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Isak Johansson-Åkhe1 Claudio Mirabello1 and Björn Wallner1,∗

December 10, 2018

1 Description of Features

Below, the features used by the Random Forest in InterPep are described in
more detail. Two residues are defined as interacting if their closest heavy atoms
are within 6Å.

Length: Five features relate to different lengths:

1. Length of the target peptide.

2. Length of the target protein chain.

3. Length of the aligned partner chain.

4. Length of the aligned segment.

5. Number of residues in the aligned segment that are involved in inter-
chain interaction in the aligned partner chain, i.e the length of the
proposed interaction surface.

Alignment Quality: Three features are based on the quality of the
structural alignment:

1. TM-score normalized on the target protein chain.

2. TM-score normalized on the aligned partner chain.

3. RMSD of the alignment.

Aligned Region Complexity: Small and simple motifs will score a large
number of structural hits that might not be relevant.

1. Contact order of aligned region of the target chain.

2. Length of the longest aligned α-helix.
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Amino Acid Composition Distance: These features are included to
measure the similarity in amino acid composition between the targets and
templates, as amino acid composition directly influences the likelihood
of interaction [6, 7]. They are produced in several steps. First, for each
surface (or peptide) a composition vector 20 values long is calculated, each
element being a percentile value representing the fraction of the surface
which is made up of that amino acid. Then, the BLOSUM62 matrix is
multiplied by this vector to produce a new vector not representative of the
exact composition of the surface, but rather its ”compositional space”:

~yi = B~xi (1)

where ~yi is the compositional space vector of the surface i, B is the BLO-
SUM62 matrix, and ~xi is the amino acid composition vector of the surface
i. The Amino Acid Composition Difference between two surfaces j and k
is the angle θ between the compositional space vectors ~yj and ~yk:

θjk = arccos(
~yj · ~yk

‖~yj‖+ ‖~yk‖
) (2)

1. Between the target peptide sequence and the residues of the template
which the aligned parts of the template structure interact with, i.e
the peptide representative part of the template.

2. Between the residues of the target chain that have aligned counter-
parts involved in protein-protein interaction, i.e the proposed interac-
tion surface, and the residues these align to in the template structure.

Secondary Structure: Two vectors of three values each represent the
relative secondary structure composition for:

1. Predicted secondary structure of the peptide using PSIPRED
[5].

2. Actual secondary structure defined by STRIDE [3] for the residues
interacting with the target protein in the template.

Surface Information: These represent additional information regarding
the proposed interaction surface.

1. Relative exposure of the residues of the proposed interaction surface,
measured with NACCESS [4]. Completely buried residues should be
less likely to be involved in interactions.

2. Mean relative conservation of the residues of the proposed interac-
tion surface, calculated with PSIBLAST [1]. Higher conservation
indicates the residues are vital to protein function [2].

Peptide Template Information: Three values give information about
the parts of chains in the aligned partner’s file which interact with it.
These features were included to measure how likely it is that the surface
can be replaced by a single, small, and uninterrupted peptide chain.
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1. Mean sequential distance between interacting residues. The distance
was capped at 10 residues. If multiple chains are involved, the se-
quential difference between them counts as 10 residues.

2. Median sequential distance between interacting residues. The dis-
tance was capped at 10 residues. If multiple chains are involved, the
sequential difference between them counts as 10 residues.

3. Summed lengths of all chains interacting with the aligned partner
chain.

Model Information (optional): The sequence identity between the
target and the template used in the modeling step. This feature is only
used if the target structure is modeled.

2 Performance of Random Forest

2.1 Calculating Gini Impurity

Gini Impurity is used both for training and analyzing decision trees, as from a
Random Forest.

At any given point in a decision tree, the Gini Impurity is the probability of
incorrectly assigning a label to a target if labels would be assigned randomly by
the distribution of labels at that point. In the case of two possible labels (False
or True, 0 or 1), the total Gini impurity for a node is calculated as follows:

G(x) = 1−
1∑

i=0

p2i = 1− p20 − p21 (3)

where G(x) is the Gini impurity of node x, and pi is the probability that the
label i is chosen if randomly sampling the incoming population.

The importance Q(f) of a feature f in a decision tree is measured by the
total reduction in Gini impurity over all branches split on that feature, as seen
in equation 4. In the case of calculating the total importance of a group of
features, branchings which lead to further branchings on a feature from the
group are disregarded.

Q(f) =
∑

i∈k(f)

(ni ∗Gi − nir ∗Gir − nil ∗Gil) (4)

where k(f) is a list of all branches split on the feature f , i denotes a specific
branch (i ∈ k(f)), nx is the total number of samples from the training set which
arrived at branch x, Gx is the Gini impurity of branch x, ir denotes the right
child node of branch i, and il denotes the left child node of branch i. To get
the relative feature importance for each feature, Q(f) is normalized by the total
importance of all features.
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Figure 1: (a): Matthew’s correlation coefficient for final local score residue
predictions of InterPep with different score cutoffs for what is considered a true
prediction of a residue. Note that this is not the mean Matthew’s correlation
coefficient over the proteins, but rather the correlation over all residues in the
data-set. (b): ROC-curve of the performance of the Random Forest Classifier
as compared to the Random Forest Regressor.

2.2 Optimizing the Random Forest

Different parameters were tested for the Random Forest Classifier.
Firstly, the PPV cutoff for deciding if a template interaction site is regarded

as ”correct” or not was varied from 0.2 to 1.0. Additionally, a test was con-
ducted where the Random Forest Classifier was substituted for a Random Forest
Regressor. Results shown in figure 1. Note that from (a), we can also deduce
that the optimal cutoff for residue scoring is 0.19. From these figures, it was
clear that if using a classifier, the precision cutoff for evaluating a site as correct
should be 80%. However, it was not clear if a Regressor should be used instead.
When looking at the total number of correctly identified peptide-binding sites
however, the Regressor found only 244, as compared to the Classifier finding
255. Thus, InterPep uses a Random Forest Classifier.

2.3 Performance for Model Structures

As different Random Forests were required for the native data-set and the mod-
eled data-set, there should be some difference in how the features are treated,
figure 2. However, as can be seen in the figure, the differences were all minor
and well within standard deviation, except for the case of the new feature of
sequence identity. This means that either this new feature alone stands for most
of the difference, or the other features simply kept their importance but received
different split-values in their branchings.
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Figure 2: Comparison of relative feature importance between the Random Forest
trained on native structures (shown in green), and the one trained on both native
and modeled structure (shown in blue).

3 InterPep score

Figures describing the correlation between Matthew’s correlation coefficient and
InterPep score can be found in figure 3. From these it can be noted that the
results should not be trusted for InterPep score less than 0.5, can be seen as
ambiguous around 0.6, and can be trusted with few errors at 0.8 or above.

4 Models

InterPepM for models has comparable performance with InterPep for native
structures. As such, if InterPep fails, perhaps generating a model for a native
structure and running InterPepM could find the correct answer. In Figure 4, the
results from several models are taken into consideration, and the result from the
model with the highest InterPep global score was chosen to represent the final
prediction for the target modeled. As is apparent however, the performance
increase is negligible, as performance starts at 255 correctly identified sites and
ends at 279, when considering 2 modeled structures in addition to the native
one.
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Figure 3: Correlation between InterPep global score and Matthew’s correlation
coefficient between local score and native contacts for predictions on (a and
c): native structures, and (b and d): modeled structures. In (a and b): the
standard InterPep was used. In (c and d): InterPepM was used, which is the
same as InterPep except trained on both model and native structures, and with
an extra feature for the sequence identity from the modeling.
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Figure 4: Performance increase from choosing the highest scoring result from
several models, rather than just the model with best sequence identity. The
first bar represents only running InterPep on the native structure, and not
considering any models.

7



References

[1] Stephen F Altschul, Thomas L Madden, Alejandro A Schäffer, Jinghui
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