SUPPLEMENTAL INFORMATION

Insights into the function of the *N*-acetyltransferase SatA that detoxifies streptothricin in *Bacillus subtilis* and *Bacillus anthracis*

Rachel M. Burckhardt and Jorge C. Escalante-Semerena* Department of Microbiology, University of Georgia, Athens

*Corresponding author: Department of Microbiology, University of Georgia, 212C Biological Sciences Building, 120 Cedar Street, Athens, GA 30602, USA; T: +1(706)-542-2651; F: +1(706)-542-2815; Email: jcescala@uga.edu, URL: <u>www.escalab.com</u>

Running title: Functional analysis of SatA

SUPPLEMENTAL FIGURES

Figure S1. **Variant** *B. subtilis satA* alleles have no growth defect in *S. enterica*. Strains carrying wild-type (*satA*⁺, circles), variant *satA* alleles, or empty vector (squares) were grown in glycerol (22 mM) minimal medium (1). All strains carried *∆metE2702 ara-9* chromosomal mutations and the indicated plasmid: JE22263 (/pCV1), JE22334 (/pBsSATA1), JE23884 (/pBsSATA10), JE23887 (/pBsSATA11), JE23888 (/pBsSATA12), JE23889 (/pBsSATA13). Error bars represent one standard deviation and are present, although in many cases they are too small to be visible.

Figure S2. Mutant *B. anthracis satA* alleles have no growth defect in *S. enterica*. Strains carrying wild-type (*satA*⁺, circles), variant *satA* alleles, or empty vector (squares) were grown in glycerol (22 mM) minimal medium (1) with 250 μ M L-(+)-arabinose. Error bars represent one standard deviation and are present, although in many cases they are too small to be visible.

Figure S3. Surface model of BaSatA (PDB 3PP9). Ribbon (left) or surface (right) model of *Ba*SatA. Panels B is a 180° vertical rotation of panel A, intended to display the full surface of the enzyme. Conserved aromatic residues are colored: Y149 (purple), F154 (green), D160 (orange), and Y164 (blue), while AcCoA is shown in yellow.

	1	0 20)	30	40	50
AAC(6')-Ig AAC(6')-Ih BaSatA BsSatA	MSLLIRELET	TNDLDNFPEID		IKPASEASLKD IMPISESQLSD LM.LSLSKVNR	WLELRNKLW WLALRCLLW RIEYTVEDV	SDSEASHLQEMH PDHEDVHLQEMR PSYEKSYLQNDN
Doodin	••••	ILINAKDI MKI M	LFFVVFGR	<u>ATTALEN</u> GVWI	*	* *
	eo	7.0	80	90	100	110
AAC(6')-Ig AAC(6')-Ih <i>Ba</i> SatA <i>Bs</i> SatA	QLLAEKYALQ QLITQAHRLQ EELVYNEYIN DDDMDVSYVE	LLAYSDHQA. LLAYTDTQQA KPNQIIY EEEGKAAF	IAMLEASI IAMLEASI IALLHNQI LYYLENNC	R F E Y VN G T E T S R Y E Y VN G T Q T S I G F I VL K K N WN I G R I K I R <mark>S N</mark> WN	PVGFLEGIY PVAFLEGIF NYAYIEDIT GYALIEDIA	VLPAHRRSGVAT VLPEYRRSGIAT VDKKYRTLGVGK VAKDYRKKGVGT
				* *	*	
	120	130	140	150	160	170
AAC(6')-Ig AAC(6')-Ih <i>Ba</i> SatA <i>Bs</i> SatA	MLIRQAEVWA GLVQQVEIWA RLIAQAKQWA ALLHKAIEWA	AKQFSCTEFAS KQFACTEFAS KEGNMPGIML KENHFCGLML	DAALDNVI DAALDNQI ETQNNNVA ETQDINISA	SHAMHRSLGFQ SHAMHQALGFH ACKFYEKCGFV ACHFYAKHHFI	ETEKVVYFS ETERVVYFK IGGFDFLVY IGAVDTMLY	KKID KNIG KGLNMTSDEVAI SNFP.TANEIAI
			**		*	
	180					
AAC(6')-Ig AAC(6')-Ih <i>Ba</i> SatA <i>Bs</i> SatA	YWYLHFDS FWYYKF					

Figure S4. Alignment of AAC(6') and SatA proteins. Protein sequences were aligned using Geneious software (2) (<u>https://www.geneious.com</u>) and the figure was generated using ESPript (3). Conserved residues are highlighted red while similar residues are boxed. Numbers refer to the residue number of *B. anthracis* SatA. Residues substituted in the *Ba*SatA (Y149, F154, D160, and Y164) are outlined in black. Residues of AAC(6')-Ig known to bind tobramycin are indicated with asterisks below the residue. The green asterisk corresponds to the putative active site glutamate for SatA and a reported binding site of tobramycin for AAC(6')-Ig.

Purity 90% 79% 78% 89% 79% 83% 83% 84% 90% 90% 95% 86% 92% 90% 98% 61% 86% 72% 53% 66% 60% 56% 84% 86% 89% 87% 86% Figure S5. Assessment of BsSatA and BaSatA variants purity. Samples of each variant were run on SDS-PAGE, followed by staining with Coomassie Brilliant Blue R. Protein purity was calculated by running various dilutions of proteins on a separate 12% SDS-PAGE gel and bands were quantified using Total Lab software (4). MM stands for molecular mass marker.

Figure S6. *Ba***SatA** *in vitro* activity is highest in HEPES buffer. Various buffers (50 mM) were used to determine the specific activity of *Ba*SatA under saturating conditions (10 μ M streptothricin and 500 μ M AcCoA) using a continuous DTNB spectrophotometric assay (5) as described in the *Material and Methods*. Abbreviations: MES (2-(*N*-morpholino)ethanesulfonic acid), Bis-Tris (Bis(2-hydroxyethyl)amino-tris(hydroxymethyl)methane), MOPS (3-(*N*-morpholino)propanesulfonic acid), HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), and Tris (*tris*(hydroxymethyl)aminomethane).

REFERENCES

- 1. Berkowitz D, Hushon JM, Whitfield HJ, Jr., Roth J, Ames BN. 1968. Procedure for identifying nonsense mutations. J Bacteriol 96:215-220.
- 2. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647-1649.
- 3. Gouet P, Courcelle E, Stuart DI, Metoz F. 1999. ESPript: multiple sequence alignments in PostScript. Bioinformatics 15:305-308.
- 4. Sasse J. 1991. Detection of proteins, p 10.6.1-10.6.8. *In* Ausubel FA, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (ed), Curr Protoc Mol Biol, vol 1. Wiley Interscience, New York.
- 5. Eyer P, Worek F, Kiderlen D, Sinko G, Stuglin A, Simeon-Rudolf V, Reiner E. 2003. Molar absorption coefficients for the reduced Ellman reagent: reassessment. Anal Biochem 312:224-227.