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eAppendix 1. Details of System Dynamics Model 

 
We developed a system dynamics model (also known as compartmental model) (1), the 
Opioid Policy Model (OPyM), to simulate the opioid overdose crisis in the United States 
(US) from 2002–2025, and used it to assess the effects of reducing the incidence of 
nonmedical opioid analgesic use on the number of opioid overdose deaths.  
 
We estimated the values of model parameters directly from data, where possible, 
including the National Survey on Drug Use and Health (NSDUH) (2), and the multiple 
cause of death data from the Centers for Disease Control and Prevention (CDC) (3). For 
parameters that could not be informed by available data sources, we fitted them using a 
model calibration approach. Further details of parameter estimation and calibration are 
described in eAppendix 2. 
 
In this section, we describe the definition, structure, and evaluation of the system 
dynamic model in further detail, specifically: 

1) Definition of compartments and the mathematical system dynamics model; 
2) Formulation of time-dependent model parameters using joinpoint regression 

analysis; 
3) Model evaluation accounting for uncertainty in input parameters. 

 
A1.1 System Dynamics Model Structure 
 
The system dynamics model consists of three compartments that represent the major 
subgroups of the population that use opioids (prescription and illicit) non-medically. The 
definitions of these population groups were adapted from the available information in the 
NSDUH survey data. In particular, we categorized the population with non-medical 
opioid use into the following three groups (eFigure 1):  

1) People with non-medical use of prescription opioids, denoted by compartment 
(N). The corresponding selection criteria for this group in the NSDUH data 
include all the respondents who claimed to use opioids non-medically in the past 
year, did not claim heroin use in the past year, and did not meet opioid use 
disorder DSM-IV (Diagnostic and Statistical Manual of Mental Disorders 4th 
Edition) diagnosis criteria;  

2) People with prescription opioid use disorder (OUD), denoted by compartment 
(D). The corresponding selection criteria for this group in the NSDUH data 
include respondents who met DSM-IV criteria for opioid abuse or dependence 
and did not claim to use heroin in the past year;  

3) People with illicit opioid use, denoted by compartment (I). The corresponding 
selection criteria for this group in the NSDUH data include respondents who 
claimed to use illicit heroin/fentanyl (regardless of the route of administration).  

a. It is worth noting that it is possible that an individual uses both 
prescription opioids and heroin at the same time in real-world situations. 
However, by our hierarchical definitions of compartments, if the person 
claimed to use heroin/fentanyl in the past-year, he/she is categorized into 
the illicit opioid use compartment (I).  
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b. To keep the model parsimonious, we did not separate illicit opioid use 
without vs. with OUD. Separating it into different compartments would 
have increased the number of model parameters whose estimates are not 
readily available (e.g., transition rate from illicit opioid use to illicit 
OUD), without allowing us to query additional policy implications that 
were relevant the scope of this study. 

 
 
Time progresses continuously in the model. As shown in eFigure 1, new individuals 
enter the model using either prescription opioids non-medically (compartment N) or 
illicit opioids (compartment I), and then transition through different compartments, i.e., 
progressing through different states of opioid use. From non-medical use of prescription 
opioids, individuals can develop a prescription OUD (compartment D). Individuals who 
used prescription opioids, with or without prescription OUD (compartments N and D), 
can transition to illicit opioid use (compartment I). Individuals were subject to opioid 
overdose death with mortality rates dependent on their compartment. In addition, 
individuals could transition out of the model when they either stopped using opioids or 
died from other (i.e., non-opioid-related) causes. 
 
Mathematically, we used 𝑁𝑁(𝑡𝑡), 𝐷𝐷(𝑡𝑡), 𝐼𝐼(𝑡𝑡) to represent the prevalence for each 
compartment at time 𝑡𝑡, and the system dynamics were represented by the following 
ordinary differential equations: 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝜆𝜆𝑁𝑁(𝑡𝑡) − (𝜇𝜇𝑁𝑁 + 𝑚𝑚𝑁𝑁 + 𝑝𝑝𝑁𝑁𝑁𝑁 + 𝑝𝑝𝑁𝑁𝑁𝑁) ⋅ 𝑁𝑁(𝑡𝑡), 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑝𝑝𝑁𝑁𝑁𝑁 ⋅ 𝑁𝑁(𝑡𝑡) − �𝜇𝜇𝐷𝐷(𝑡𝑡) + 𝑚𝑚𝐷𝐷(𝑡𝑡) + 𝑝𝑝𝐷𝐷𝐷𝐷(𝑡𝑡)� ⋅ 𝐷𝐷(𝑡𝑡), 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝜆𝜆𝐼𝐼(𝑡𝑡) + 𝑝𝑝𝐷𝐷𝐷𝐷(𝑡𝑡) ⋅ 𝐷𝐷(𝑡𝑡) + 𝑝𝑝𝑁𝑁𝑁𝑁 ⋅ 𝑁𝑁(𝑡𝑡) − �𝜇𝜇𝐼𝐼 + 𝑚𝑚𝐼𝐼(𝑡𝑡)� ⋅ 𝐼𝐼(𝑡𝑡), 
 
with initial conditions �𝑁𝑁(𝑡𝑡0), 𝐷𝐷(𝑡𝑡0), 𝐼𝐼(𝑡𝑡0)� = (𝑁𝑁0, 𝐷𝐷0, 𝐼𝐼0). Model variables are described 
as follows: 
 

• 𝑁𝑁(𝑡𝑡), 𝐷𝐷(𝑡𝑡), 𝐼𝐼(𝑡𝑡): The prevalence of non-medical use of prescription opioids 
(compartment N), prescription OUD (compartment D), 
and illicit opioid use (compartment I), respectively, at time 
𝑡𝑡. 

• 𝑁𝑁0, 𝐷𝐷0, 𝐼𝐼0: Initial value for each compartment at time 𝑡𝑡0, i.e., year 
2002. 

• 𝜆𝜆𝑁𝑁(𝑡𝑡) and 𝜆𝜆𝐼𝐼(𝑡𝑡): Annual incidence of non-medical use of prescription 
opioids and of illicit opioid use from other sources (i.e., 
not from prescription opioids), respectively, at time t.  The 
model differentiates two cases of incident illicit opioid 
use: those who progress to illicit opioid use from 
prescription opioid use and those who initiate opioid use 
with illicit opioids; 𝜆𝜆𝐼𝐼(𝑡𝑡) refers to the latter case. 
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• 𝑝𝑝𝑁𝑁𝑁𝑁, 𝑝𝑝𝐷𝐷𝐷𝐷(𝑡𝑡), 𝑝𝑝𝑁𝑁𝑁𝑁: Annual transition rate from compartments N to D, D to I, 
and N to I, respectively, at time 𝑡𝑡. 

• 𝑚𝑚𝑁𝑁,𝑚𝑚𝐷𝐷(𝑡𝑡),𝑚𝑚𝐼𝐼(𝑡𝑡):  Overdose mortality rate from compartments N, D, and I, 
respectively, at time t. 

• 𝜇𝜇𝑁𝑁, 𝜇𝜇𝐷𝐷(𝑡𝑡), 𝜇𝜇𝐼𝐼:  Exit rate from compartments N, D, and I, respectively, at 
time t. 

 
 
The system dynamics model was implemented in R programming language (Version 
3.4.0) using “deSolve” package to solve the ordinary differential equations.  
 
For some model parameters, we considered time-dependent structure in their values, 
because a constant value over time may not be sufficient to capture the highly dynamic 
trends in the current opioid epidemic, such as rapidly increasing overdose deaths in the 
past few years, and the increasing proportion of opioid initiates from illicit opioids. Next, 
we describe the formulation of time-dependent parameters.  
 
A1.2 Joinpoint Model for Time-Dependent Parameters 
 
To model the time-dependent structure of model parameters, we applied joinpoint 
regression analysis (4, 5), which is commonly used to describe trends over time and 
identify changes in a trend at certain time points. A joinpoint regression model for 
parameter 𝛽𝛽(𝑡𝑡) consists of the following components:  

1) 𝛽𝛽0, the baseline value at the initial time point 𝑡𝑡0; 
2) 𝛼𝛼1, annual percentage of change (APC) before the joinpoint;  
3) 𝜏𝜏, a joinpoint time indicating a significant change of APC from time 𝜏𝜏 onwards 

(i.e., an inflection point of trend at time 𝜏𝜏); and  
4) 𝛼𝛼2, APC after the joinpoint 𝜏𝜏.  

Mathematically, time-dependent parameter 𝛽𝛽(𝑡𝑡) is determined as follows: 
 

𝛽𝛽(𝑡𝑡) = � 𝛽𝛽0 ⋅ (1 + 𝛼𝛼1)𝑡𝑡 if 𝑡𝑡0 < 𝑡𝑡 < 𝜏𝜏,
𝛽𝛽0 ⋅ (1 + 𝛼𝛼1)𝜏𝜏 ⋅ (1 + 𝛼𝛼2)𝑡𝑡−𝜏𝜏 if 𝑡𝑡 ≥ 𝜏𝜏.

  

 
If there is no joinpoint 𝜏𝜏 specified, 𝛽𝛽(𝑡𝑡) increases/decreases with APC 𝛼𝛼1 indefinitely 
since time 𝑡𝑡0. Joinpoint regression can also be generalized to include more than one 
joinpoint.  
 
For our system dynamics model, we first estimated the annual incidence of prescription 
opioid misuse from 2002–2014 using the NSDUH data (see A2.1 for estimation details), 
and then applied the joinpoint regression analysis on the annual incidence to obtain the 
joinpoint equation for 𝜆𝜆𝑁𝑁(𝑡𝑡) (eFigure 2A, eTable 1). Instead of directly using the raw 
annual incidence estimates from NSDUH data, we used the joinpoint regression equation 
in our system dynamics model to avoid unsmooth variations in the incidence values 
across years.  
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To estimate time-dependent values of the overdose mortality rates, 𝑚𝑚𝐷𝐷(𝑡𝑡) and 𝑚𝑚𝐼𝐼(𝑡𝑡), we 
performed the joinpoint regression analysis on the multiple cause of death data from the 
CDC Wide-Ranging Online Data for Epidemiologic Research (WONDER) for 2002–
2015, and identified inflection points in the numbers of annual overdose deaths (Figures 
2B and 2C). In particular, we incorporated the joinpoint year of 2011 for overdose 
mortality rate from illicit opioids 𝑚𝑚𝐼𝐼(𝑡𝑡), and a joinpoint year of 2007 for overdose 
mortality rate from prescription OUD 𝑚𝑚𝐷𝐷(𝑡𝑡) (eTable 1).  However, the baseline value, 
𝛼𝛼1, and 𝛼𝛼2 obtained from the joinpoint regression equations cannot be directly used for 
parameters 𝑚𝑚𝐷𝐷(𝑡𝑡) and 𝑚𝑚𝐼𝐼(𝑡𝑡), because the observed data from CDC WONDER were the 
counts of overdose deaths, whereas the parameters 𝑚𝑚𝐷𝐷(𝑡𝑡) and 𝑚𝑚𝐼𝐼(𝑡𝑡) represented the 
transition rates per year (i.e., annual risks) of overdose deaths. Thus, in the joinpoint 
regression equations of the mortality rate parameters 𝑚𝑚𝐷𝐷(𝑡𝑡) and 𝑚𝑚𝐼𝐼(𝑡𝑡), we implemented 
the joinpoint years informed by the joinpoint analysis of CDC WONDER data, but 
determined the baseline value, 𝛼𝛼1, and 𝛼𝛼2 via model calibration (see eAppendix 2).  
 
For the incident illicit opioid use (𝜆𝜆𝐼𝐼(𝑡𝑡)), transition rate from prescription OUD to illicit 
opioid use (𝑝𝑝𝐷𝐷𝐷𝐷(𝑡𝑡)), and exit rate from compartments D (𝜇𝜇𝐷𝐷(𝑡𝑡)), we considered a simpler 
time-dependent model structure without a joinpoint, i.e., a simple growth models with 
fixed 𝛼𝛼1, as we found that such structures provided better fit to the observed data (i.e., 
model calibration) compared with assuming constant transition rates. Due to lack of 
information for inferring the joinpoint time, we kept the time-dependent model simplistic, 
and their baseline values and APC 𝛼𝛼1 were determined through model calibration 
(eAppendix 2).  
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eAppendix 2. Model Parameter Estimation and Calibration  
 
In this section, we describe the estimation and calibration of parameter values in our 
system dynamics model. To account for model uncertainty, we also describe the sampling 
distributions of input parameter values. Different input parameter values were sampled 
for each model evaluation, which was repeated by 1000 times. From the 1000 
replications of model evaluations, we presented the mean results (i.e., the average value 
of model outputs), and presented the 95% uncertainty interval using the 2.5th–97.5th 
percentile range of model outputs.  
 
A2.1. Parameter Estimation 
 
For the following parameters, we estimated their values directly from the NSDUH data: 
 
1) Initial prevalence values, 𝑁𝑁0, 𝐷𝐷0, and 𝐼𝐼0 for each compartment at year 2002. We first 
performed joinpoint regression analysis on the prevalence of each compartment estimated 
from the NSDUH data. The fitted joinpoint regression equations provided the estimates 
of the expected counts at each year, and we used the estimates at the year 2002 for the 
initial prevalence values. To account for uncertainty in those values, we used the standard 
error estimates from the NSDUH data and sampled the initial prevalence values assuming 
normal distribution as follows: 

• Initial value of compartment N: 𝑁𝑁0 with mean 10,029,859 and standard deviation 
329,807; 

• Initial value of compartment D: 𝐷𝐷0 with mean 1,369,218 and standard deviation 
116,347; 

• Initial value of compartment I: 𝐼𝐼0 with mean 328,731 and standard deviation 
60,446. 

 
2) Incidence of prescription opioid misuse 𝜆𝜆𝑁𝑁(𝑡𝑡) at time 𝑡𝑡. We first estimated the annual 
incidence of non-medical use of prescription opioids using the NSDUH survey data from 
2003-2014. To capture the annual incidences for the full year, we calculated the 
incidence for each calendar year using the survey data from the following year. For 
example, incidence estimate for 2002 was calculated from survey data in 2003. 
Specifically, we queried for respondents of the survey in 2003 who claimed having 
initiated opioids in the previous year, i.e., in 2002. This way, it allowed us to capture an 
entire 12-month period for incidence (otherwise, using the 2002 survey data would 
underestimate the incidence for the 2002 year, because the survey could take place 
anywhere during the year, leaving the new incidences after the survey excluded). The 
survey data from 2015 was not used to calculate the 2014 incidence because the survey 
questions changed and the variables available were no longer synonymous. We used 
survey weights to estimate the incidence of non-medical use of prescription opioids for 
the entire US population.  

As indicated in Section A1.2, we then conducted the joinpoint analysis on the 
above estimates of annual incidence of prescription opioid misuse from the NSDUH data, 
which provided the estimates and the standard error of baseline value, 𝛼𝛼1 and 𝛼𝛼2 of the 
joinpoint regression equation (see eTable 1). We sampled these three values from a 
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normal distribution based on the estimates of mean and standard deviation to determine 
the equation of 𝜆𝜆𝑁𝑁(𝑡𝑡). 

 
A2.2. Model Calibration 
 
Because some model parameters are not directly observable from existing datasets, we 
used calibration methods (6-8) to estimate their values and ranges such that the model 
outcomes would closely match existing data. In this section, we describe the calibration 
parameters, targets, goodness-of-fit measure, search algorithm, and calibration results.  
 
Calibration parameters  
 
A total of 17 model parameters were determined by the model calibration, which are 
defined below:  

• 𝑚𝑚𝑁𝑁: overdose mortality from compartment N (1 parameter); 
• 𝑚𝑚𝐷𝐷(𝑡𝑡) and 𝑚𝑚𝐼𝐼(𝑡𝑡): joinpoint model for overdose mortality (baseline, 𝛼𝛼1, and 𝛼𝛼2) 

from compartment D and I, respectively (6 parameters); 
• 𝑝𝑝𝑁𝑁𝑁𝑁 and 𝑝𝑝𝑁𝑁𝑁𝑁: progression rate from compartment N to D, and from N to I, 

respectively (2 parameters); 
• 𝑝𝑝𝐷𝐷𝐷𝐷(𝑡𝑡): joinpoint model for progression rate from D to I: baseline and 𝛼𝛼1 (2 

parameters); 
• 𝜆𝜆𝐼𝐼(𝑡𝑡): joinpoint model for incidences of initiating illicit opioids: baseline and 𝛼𝛼1 

(2 parameters); 
• 𝜇𝜇𝑁𝑁 and 𝜇𝜇𝐼𝐼: exit rates for compartment N and I, respectively (2 parameters); 
• 𝜇𝜇𝐷𝐷(𝑡𝑡): joinpoint model for exit rate for compartment D: baseline and 𝛼𝛼1 (2 

parameters). 
 
Calibration targets  
 
We compared the following model-predicted outcomes with observed data: prevalence of 
prescription opioid non-medical use, OUD, and illicit opioid use based on NSDUH data; 
(2) the number of overdoses from all opioids and illicit opioid use from on CDC 
WONDER data; (3) and the percentage of illicit opioid among initiating opioids based on 
a published study (eTable 2) (9).  
 
 
Goodness-of-fit metric 
 
For any given set of model parameters, we assessed how well the model was fitted to the 
calibration targets. That is, we compared the model outputs 𝑂𝑂𝑖𝑖 with corresponding 
calibration targets 𝐸𝐸𝑖𝑖 (eTable 3), and calculated the goodness-of-fit measure.  For each 
calibration target, model error is defined by the sum of squared errors between model 
outputs and calibration targets over all years, and then normalized by the initial value of 
this target to preserve comparable magnitude across different calibration targets. The 
overall goodness-of-fit measure, the total error,  was defined as the summation of model 
errors over all calibration targets (with equal weights): 
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total error = �� �
𝐸𝐸𝑖𝑖(𝑡𝑡) − 𝑂𝑂𝑖𝑖(𝑡𝑡)

𝐸𝐸𝑖𝑖(𝑡𝑡1) × 100�
2𝑡𝑡𝑛𝑛

𝑡𝑡=𝑡𝑡1𝑖𝑖

. 

 
Calibration procedure  
 
To calibrate the model, we used a directed search method to identify the sets of 
parameters that lead to “good” model fits. An optimization algorithm was applied to 
iteratively search for the parameter sets with the lowest possible total model errors. We 
systematically tested multiple optimization functions in R (L-BFGS algorithm with 
package “lbfgsb3”, Nelder-Mead algorithm with package “dfoptim”, Differential 
Evolution Optimization with package “DEoptim”, and Generalized Simulated Annealing 
with package “GenSA”), and selected package “GenSA”, which consistently 
outperformed other algorithms with good solution qualities within reasonable 
computation time.  
 
Search for the “optimal” values of calibration parameters was bounded within the pre-
determined range for each parameter. Because the search results from the optimization 
function (i.e., the calibration results) depend on the starting values of the search, we 
sampled the starting values for all parameters uniformly within their pre-determined 
ranges using Latin hypercube sampling approach and repeated the directed search for 
1,000 replications. The parameter ranges were initially determined based on expert 
opinions and set conservatively wide.  
 
For some parameters, we observed that the calibrated values were concentrated at the 
lower or upper bounds of their range. When this happened, we expanded the ranges and 
repeated the calibration process. We repeated this process until we observed that all 
calibrated parameters represented a “full” distribution of values (not a “truncated” 
distribution) over their search ranges. In addition, we made sure that the total calibration 
errors were reduced after each iteration of adjusting the search ranges. In this way, we 
believe that the search has adequately explored the promising areas with “good” values of 
model parameters that result in good model fitting.  
 
Calibration results  
 
The optimal solutions identified from 1,000 replications of model calibrations were 
collected and considered as the set of calibrated model parameters. To account for 
uncertainty in model input parameters, we did not average these parameter values into 
aggregated estimates for the model evaluation; instead, we evaluated the model outcomes 
using each of the 1,000 parameter sets and estimated 95% uncertainty intervals from the 
1,000 replications of model evaluations. eFigure 3 shows the distribution of calibrated 
parameter values over the search ranges for the calibration, and eTable 4 summarizes 
values of the calibrated parameters. Model outcomes with calibrated parameters and 
comparisons with calibration targets can be found in Figures 2 and 3 of the main 
manuscript.  
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eAppendix 3. Parameters for Model Projection 
 
A3.1. Parameters for Projection Scenarios 
To project model outcomes after year 2015, we considered three projection scenarios 
where the overdose mortality 𝑚𝑚𝐼𝐼(𝑡𝑡) and annual incidences 𝜆𝜆𝐼𝐼(𝑡𝑡) of illicit opioid use will 
continue to increase after 2015 but stabilize at different time points in future. In 
particular, we simulated:  

1) a base-case scenario, which assumes that the overdose mortality rate (i.e., 
lethality) of illicit opioids and the annual rate of incident illicit opioid use would 
stabilize by 2020; and  

2) a pessimistic scenario which assumes that both rates would stabilize by 2025. 
 
To implement such a structure, for any given APC value (i.e., 𝛼𝛼2 for 𝑚𝑚𝐼𝐼(𝑡𝑡) and 𝛼𝛼1 for 
𝜆𝜆𝐼𝐼(𝑡𝑡) that was obtained from model calibration), we decreased the value by a fixed 
amount every year after 2015 such that the APC decreases to 0 at the targeted stabilizing 
year (i.e., the year 2020 and 2025 in the base-case and pessimistic scenario, respectively); 
and the values of 𝑚𝑚𝐼𝐼(𝑡𝑡) and 𝜆𝜆𝐼𝐼(𝑡𝑡) remain constant afterwards. eFigure 4 illustrates the 
time-dependent structure of these two parameters for the base-case projection scenario.  
 
 
A3.2 Simulated Strategies to Reduce the Incidence of Non-Medical Prescription 
Opioid Use  
 
To evaluate the impact of reducing the incidence of non-medical opioid analgesic use on 
the number of opioid overdose deaths, we simulated the following four incidence trends 
representing different effects of strategies to reduce the incidence of non-medical 
prescription opioid use: (1) no change in the annual incidence of prescription opioid 
misuse from 2015 onward; (2) decreasing incidence of prescription opioid misuse from 
2016–2025, at a rate of 7.5% per year as observed between 2008–2015 (i.e., 𝛼𝛼2 in the 
joinpoint model for 𝜆𝜆𝑁𝑁(𝑡𝑡) before 2015), which may be achieved by continued 
implementation and success of prevention programs; (3) decreasing incidence of 
prescription opioid misuse at a rate that is 50% faster than strategy 2 (i.e., a 11.3% 
decrease per year), which assumes greater success of prevention programs; and (4) a 
hypothetical setting of no new incidence of prescription opioid misuse after 2015, which 
was included to assess the maximum possible benefits of prevention interventions under 
ideal conditions. eFigure 5 illustrates the retrospective incidence data prior to 2015 
estimated from the NSDUH data, and four incidence trends from 2016 onwards that 
correspond with the above four prevention strategies (shaded areas represent uncertainty 
intervals).  
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eAppendix 4. Additional Sensitivity Analysis for NSDUH Estimates 

 
One of our model limitations is that we used NSDUH data for model calibration and 
parameterization, which does not capture homeless and incarcerated population and is 
based on self-reported outcomes. Thus, the NSDUH data could represent underestimates 
of the actual epidemic situation. Since no other data are readily available for such 
underrepresented population at national level, we conducted sensitivity analysis on our 
model parameters estimated from NSDUH data to assess the impact of the underestimates 
on our model results.  
 
To determine the possible variability to the estimates obtained from NSDUH data and to 
adjust the parameter values used in our analysis, we searched the literature to compare 
the differences between the estimates from NSDUH and other independent data sources. 
We found that the NSUDH data estimated the prevalence of opioid abuse and 
dependence in Massachusetts to be 1.17% between 2009-2011 (10), while the estimate 
was 2.72-2.87% in 2011-2012 based on the Chapter 55 dataset that linked the 
Massachusetts All-Payer Claims Database and other state databases (11). Therefore, we 
doubled our estimates of prevalence for each compartment and incidence of prescription 
opioid non-medical use from NSDUH data as an approximation for the adjustment. Then 
we re-calibrated our model to the adjusted prevalence and incidence estimates (eFigure 
6) and repeated our analysis.  
 
We found that, with the doubled prevalence and incidence estimates, the projected 
number of overdose deaths in the base case was increased by only 5.5% (739,100 
compared with 700,400 in the base case results, eTable 5, eFigure 7). Such a small 
change is mostly because the model was re-calibrated to the overdose deaths data from 
CDC WONDER. Furthermore, the relative reduction in cumulative overdose deaths from 
2015-2025 attributable to reducing incidence of prescription opioid misuse became 3.7%-
5.2% (eTable 5), which is comparable to the 3.8%-5.3% reduction in the base case 
results. We acknowledge that our adjustment to the NSDUH estimates is not exact, but 
this sensitivity analysis demonstrated that our model results are robust, and the limitation 
of underestimation by the NSDUH data would not substantially change our conclusions. 
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eFigure 1. Schematic of the System Dynamics Model of Nonmedical Opioid Use 
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eFigure 2. Joinpoint Regression Analysis Based on NSDUH and CDC WONDER Data 
 

 

 
(A) Annual incidences of non-medical prescription opioid use, (B) number of overdose 
deaths from illicit opioids, (C) number of overdose deaths from all opioids. Point 
estimates represent data from NSDUH and CDC WONDER, and the lines represent the 
fitted joinpoint regression model. 
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eFigure 3. Distribution of Calibrated Model Parameter Values Over Their Search Ranges 
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eFigure 4. Changes to Model Parameters That Were Used in the Base Case and 
Pessimistic Projection Scenario 

 
(A) Overdose mortality rates from illicit opioids 𝑚𝑚𝐼𝐼(𝑡𝑡), (B) annual incidence of illicit 
opioid use 𝜆𝜆𝐼𝐼(𝑡𝑡). The solid and dashed lines represent the average values, and the band 
shows the 95% uncertainty interval based on the 1000 calibrated parameter values.  
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eFigure 5. Scenarios of Projected Incidence of Prescription Opioid Misuse 
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eFigure 6. Sensitivity Analysis: Temporal Trends in the Opioid Overdose Crisis With 
Model Re-Calibrated to the Adjusted Prevalence and Incidence Estimates From NSDUH 
Data 

 

 
Lines represent the average of 1000 outcomes from the model. Error bars represent 95% 
confidence intervals of the observed outcomes from the NSDUH data, and blue shaded 
regions represent the bootstrapped 95% uncertainty intervals of the model outcomes.  

Abbreviations: NSDUH, National Survey on Drug Use and Health. Cicero (2017) (9) 
refers to the source of calibration targets. 
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eFigure 7. Sensitivity Analysis: Effects of Preventing New Cases of Prescription Opioid 
Misuse in the Pessimistic and Optimistic Scenarios With Model Recalibrated to the 
Adjusted Prevalence and Incidence Estimates From NSDUH Data 
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eTable 1. Time-Dependent Structure of Model Parameters Informed by the Joinpoint Analysis 

Parameter Baseline value 𝜶𝜶𝟏𝟏 Joinpoint 𝝉𝝉 𝜶𝜶𝟐𝟐 Data source 
𝜆𝜆𝑁𝑁(𝑡𝑡) 2,496,835 

(SE: 124,146.9) 
0.16% 

(SE for slope* 
= 0.0086) 

2008 -7.47%  
(SE for slope* 

= 0.011) 
 

Annual incidence of prescription opioid 
non-medical use from NSDUH data (2), 
defined as first-time non-medical use of 
prescription opioids in the previous year, 
from 2002 to 2014 (eFigure 2A). 

𝑚𝑚𝐼𝐼(𝑡𝑡) - - 2011 - Anuual number of overdose deaths from 
illicit opioids based on CDC 
WONDER(3) data from 2002 to 2015 
(eFigure 2B). 

𝑚𝑚𝐷𝐷(𝑡𝑡) - - 2007 - Annual number of overdose deaths from 
all opioids excluding illicit opioids†, 
based on CDC WONDER (3) data from 
2002 to 2015 (eFigure 2C). 

* The joinpoint analysis provides SE for the slope, where APC = exp(slope)-1. Accordingly, slope for 𝛼𝛼1 is 0.00165, and slope for 𝛼𝛼2 
is -0.0776. 
† No time-dependent structure was assumed for 𝑚𝑚𝑁𝑁 (the overdose mortality rate from compartment N). Considering the population 
without the diagnosis of opioid use disorder in compartment N, the rate is expected to be low and the temporal trend is not needed. For 
model simplicity, we considered 𝑚𝑚𝑁𝑁 as a constant parameter with respect to time. And thus, we assumed that the inflection point of 
the trends in overdose deaths from all opioids at year 2007 was attributed to the change in overdose mortality from compartment D, 
i.e., 𝑚𝑚𝐷𝐷(𝑡𝑡). 

SE, standard error; NSDUH, National Survey on Drug Use and Health; CDC, Centers for Disease Control and Prevention; WONDER, 
Wide-Ranging Online Data for Epidemiologic Research. 
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eTable 2. Calibration Targets by Year From 2002-2015 
Year Prevalence of 

non-medical use 
of prescription 

opioids 
(compartment 

N) 

Prevalence of 
prescription OUD 
(compartment D) 

Prevalence of illicit 
opioid use 

(compartment I) 

Number of 
overdose 

deaths from 
all opioids 

Number of 
overdose 

deaths from 
illicit opioids 

Percentage of 
illicit opioid 

among 
initiating 

opioids (9) 

2002 9,451,560 1,453,161 403,624 11,919 2,089 - 
2003 10,286,778 1,299,348 328,438 12,938 2,080 - 
2004 9,853,595 1,354,599 404,359 13,753 1,881 - 
2005 10,030,636 1,439,493 380,504 14,918 2,009 8.7% 
2006 10,425,880 1,518,935 546,431 17,542 2,772 10.0% 
2007 10,596,588 1,603,280 369,979 18,510 2,408 7.7% 
2008 10,155,192 1,575,440 485,425 19,582 3,041 8.3% 
2009 10,452,059 1,579,737 653,461 20,421 3,656 8.8% 
2010 10,324,665 1,661,686 635,885 21,088 3,294 10.3% 
2011 9,134,108 1,575,867 651,817 22,782 4,397 12.8% 
2012 10,415,868 1,788,298 683,166 23,166 5,925 16.5% 
2013 8,933,049 1,614,243 656,118 25,051 8,257 22.3% 
2014 8,096,621 1,590,185 979,016 28,645 12,644 22.0% 
2015 ---* ---* 841,308 33,090 18,913 33.3% 

* Estimates for year 2015 from NSDUH data were not used due to major changes in survey questions that year. 
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eTable 3. Model Calibration Targets and Corresponding Model Outputs 
Index 

(𝒊𝒊) 
Calibration target (𝑬𝑬𝒊𝒊) Model output (𝑶𝑶𝒊𝒊) 

1 Prevalence of non-medical use of 
prescription opioids 

𝑁𝑁(𝑡𝑡) 

2 Prevalence of prescription OUD 𝐷𝐷(𝑡𝑡) 
3 Prevalence of illicit opioid use 𝐼𝐼(𝑡𝑡) 
4 Overdose death from illicit opioid use 𝑚𝑚𝐼𝐼(𝑡𝑡)𝐼𝐼(𝑡𝑡) 
5 Overdose death from all opioids (from all 

compartments) 
𝑚𝑚𝑁𝑁𝑁𝑁(𝑡𝑡) + 𝑚𝑚𝐷𝐷(𝑡𝑡)𝐷𝐷(𝑡𝑡)

+ 𝑚𝑚𝐼𝐼(𝑡𝑡)𝐼𝐼(𝑡𝑡) 
6 Percentage of illicit opioid use at initial 

regular use of opioid 
𝜆𝜆𝐼𝐼(𝑡𝑡) + 𝑁𝑁(𝑡𝑡)𝑝𝑝𝑁𝑁𝑁𝑁

𝑁𝑁(𝑡𝑡)𝑝𝑝𝑁𝑁𝑁𝑁(𝑡𝑡) + 𝜆𝜆𝐼𝐼(𝑡𝑡) + 𝑁𝑁(𝑡𝑡)𝑝𝑝𝑁𝑁𝑁𝑁
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eTable 4. Estimates and Ranges of Calibrated Model Parameters 
 

Parameter Value (SD) Interquartile Range  
𝜇𝜇𝑁𝑁  0.177 (0.0151) 0.166 - 0.186 
𝑚𝑚𝑁𝑁  0.001 (0.0002) 0.001 - 0.001 
 𝑝𝑝𝑁𝑁𝑁𝑁  0.06 (0.012) 0.053 - 0.069 
𝜇𝜇𝐷𝐷(𝑡𝑡): baseline 0.311 (0.092) 0.249 - 0.38 
𝜇𝜇𝐷𝐷(𝑡𝑡): 𝛼𝛼1 -0.021 (0.0254) -0.038 - -0.005 
𝑚𝑚𝐷𝐷(𝑡𝑡): baseline 0.003 (0.0016) 0.001 - 0.003 
𝑚𝑚𝐷𝐷(𝑡𝑡): 𝛼𝛼1 0.224 (0.113) 0.134 - 0.292 
𝑚𝑚𝐷𝐷(𝑡𝑡): 𝛼𝛼2 0.03 (0.021) 0.014 - 0.043 
𝑝𝑝𝐷𝐷𝐷𝐷(𝑡𝑡): baseline  0.071 (0.0236) 0.054 - 0.088 
𝑝𝑝𝐷𝐷𝐷𝐷(𝑡𝑡): 𝛼𝛼1 0.042 (0.0172) 0.03 - 0.054 
𝑝𝑝𝑁𝑁𝑁𝑁  0.002 (0.001) 0.001 - 0.002 
𝑚𝑚𝐼𝐼(𝑡𝑡): baseline 0.005 (0.0002) 0.005 - 0.006 
𝑚𝑚𝐼𝐼(𝑡𝑡): 𝛼𝛼1 0.011 (0.0061) 0.007 - 0.015 
𝑚𝑚𝐼𝐼(𝑡𝑡): 𝛼𝛼2 0.356 (0.0227) 0.342 - 0.371 
𝜇𝜇𝐼𝐼  0.319 (0.0992) 0.248 - 0.395 
𝜆𝜆𝐼𝐼(𝑡𝑡): baseline 13489 (5347) 8956 - 17608 
𝜆𝜆𝐼𝐼(𝑡𝑡): 𝛼𝛼1 0.235 (0.0399) 0.205 - 0.265 
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eTable 5. Sensitivity Analysis: Projected Opioid Overdose Deaths With Model Recalibrated to the Adjusted Prevalence and Incidence 
Estimates From NSDUH Data 
 

Incidence of non-
medical prescription 
opioid use, 2016–2025 

Number of OD deaths from 
prescription or illicit opioids,  

2016–2025 (% change) 

Number of OD deaths from illicit 
opioids,  

2016–2025 (% change) 

Number of OD deaths 
from prescription 

opioids,  
2016–2025 (% change) 

Base-case scenario (opioid overdose crisis stabilizes by 2020) 
No change since 2015 739,090  593,730  145,360  
Incidence decreases by 
7.5% per year  

711,870  (-3.7%) 581,930  (-2%) 129,940  (-10.6%) 

Incidence decreases by 
11.3% per year  

700,980  (-5.2%) 577,070  (-2.8%) 123,920  (-14.7%) 

No new incidence 613,220  (-17%) 533,040  (-10.2%) 80,190  (-44.8%) 
Pessimistic scenario (opioid overdose crisis stabilizes by 2025) 
No change since 2015 1,350,680  1,205,320  145,360  
Incidence decreases by 
7.5% per year  

1,311,760  (-2.9%) 1,181,820  (-1.9%) 129,940  (-10.6%) 

Incidence decreases by 
11.3% per year  

1,296,130  (-4%) 1,172,210  (-2.7%) 123,920  (-14.7%) 

No new incidence 1,170,110  (-13.4%) 1,089,920  (-9.6%) 80,190  (-44.8%) 
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