Supporting Information

Self-assembly into nanoparticles is essential for receptor mediated uptake of therapeutic antisense oligonucleotides

Kariem Ezzat^{1*}, Yoshitsugu Aoki^{1,11*}, Taeyoung Koo^{1,2,3}, Graham McClorey¹, Leif Benner¹, Anna Coenen-Stass¹, Liz O'Donovan⁴, Taavi Lehto⁵, Antonio Garcia-Guerra⁶, Joel Nordin⁵, Amer F. Saleh⁴, Mark Behlke⁷, John Morris¹, Aurelie Goyenvalle⁸, Branislav Dugovic⁹, Christian Leumann⁹, Siamon Gordon¹⁰, Michael J. Gait⁴, Samir El–Andaloussi^{1,5} and Matthew JA Wood¹.

¹Department of Physiology, Anatomy and Genetics, University of Oxford, OX13QX, Oxford, UK
²Center for Genome Engineering, Institute for Basic Science, Seoul, South Korea
³Functional Genomics, University of Science and Technology, Daejeon, South Korea
⁴Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
⁵Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
⁶Department of Physics, University of Oxford
⁷Integrated DNA Technologies (IDT), Coralville, Iowa, USA
⁸Université de Versailles Saint Quentin, Montigny le Bretonneux, France
⁹Department of Chemistry & Biochemistry, University of Bern, Bern, Switzerland
¹⁰Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, Oxford, UK

*These authors contributed equally to this work.

Correspondence should be addressed to: <u>matthew.wood@dpag.ox.ac.uk</u>

Figure S1.

Figure S1. (A) DLS analysis of tcDNA, 2'OMe and PPMO in the presence of physiological concentrations of albumin (BSA). Each was measured 3 times (different colors) at final concentration of 500 μ M for tcDNA and 2'OMe and 50 μ M for PPMO after incubation with albumin solution in PBS at 37 °C for 1h (B) Nanoparticles formed by FITC-labelled tcDNA and PPMO after incubation with full serum for 1h at 37° C and separation via a continuous sucrose gradient visualized by fluorescence microscopy, scale bar = 5 μ m. (C) PPMO at the concentration of 50 μ M was loaded on a 1.25% agarose gel with ethidium bromide and run in 3 different conditions, TBE, TBE with 4x Tris and TBE with 4x boric acid (BA).

Figure S2.

Figure S2. qPCR analysis of SCARAs in (A) C2C12 and (B) H2k *mdx* myoblast or myotube cells. Day 1 levels were set to 100% expression and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as an internal control to determine relative RNA expression levels throughout samples, n=3. *P < 0.05; one-way ANOVA, error bars represent mean \pm SEM.

Figure S3.

Figure S3. (A) Negatively stained TEM pictures of nanoparticles formed by Pip6a-PMO; Bar = 100 nm. (B) Analysis of Pip6a-PMO uptake in the presence of SR ligands. Differentiated C2C12 cells were pretreated with ligands or controls (5 µg/ml for fucoidin, dextran and chondroitin sulfate, 25 µg/ml for poly I and poly C) for 1 h and subsequently incubated for 4 h with fluorescein labelled Pip6a-PMO at 250 nm, then the cells were washed and internalization was assessed by fluorescence spectrophotometry. *** P< 0.001; Student's t-test, error bars represent mean \pm SEM.

Figure S4.

Figure S4. Differentiated C2C12 cells $(10x10^3/cm^2)$ were treated with FITC-labelled ASOs at 2µM for 24h at (**A**) 37 °C compared to 4 °C, or (**B**) in Opti-MEM® compared to differentiation medium with 2% horse serum (2% HS), then the total fluorescence was quantified in each well using spectrophotometry . *P < 0.05, **P < 0.01, ***P < 0.001; Student's t-test; error bars represent mean \pm SEM. *Mdx* primary myoblasts seeded in 6 well-plate treated with (**C**) tcDNA or 2'OMe targeting exon 23 (final concentration 1.17 µM) or (**D**) tcDNA or 2'OMe targeting exon 51 (final concentration 265 nM) using lipofectamine 2000 reagent according to manufacturer's protocol. Sequences for the exon 51 skipping ASOs are 5'-UCAAGGAAGAUGGCAUUUCU-3' for 2'OMe, and 5'-TCAAGGAAGATGGCATTTCT-3' for tcDNA. The products of nested reverse transcription-PCR (RT-PCR) were examined by electrophoresis on a 2% agarose gel 48 h after transfection.