sub-blocks from 42 tumors used to create the atlas, 95 that represented 

the full range of complexity or heterogeneity in the atlas were randomly chosen such that 

10% of the sub-blocks at each level of complexity with 1, 2, 3,… or 8 anatomic features 

(LE, IT, CT, NE, PNZ, PAN, HBV, and MVP) were included in the review.  The ML 

annotations were far more complex than the manual annotations of classic examples of 

features because the algorithm required labeling of every pixel in every image as one of 

the anatomic features, even when it was extremely challenging for an expert to 

distinguish for example LE from IT, or HBV from MVP.  Each neuropathologist 

reviewed the 3
rd

 image of the 10-18 H&E images of each sub-block, the 3
rd

 likely being 

the least accurately annotated (worst case scenario) given the physical distance from the 

images used for training the ML Decision Forest for each sub-block, i.e. the 1
st
, 6

th
, 12

th
, 

and 15
th

 images.   
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Guided by an online survey form that was equipped to record each response for 

the 95 sub-blocks presented from http://glioblastoma.alleninstitute.org/, each 

neuropathologist independently answered four questions for each of 10 features (LE, IT, 

CT, NE, PNZ, PAN, HBV, MVP, HBV/MVP, and LE/IT).  The survey form included for 

each sub-block a bar graph showing the fractional area labeled for each feature calculated 

on the basis of ML annotations.  In reply to Question 1, “Is the feature identified?" the 

neuropathologist selected Identified or Not Identified.  In reply to Question 2, “What 

percentage of a particular annotation labels the correct feature?” the neuropathologist 

selected NA, 0%, 1-25%, 26-50%, 51-75%, or 76-100%.  Selecting 26-50% meant that 

about 26-50% of the annotated area for a particular feature (e.g. PAN) labeled the feature 

correctly throughout the image, and therefore 50-74% of the annotation labeled another 

feature incorrectly.  In reply to Question 3, “What percentage of the feature is not labeled 

by the correct annotation?” the neuropathologist selected NA, 0%, 1-25%, 26-50%, 51-

75%, or 76-100%.  Selecting 26-50% meant that about 26-50% of the feature (e.g. PAN) 

was not labeled by the correct (e.g. PAN) annotation, and therefore this fraction of the 

feature was mistakenly labeled as another feature, or not labeled at all.  The 

neuropathologist selected NA for a particular feature when the ML scored it 1-100%, but 

the neuropathologist scored it Not Identified, or when the ML scored it 0%, and the 

neuropathologist scored it Identified or Not Identified.   In reply to Question 4, “What is 

the quality of the sub-block?” the neuropathologist selected High, Medium, Low, or 

Unsatisfactory technically (not possible to score accuracy of annotations).   

Input from the neuropathologists was processed and analyzed, and the replies for 

Question 1 - Question 3 were treated independently (Binary) or combined (Agreement, 

Materials and Methods).  For each neuropathologist and anatomic feature, including the 

merged features LE/IT and HBV/MVP, sensitivity, specificity, and accuracy were 

calculated.  To calculate accuracy for Question 2, the replies for the quartile scale were 

converted to a binary output, Agree/Disagree, with a cutoff of 75%, with the result that a 

reply of 76-100% was converted to Agree, meaning that the neuropathologist agreed that 

the ML annotation labeled the correct feature, and all replies less or equal to 75% were 

converted to Disagree.  To calculate accuracy for Question 3, the replies for the quartile 

scale were converted to a binary output, Agree/Disagree, with a cutoff of 26%, with a 

http://glioblastoma.alleninstitute.org/
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result that a reply of 0% or 1-25% was converted to Agree, meaning that the 

neuropathologist agreed that the ML labeled most of that particular feature correctly, and 

all replies greater or equal to 26% were converted to Disagree.  To calculate accuracy for 

the combined results for Question 2 and Question 3, output from the Agreement formula 

(Materials and Methods) greater or equal to 75% was converted to Agree, meaning that 

the neuropathologist agreed that ML annotations were accurate, and values less than 75% 

were converted to Disagree, meaning that the ML annotations were not accurate.  Overall 

combined accuracy was greater than 70% for all neuropathologists with accuracy for 

individual features varying from 34% for MVP to as high as 96% for CT.  Low quality of 

the sub-block was rare, and was not correlated with Agree/Disagree outcome.  Cohen’s 

kappa (κ) (42) was calculated across all features for each neuropathologist as a measure 

of concordance as done for other neuropathology concordance analyses (43) using the 

binary data from Question 1 or the combined data (Agreement>75%) from Question 2 

and Question 3.  Neuropathologists’ data and confusion matrix for Cohen’s kappa 

calculations are available in table S11. 

  



 

40 

SUPPLEMENTARY FIGURES 

 

Fig. S1. Histologically-distinct anatomic features.  All sections were stained with 

H&E.  (A) Leading Edge (LE) is the outermost boundary of the tumor, where the ratio of 

tumor to normal cells is about 1-3/100, and the laminar architecture of the cortical layers 

is frequently evident.  (B) Infiltrating Tumor (IT) is the intermediate zone between the 

Leading Edge (LE) and Cellular Tumor (CT), and is frequently marked by perineuronal 

satellitosis.  (C) Cellular Tumor (CT) constitutes the major part of core, where the ratio 

of tumor cells to normal cells is about 100/1 to 500/1.  (D) Necrosis (NE) is dead or 

dying tissue, marked by presence of karyorrhectic or cellular debris and absence of crisp 

cytological architecture.  (E) Pseudopalisading Cells around Necrosis (PAN) is the 

narrow boundary of cells arranged like pseudopalisades along the perimeter of NE in the 

core.  The extent of these constituents varies from little NE and high density of 

pseudopalisading cells in immature PAN to extensive NE and low density or faint ridges 

of pseudopalisading cells in mature PAN.  (F) Microvascular Proliferation (MVP) refers 

to two or more blood vessels sharing a common vessel wall of endothelial and smooth 

muscle cells typically in the core, and arranged in the shape of a glomerulus or garland of 

multiple interconnected blood vessels.  (G) Hyperplastic Blood Vessels (HBV) are blood 

vessels with thickened walls found anywhere in a tumor.  (H) Perinecrotic zone (PNZ) 

refers to a boundary of tumor cells in the tumor core along the edge of necrosis that lacks 

a clear demarcation of PAN (PNZ depicted in black outline).  These definitions were 
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developed with neuropathologists (P.J.C., C.D.K., M.U., and S.W.R.) for establishing a 

common framework for concordance analyses and for training of Decision Forest to 

support ML, and may deviate from WHO definitions.   
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Fig. S2 Hierarchical clustering of anatomic feature RNA-Seq samples.  Hierarchical 

clustering of all 122 anatomic feature RNA-Seq for CT (A), PAN (B), IT (C), MVP (D), 

and LE (E) using Euclidean distance between samples based on all genes as the distance 

measure.  Grouping of samples by tumor (color bar) indicates intratumor variability is 

less than intertumor variability, particularly for CT and PAN.  
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Fig. S3.  Effect of copy number changes on gene expression across anatomic 

features.  (A) Gene expression changes for each sample from the anatomic feature study 

coordinated and normalized to copy number changes from the matched tumor. For 39 of 

42 tumors, genomic DNA was isolated from bulk tissue for generating copy number data 

using Affymetrix SNP 6.0 array, amplification and deletion segments at all loci with 

detectable alterations were identified (table S12), and the expression of genes located 

within a copy number segment was averaged. If the average expression was positive for 

amplification segments and negative for deletion segments then it was counted as gene 

expression change coordinated with copy number change. LE samples showed minimal 

gene expression changes coordinated with copy number changes, IT samples showed 

increased changes, CT and PAN samples showed significantly higher changes, and MVP 

samples showed changes slightly higher than LE samples but considerably lower than CT 

and PAN samples. For assessing statistical significance, a shuffled dataset was generated 
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by shuffling the tumor labels for the copy number dataset, and gene expression changes 

were calculated, which was done for 100 iterations. (B)  Examples of frequently 

amplified MDM4 gene, frequently deleted CDKN2A/2B gene, and FGFR3TACC3 gene 

fusion, frequently gained chromosome 7, and frequently lost chromosome 10. Consistent 

with (A), CT samples showed gene expression changes coordinated with copy number 

changes, and LE samples showed gene expression not impacted by copy number changes. 

PAN samples exhibited changes similar to CT samples, while MVP samples exhibited 

changes in between CT and LE samples, which might reflect a mixture of normal cells 

and tumor-derived cells, e.g. tumor derived vascular pericytes (56), or from inaccuracies 

inherent in large-scale LMD resulting in inclusion of nearby tumor cells. The MDM4 

gene was amplified in tumor W5 (top row), which is reflected by overexpression of the 

genes in that region in CT and PAN.  MVP samples also showed moderate 

overexpression, but LE samples showed no differential gene expression in that region of 

W5.  A similar trend was evident for the fusion gene (PARD3BCREB1) resulting from 

tandem duplication on chromosome 2, fusion gene (FGFR3TACC3) on chromosome 4, 

EGFR amplification on chromosome 7, and the CDKN2A/2B locus on chromosome 9.  

Assessments of other tumors showed similar effects of tumor-associated copy number 

changes on anatomic features.  In contrast, a germline fusion GPR128TFG on 

chromosome 3 (57) showed overexpression in all anatomic features of W2. 
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Fig. S4.  SNV profile across anatomic features and exemplary cases of intratumor 

heterogeneity of clinically relevant mutations. Mutated allele specific expression 

(#SNV reads/ #total reads).  We recognize important intrinsic limitations in calling SNVs 

from RNA-Seq data. SNVs in genes that are expressed at low levels not covered by 
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sufficient sequencing depth will be missed. This also results in missing out mutations that 

cause loss of expression (Supplementary Materials, Methods).  (A) Of eight genes (TP53, 

PTEN, EGFR, ATRX, IDH1, NF1, PIK3R1, PIK3CA) that are often recurrently mutated 

in glioblastoma in the TCGA glioblastoma data set (58), 45 unique non-synonymous 

SNVs in 28 of the tumors (table S13) were detected in the LMD/RNA-Seq dataset.  The 

number of high-confidence SNVs (>3 reads/sample) varied by anatomic feature.  

Reflecting the heterogeneity in copy number and gene expression data (fig. S3), we 

detected somatic mutations in CT, PAN and MVP samples but not in LE samples. In 

contrast germline mutations in the same set of genes were detected in all anatomic 

features. (B) The mutated allele specific expression for SNVs found in MVP samples was 

lower compared to the CT samples from the same tumor. (C) Three of the tumors from 

Ivy cohort with samples from all anatomic features were also part of the TCGA cohort 

with DNA-seq data available. Mutations identified in both TCGA DNA-seq and Ivy GAP 

RNA-seq data are shown. The mutated allele specific expression varied widely across 

samples from the same tumor for a majority of the SNVs, suggesting that many of the 

SNVs are sub-clonal, a result consistent with a previous report (9). It also shows the trend 

described for panels A and B. Some of the somatic mutations for tumor W9 were 

detected in the LE sample from W9 denoted by an asterisk. This same sample also has 

the highest amount of copy number coordinated with gene expression changes, and the 

CIBERSORT algorithm predicts this sample to have 40% CT fraction. (D) As an 

example of a tumor with a sub-clonal mutation, W31 has SNVs in three genes, TP53, 

ATRX and IDH1, which are more frequently mutated in lower grade gliomas (59) than 

glioblastoma and are associated with better survival.  However, a fraction of the CT 

samples with SNVs in TP53 and ATRX have wildtype (WT) IDH1, which is associated 

with poorer survival rates.  (E) In tumor W31, the mutated allele specific expression for 

TP53 and ATRX are highest for CT samples, which are enriched for the greatest number 

of tumor cells, and lowest for LE, which corresponds to near normal tissue.  (For block F, 

>95% of cells in CT samples stain positively for TP53).  (F, G) As further evidence for 

the sub-clonal mutation of IDH1 in W31, immunostaining for IDH1 mutant protein 

shows a mixture of labeling ranging from negative to strong diffuse staining, and this 

heterogeneous staining pattern persisted at recurrence, which represents a good example 
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of heterogeneity that could alter the patient’s eligibility in clinical trials depending on the 

staining outcome at the biopsy site.  In contrast, tissue sections from the first and second 

surgery show robust, uniformly-diffuse, labeling of TP53 mutant protein, with ~95%  or 

99% of the cells staining positively, respectively (not shown).  (H) W53, has SNVs in 

TP53, EGFR, IDH2, and MET, as well as evidence of EGFR amplification and the 

previously described PTPRZ1MET fusion (60).  The possible clonal evolution for this 

tumor is presented, starting with TP53 SNV (G244S) and then diverging into two sub-

populations; one with PTPRZ1MET fusion and another with EGFR V774M, P596L 

SNV. One of the samples with a PTPRZ1MET fusion has a SNV in the MET gene 

(C541G), whereas another sample with the EGFR V774M SNV acquires a mutation in 

IDH2 (A307S) gene.  (I) W53 sub-clonal SNVs that support the schematic presented in 

G.  In total 93.8% of the 25,873 quantified genes show detectible expression (FPKM>0) 

in at least one of the 270 samples, and 79.8% of the genes show reliable expression 

(FPKM>1) in at least one of the 270 samples, while 58.8% of genes show reliable 

expression (average FPKM>1) in at least one anatomic feature.  The number of reads per 

SNV call ranged from 2 to 1591, with an average of 110 and a median of 23 (table S13). 
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Fig. S5.  MGMT methylation status and survival.   (A) Kaplan-Meier estimation of 

survival according to O-6-methylguanine-DNA methyltransferase (MGMT)  promoter 

methylation status determined using quantitative methylation-specific PCR (MSP) or 

methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) tests.  

Methylation status was positive (M) if either MSP or MS-MLPA test was positive as 

described in (61) and status was negative (UM) if both tests were negative. (B)  The 

median survival for the methylated group was superior at 1096 days vs. 351 days for the 

unmethylated group (P<0.0001). 
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Fig. S6.  Classification of Ivy GAP anatomic feature samples by histology, 

admixture, subtype, and cell types.  Classification of 122 Ivy GAP anatomic feature 

LMD/RNA-Seq samples by (A) histology, (B) admixture analysis showing homogeneity 

of samples with respect to anatomy, (C) molecular subtype, and (D) published cell type 

and/or phenotype gene sets determined from single cells or cell types (12, 62, 63).  

Samples in the figure were sorted by subtype (neural, proneural, classical, mesenchymal), 

histology, and then subtype value.  List of gene set signatures, detailed names, and 

references is provided in table S15.  Fractional composition determined with 

CIBERSORT (52).  Gene enrichment determined with single sample Gene Set 

Enrichment Analysis (ssGSEA).  Classifications, and correlations between anatomic 

feature gene sets and molecular subtypes, calculated in table S16. 
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 Each of the 122 Ivy LMD samples was computationally reduced to its anatomical 

makeup by admixture analysis, and validated by histology.  The admixture model 

correctly matched the majority proportion to the corresponding histological label of LE, 

CT, PAN and MVP for 97% of the samples. We calculated the subtype of the Ivy LMD 

and TCGA bulk samples using the previously identified 840 gene set (6).  This analysis 

revealed a striking relationship between anatomic feature and molecular subtype:  the 

mesenchymal component predominated in HBV, MVP, and to a lesser extent in PAN and 

PNZ samples; the neural component predominated in the LE and IT samples; and the 

classical and proneural components predominated in CT and PAN samples.   

 Endothelial cell gene sets (i.e., Zhang_endothelial) were highly enriched in MVP 

and HBV of the mesenchymal subtype.  Immune signatures, including gene sets 

representing microglia and macrophages, were highly enriched in CT, PAN, PNZ, and 

HBV of the mesenchymal subtype.  Hypoxia and anti-cell cycle gene sets (e.g. 

Patel_hypoxia) were highly enriched in all PNZ and PAN samples, including some CT 

samples with minority fractions of PNZ and PAN of the mesenchymal, classical, 

proneural subtypes.  Gene sets for neurons, astrocytes, oligodendrocytes, and quiescent 

fetal neurons at lower levels were enriched in LE and IT samples of the neural and 

proneural subtypes.   
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Fig. S7.  Subtype selective gene expression across anatomic features.  Examples of 

genes showing significant differential expression by RNA sequencing across subtypes 

within each anatomic feature.  (A)  Genes with significant difference in expression across 

subtype in CT but not in PAN or PNZ.  (B)  Genes with significant difference in 

expression across subtypes in CT, PAN, and PNZ.  (C) Genes with difference in 

expression across subtypes in IT, CT, PAN, and PNZ.  ** FDR-corrected p<0.01, 

ANOVA; * p<0.05; + p<0.1.  Note that LE, HBV, and MVP are each represented almost 

exclusively by a single subtype, and therefore differences in subtype could not be 

assessed.  Each box corresponds to at least 5 samples. 
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Fig. S8.  Classification of TCGA bulk tumor samples by admixture, subtype, and 

cell types.  Classification of 167 TCGA bulk tumor RNA-Seq samples by (A) admixture, 

(B) molecular subtype, and (C) published cell type and/or phenotype gene sets 

determined from single cells or cell types (12, 62, 63).  Samples in the figure were sorted 

first by subtype and then by subtype value with some manual ordering.  List of gene set 

signatures, detailed names, and references is provided in table S15.  Fractional 

composition determined with CIBERSORT (52).  Gene enrichment determined with 

ssGSEA.  Classifications, and correlations between anatomic feature gene sets and 

molecular subtypes, calculated in table S16. 

 We calculated the subtype of the Ivy LMD and TCGA bulk samples using the 

previously identified 840 gene set (6).  Enrichment of the gene sets in the TCGA samples 

confirmed the findings of the Ivy LMD samples to the extent possible with its limited 

representation of LE, HBV, and MVP components (5).   
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Other Supplementary Materials for this manuscript include the following as 

separate Excel files (available at www.sciencemag.org/content/______________:  

 

Table S1: Patient data – 1p19q codeletion and EGFR amplification (*EGFR amplified 

in a small sub-population) determined by FISH.  IDH1 mutation determined by 

immunohistochemistry or genotyping with PCR(64) (wildtype; WT), EGFRvIII detected 

by PCR(65) and MGMT methylation determined by quantitative methylation specific 

PCR(61) (unmethylated, UM; methylated, M), EGFR, PDGRA, and PTEN copy number 

data,  PTEN, TP53, IDH1, IDH2, ATRX, EGFR, PDGFRA, PIK3CA, and PIK3R1 RNA-

Seq derived mutations, FGFR3-TACC3 and PTPRZ1-MET gene fusions, molecular 

subtype as provided in the web resource. Additional information from TCGA for samples 

from six patients from Ivy cohort that were provided to TCGA is also included. 

 

Table S3: Anatomic feature differentially expressed gene sets – All genes showing at 

least 2-fold enrichment and a maximum false discovery rate of 0.01 between LE (1998), 

CT (114), PAN (389), and MVP (1126) and each of the other anatomic features by edgeR 

analysis.  These are the genes along the diagonal of Fig 2a. 

 

Table S4: Validation of RNA-Seq by anatomic feature ISH for enriched genes– 

Comparison between RNA-Seq and ISH assessments of enrichment in PAN, CT, or 

MVP.  LE and IT could not be compared because LE/IT genes enriched in RNA-Seq 

samples were not selected for assessment in the Anatomic Feature ISH for Enriched 

Genes study.  

 

Table S9: Validation of manual annotations – Confusion matrix and input data for 

validation by neuropathology concordance analysis of manual annotations to support 

LMD guide lines around anatomic features. 

 

Table S10: Validation of inter-neuropathologists agreement – Confusion matrix and 

input data for validation of neuropathologists’ identification of anatomic features. 

 

Table S11: Validation of machine learning annotations – Confusion matrix and input 

data for validation by neuropathology concordance analysis of ML annotations of 

anatomic features in atlas. 

 

Table S12: Copy number changes – Copy number segments showing amplifications 

and deletions in bulk tissue from 39 tumors at all loci with detectable genomic 

alterations. 

 

Table S13: Single Nucleotide Variants (SNVs) – Anatomic feature RNA-Seq derived 

SNVs identified in 10 genes that are often mutated in glioblastoma. 

 

Table S14: Anatomic feature gene sets for admixture analysis – Sets of 293 genes 

highly specific for individual anatomic features that were generated by CIBERSORT for 

admixture analysis in figures S6B and 8A, and Table S16. 

 

http://www.sciencemag.org/content/
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Table S15:  Gene sets for published brain cell types and/or phenotypes – Published 

gene sets used as input for single sample gene set enrichment analysis of Ivy and TCGA 

samples. 

 

Table S16: Ivy GAP and TCGA gene set enrichment heat map and correlations – 

For 122 Ivy LMD/RNA-Seq samples: sample, tumor, histology, admixture, subtype, 

published cell type signature enrichments and correlations.  For 167 TCGA bulk samples:  

sample, tumor, admixture, subtype, cell type signatures enrichments and correlations. 

 

 

 


