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Proof of Lemma 1

Consider the semi-partial correlation

ρ(Yi, Xi,j|Xi,−j) =
Cov [Yi, Xi,j − E(Xi,j|Xi,−j)]

{Var(Yi)Var(Xi,j − E(Xi,j|Xi,−j))}1/2
(.1)

=
Cov [Yi − E(Yi|Xi,−j), Xi,j − E(Xi,j|Xi,−j)]

{Var(Yi)Var(Xi,j − E(Xi,j|Xi,−j))}1/2
, (.2)

where the last equality is due to the fact

Cov [E(Yi|Xi,−j)), Xi,j − E(Xi,j|Xi,−j)]

=E
[
(βjE(Xi,j|Xi,−j) + Xi,−jβ−j)(Xi,j − E(Xi,j|Xi,−j))

]
=E [βjE(Xi,j|Xi,−j)(Xi,j − E(Xi,j|Xi,−j))] = 0.

The numerator of (.2) is equal to

Cov [βj(Xi,j − E(Xi,j|Xi,−j)) + εi, Xi,j − E(Xi,j|Xi,−j)] = βjVar(Xi,j − E(Xi,j|Xi,−j)).

As Σ is positive definite,

Var(Xi,j − E(Xi,j|Xi,−j)) = E[(Xi,j − E(Xi,j|Xi,−j))
2] 6= 0.

Therefore,

βj = 0 if and only if ρ(Yi, Xi,j|Xi,−j) = 0.
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Proof of Lemma 2

The semi-partial correlation, as defined in (.1), is equal to

ρ(Yi, Xi,j|Xi,−j) =
Cov [Yi − E(Yi|Xi,−j), Xi,j − E(Xi,j|Xi,−j)]

{Var(Yi)Var(Xi,j − E(Xi,j|Xi,−j))}1/2

=
Cov

[
βj(Xi,j − E(Xi,j|Xi,Sg\{j},Xi,Scg)) + εi, Xi,j − E(Xi,j|Xi,Sg\{j},Xi,Scg)

]{
Var(Yi)Var(Xi,j − E(Xi,j|Xi,Sg\{j},Xi,Scg))

}1/2
=βj{Var(Xi,j − E(Xi,j|Xi,Sg\{j}))/Var(Yi)}1/2. (.3)

Similarly, for any j = 1, . . . , p and some g such that j ∈ Sg, the block-wise semi-partial

correlation

ρ(Yi, Xi,j|Xi,Sg\{j}) =
Cov

[
Yi − E(Yi|Xi,Sg\{j}), Xi,j − E(Xi,j|Xi,Sg\{j})

]{
Var(Yi)Var(Xi,j − E(Xi,j|Xi,Sg\{j}))

}1/2
=

Cov
[
βj(Xi,j − E(Xi,j|Xi,Sg\{j})) + Xi,ScgβScg − E(Xi,ScgβScg) + εi, Xi,j − E(Xi,j|Xi,Sg\{j})

]
{

Var(Yi)Var(Xi,j − E(Xi,j|Xi,Sg\{j}))
}1/2

=βj{Var(Xi,j − E(Xi,j|Xi,Sg\{j}))/Var(Yi)}1/2, (.4)

where the last two equalities follow by the assumption of independent blocks. Therefore,

(.3) and (.4) together imply

ρ(Yi, Xi,j|Xi,−j) = ρ(Yi, Xi,j|Xi,Sg\{j}).

We remark that the purpose of Lemma 2 is to provide the intuition behind the proposed

method. The assumption of independent blocks is not required for the proposed method.

The proposed method is valid for more general settings. Indeed, as long as the correlation

between blocks is small, the semi-partial correlation based on the relevant blocks is able to

adequately assess the true contributions of each covariate to the response; see the proofs for

Theorem 1.
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The illustrating example referred in Section 4.2

Consider a simple example,

Yi = −1.5Xi,1 +Xi,2 − 0.5Xi,3 +Xi,4 + εi,

where εi ∼ N(0, 1) is independent of (Xi,1, Xi,2, Xi,3, Xi,4) that is normally distributed with

mean zero and a covariance matrix 
1 0.5 0 0

0.5 1 0.5 0
0 0.5 1 0
0 0 0 1

 .
In this case, both the marginal correlation between Yi and Xi,3 and the partial correlation

between Yi and Xi,3 conditional on Xi,2 (the only variable that is correlated with Xi,3) are

zero and hence Xi,3 will likely be missed by the Tilting procedure.

An FDR-driven threshold for the selection frequency

To determine data-driven thresholds for the selection frequency ψ and directly control

the false discovery rate, we further propose a random permutation based approach.

We randomly permute the outcomes S times to decouple the relation between the covari-

ates and the outcomes. On each permuted dataset, say s = 1, . . . , S, we perform CIS-Stable

and compute the empirical probability that each variable is selected, denoted by Ψ̃
(s)
j for

j = 1, . . . , p. Order these empirical probabilities such that Ψ̃
(s)
(1) > Ψ̃

(s)
(2) > . . . > Ψ̃

(s)
(p). Define

Ψ(j) = 1
S

∑S
s=1 Ψ̃

(s)
(j). Likewise, let Ψ̂(j) be the j-th largest value of the empirical probabili-

ties based on the original data. For a positive constant ∆ > 0, define C(∆) = min{Ψ̂(j) :

Ψ̂(j) − Ψ(j) ≥ ∆}, R(∆) =
∑p

j=1 I(Ψ̂j ≥ C(∆)), and R̃(∆) =
∑p

j=1

∑S
s=1 I(Ψ̃

(s)
j ≥ C(∆)).

The empirical Bayes false discovery rate corresponding to the ∆ can be estimated by

FDR(∆) =
1

S

R̃(∆)

R(∆)
.
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For a pre-specified value q ∈ (0, 1), finding a ∆ that produces FDR(∆) ≤ q will ensure that

at most q proportion of the selected variables would be false positives. Finally, the threshold

for the selection frequency equals C(∆).

More Simulation Results

Comparisons of Iterative CIS and GS

We compare the performance of iterative CIS (with δ = 0.3) and iterative GS with various

choices of tuning parameters, using simulation Model E described on page 15 of the main

manuscript. Specifically, we consider five perturbation settings for each of the method. Let

ε∗p and τ ∗ be the optimal tuning parameters for GS (defined as in Jin et al., 2014). We define

ρ as a binary random variable with equal probability of being 1 or -1. Perturbation 1 for

GS: εp = ε∗p, τ = τ ∗; Perturbation 2 for GS: εp = (1 + 0.1ρ)ε∗p, τ = (1 + 0.1ρ)τ ∗; Perturbation

3 for GS: εp = (1 + 0.2ρ)ε∗p, τ = (1 + 0.2ρ)τ ∗; Perturbation 4 for GS: εp = (1 + 0.3ρ)ε∗p,

τ = (1 + 0.3ρ)τ ∗; Perturbation 5 for GS: εp = (1 + 0.4ρ)ε∗p, τ = (1 + 0.4ρ)τ ∗. Perturbation

1 for CIS: ν is chosen such that the top 0.1n/ log(n) variables are selected; Perturbation 2

for CIS: ν is chosen such that the top 0.15n/ log(n) variables are selected; Perturbation 3

for CIS: ν is chosen such that the top 0.2n/ log(n) variables are selected; Perturbation 4 for

CIS: ν is chosen such that the top 0.25n/ log(n) variables are selected; Perturbation 5 for

CIS: ν is chosen such that the top 0.3n/ log(n) variables are selected. The results suggest

that the perturbation of tuning parameters ν has relatively small effects on the proposed

iterative CIS, which always outperforms GS with the optimal tuning parameters. In contrast,

the number of false negatives and false positives increases for iterative GS as their tuning

parameters depart from the optimal values.

Moreover, we assess the proposed CIS with respect to various choices of δn (e.g. δn =

min(1, K
√

log(p)/n), K = 1, 2, . . .). We used Models A, B and C as described on pages
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Figure A1: Comparison of iterative CIS and GS with various tuning parameters.

14-15 of the revision. In addition, we varied n and p to assess the performance of CIS under

different scenarios. Table A1 compares the minimum model size (number of selected variables

to include the true model). When δn > ρ, where ρ is the within-block auto-correlation

parameter, each identified block tends to include only one predictor. In the extreme case,

CIS reduces to SIS, which does not work well for Model A with high correlations (because

the marginal correlation condition is not satisfied). On the other hand, if K is too small,

the corresponding qn > n and the proposed method is not applicable. Based on the results

with different n, p and ρ, it seems that K = 5 or 6 works the best in most cases. This also

justifies the use of K = 5 in the original version.

Table A2 assesses the proposed ICIS with respect to various choices of δn. The trend is

similar to that in Table A1. When K = 2 to 7 the results are almost the same.

Finally, we vary the number of permutations (S) or the number of bootstraps (B) to assess

the performance of the proposed method. As illustrated in Figure A3, the performance is

relatively robust to the number of permutations, while 50-100 bootstraps are sufficient for
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Table A1: The minimum model size to include the true model for CIS with various δn (e.g. δn = min(1,K
√

log(p)/n),
K = 1, 2, . . .); Model A, B and C; assess various combinations of sample size (n) and number of predictors (p); NA: no results

are reported because the corresponding qn > n; qn: maximal number of variables in the blocks.

Model (n, p) ρ K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10
A (1,000, 10,000) 0.9 NA 72.9 73.7 73.7 73.7 73.7 73.7 73.7 73.7 6861.22

0.7 NA 10.0 10.0 10.0 10.0 10.3 35.5 782.8 782.8 782.8
0.5 NA 10.0 10.0 10.0 10.0 12.7 13.6 19.4 19.4 19.4
0.3 NA 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
0.1 NA 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0

A (500, 1,000) 0.9 NA 161.5 161.5 161.5 161.5 161.5 161.5 988.75 988.75 988.75
0.7 NA 18.2 18.0 18.0 18.0 18.0 286.45 379.56 379.56 379.56
0.5 NA 10.8 10.8 14.8 50.1 50.2 50.2 50.2 50.2 50.2
0.3 NA 10.2 10.4 11.9 11.9 11.9 11.9 11.9 11.9 11.9
0.1 NA 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0

B (1,000, 10,000) 0.9 NA 68.1 68.6 68.6 68.6 68.6 68.6 68.6 68.6 65.1
0.7 NA 10.0 10.0 10.0 10.0 10.0 10.0 10.7 10.7 10.7
0.5 NA 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
0.3 NA 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
0.1 NA 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0

B (500, 1,000) 0.9 NA 116.9 116.9 116.9 116.9 116.9 116.9 116.9 31.0 31.0
0.7 NA 10.5 10.5 10.5 10.5 10.5 15.9 13.1 13.1 13.1
0.5 NA 10.0 10.0 10.1 10.5 10.4 10.4 10.4 10.4 10.4
0.3 NA 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
0.1 NA 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0

C (1,000, 5,000) 0.9 NA NA NA NA NA NA NA NA NA 33.3
0.7 NA NA NA NA NA NA NA 11.3 11.3 11.3
0.5 NA NA NA NA NA 10.1 10.1 10.1 10.1 10.1
0.3 NA NA NA 10.0 10.0 10.0 10.0 10.0 10.0 10.0
0.1 NA 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0

C (500, 1,000) 0.9 NA NA NA NA NA NA NA 48.0 48.0 48.0
0.7 NA NA NA NA NA NA NA 16.0 16.0 16.0
0.5 NA NA NA NA NA 10.8 10.8 10.8 10.8 10.8
0.3 NA NA NA 10.0 10.0 10.0 10.0 10.0 10.0 10.0
0.1 NA 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0

Table A2: Number of false positives (FP) and number of false negatives (FN) for ICIS with various δn (e.g.

δn = min(1,K
√

log(p)/n), K = 1, 2, . . .); Model D (with ρ = 0.9 and p = 1, 000) and E (with p = 5, 000); NA: no results are
reported because the corresponding qn > n; qn: maximal number of variables in the blocks.

Model Measure K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10
D FP NA 0.72 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73

FN NA 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
E FP NA 20.13 20.13 20.13 20.13 20.13 20.13 30.91 38.26 38.26

FN NA 2.55 2.55 2.55 2.55 2.55 2.55 4.94 6.68 6.68
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(a) δ = 0.3 (b) δ = 0.4 (c) δ = 0.5

Figure A2: Block structures; (a): δ = 0.3, number of blocks=1,250; maximum number of
predictors per block=4; (b): δ = 0.4, number of blocks=1,250; maximum number of predic-
tors per block=4; (c): δ = 0.5, number of blocks=5,000; maximum number of predictors per
block=1.

reliable estimations. For practical implementation, we recommend S=10 and B=50.

References James, G., Witten, D., Hastie, T. and Tibshirani, R. (2013) An Introduction to
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Figure A3: Performance with various numbers of bootstrapping (B) and permutation (S).
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