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Table S1. Memory usage of Minimap2 for default parameters

PacBio Oxford nanopore
Index construction 8.67 GB 11.32 GB
Index residence 6.33 GB 7.71 GB
Mapping with base-level alignment (SAM output) 8.56 GB 11.30 GB
Mapping without base-level alignment (PAF output) 7.14 GB 8.80 GB

Minimap2 was run with default parameters. Pre-set profiles map-pb and map-ont were used for PacBio and Oxford Nanopore,
respectively. The peak memory usage for each event is presented. Index construction refers to the building of the index and
then serialising the index to a file. Index residence is the memory required only for the index to reside in memory, such as when
loading a pre-built index.

Table S2. Statistics for alignment outputs for 689,781 reads from NA12878

single-idx 16-part-idx-no-merge 16-part-idx-merged
File size (SAM file) 12.1 GB 180 GB 12.4 GB
No of SAM entries 862,427 23,749,310 969,223
No of unaligned entries 127,177 7,365,979 120,775
No of aligned entries 735,250 16,383,331 848,448
No of primary alignments 592,748 6,228,567 654,302
No of secondary alignments 142,502 10,154,764 194,146

Table S3. Mappings of the chromothriptic read which are different in single-idx and 16-part-idx-merged

RefName RefStart RefEnd ReadStart ReadEnd Strand MAPQ Type

chr11 51616896 51619171 228106 230227 + 0 Primary

chr11 51658200 51659147 229344 230227 + 0 Secondary

chr11 51735238 51735692 229848 230263 + 0 Secondary

chr11 51913079 51916719 226802 230227 + 0 Secondary

chr11 53527640 53533417 226770 232447 + 0 Primary

chr11 53696097 53697156 229848 230835 + 0 Secondary

chr11 54005962 54006133 226668 226835 + 38 Primary

chr5 61332327 61332440 156722 156833 + 0 Primary

chr5 61332327 61332729 156586 156863 + 6 Primary

chr6 125655477 125659733 371459 375714 + 0 Primary

chr6 1610948 1611924 156014 156860 + 1 Primary

chr8 60678764 60678812 156722 156770 + 0 Secondary

chr8 60678764 60678812 156806 156860 + 0 Secondary

Only in single-idx Only in 16-part-idx-merged

The alignments which were only found in the single-idx mapped to locations in the range chr11:51616896-54006133. The ones
unique to 16-part-idx-merged mapped to repetitive regions in chr5, chr6 and chr8. chr5:61332327-61332729,
chr6:1610948-1611924 and chr8:60678764-60678812 contained simple repeats. chr6:125,655,477-125,659,733 had simple
repeats,SINE repeats and LTR repeats
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Table S4. Detailed runtime for partitioned indexes

number of partitions 1 2 4 8 16 1 2 4 8 16

chr balancing (min) 0.00 0.15 0.12 0.12 0.13 0.00 0.71 0.50 0.49 0.47

index building (min) 1.02 1.06 1.11 1.21 1.38 1.95 1.87 1.79 1.53 1.58

index concatenation (min) 0.00 0.16 0.12 0.13 0.14 0.00 1.20 1.22 1.20 1.25

total indexing (min) 1.02 1.37 1.35 1.47 1.64 1.95 3.77 3.51 3.22 3.29

index loading (min) 0.23 0.19 0.24 0.27 0.28 1.51 1.48 1.58 1.44 1.47

mapping (min) 17.86 36.03 72.57 133.38 238.33 32.75 43.72 89.01 165.29 299.14

merging (min) 0.00 0.88 0.90 0.93 1.07 0.00 7.27 11.69 21.39 33.43

total mapping (min) 18.10 37.10 73.71 134.58 239.68 34.27 52.46 102.28 188.12 334.05

index loading (min) 0.18 0.19 0.24 0.26 0.26 1.17 1.28 1.41 1.40 1.45

mapping (min) 6.54 7.84 11.82 16.57 24.93 7.16 9.03 13.29 18.68 29.63

merging (min) 0.00 0.27 0.27 0.25 0.27 0.00 0.63 0.23 0.34 0.61

total mapping (min) 6.73 8.31 12.33 17.08 25.46 8.33 10.95 14.92 20.42 31.69

system 1 system 2

Indexing

mapping with 

base-level 

alignment

mapping without 

base-level 

alignment

System 1 is a laptop with flash memory (Intel i7-8750H processor, 16GB of RAM and Toshiba XG5 series NVMe SSD) while
system 2 is a workstation with a mechanical hard disk (Intel i7-6700 processor, 16GB of RAM and Toshiba DT01ACA series
HDD). Alignment was performed on the NA12878 Nanopore data with the map-ont pre-set in Minimap2 using 8 threads.
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Figure S1. Effect of the window size parameter w on the distribution of mapping qualities (MAPQ) for synthetic
spike-in controls.
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Figure S2. Effect of the window size parameter w on the error rate and sensitivity for simulated reads. Effect of
window size on the proportion of mapped reads and the associated error rate (log scale) for 4 million simulated long reads (see
Materials and Methods). A single curve contains points for each mapping quality threshold (MAPQ score), one point for each
mapping quality threshold from 60 (leftmost) to 0 (rightmost).
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Figure S3. Features of alignments that were uniquely mapped in single (left column) and multiple (right column)
partition indexing strategies.
(a) and (b) are the distribution of mapping quality scores (MAPQ). (c) and (d) are the distribution of dynamic programming
alignment scores. (e) and (f) are the proportion of reads that map to regions of the human genome annotated as repeat elements
(Repeat masker track of GRCh38 UCSC genome browser).
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Figure S4. Genome browser screenshots of alignments unique to the 16-part index that do not overlap annotated
repeats.
Out of the 281 alignments only found in 16-part-idx-merged with no overlap with repeat regions, the two highest scoring
alignments were found in the regions (a) chr3:185,453,170-185,456,442 and (b) chr11:14,160,389-14,161,287 respectively.
The screen shots are from the Golden Helix GenomeBrowse [http://goldenhelix.com/products/GenomeBrowse]. The first track
of each screen shot shows the pile-up of the alignments for the genomic region. The second track shows the repeat elements
from the UCSC Repeatmasker track for GRCh38. The third track visualises the relative sequence composition of the GRCh38
reference for the particular region (A - red, C - yellow, G - green and T - blue).
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Figure S5. Distribution of (a) mapping quality and (b) dynamic programming alignment score for the disparate
mappings (different by at least one base position) between single-idx (left) and 16-part-idx-merged (right).
Disparate mappings here refer to the 17,146 aligned NA12878 reads with different primary mappings (different by at least one
base position) between the two partition strategies.
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Figure S6. Scatter plot of alignment scores of single-idx vs 16-part-idx-merged for disparate alignments (different by
at least one base position).
The scatter plot contains 17,146 points representing each disparate mapping - different by at least one base position (Pearson’s
correlation (r) of 0.9285). The x and y axes are in log scale. 50.5% had higher dynamic programming alignment scores for
single-idx, while 42.9% had higher scores in the 16-part-idx-merged.
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Figure S7. Distribution of genomic features of disparate alignments (different by at least one base position).
(a) The distribution of repeat diversity in the disparate alignments (different by at least one base position) between single-idx
and 16-part-idx-merged. (b) Distribution of genomic targets for the 456 (left) and 472 (right) disparate alignments (that did not
overlap with annotated repeat regions) between single-idx and 16-part-idx-merged, respectively.
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Figure S8. Statistics and genomic features of disparate mappings (mapping positions not overlapping at least by
10%) between single-idx and 16-part-idx-merged
Out of the 17,146 mappings that were different by at least one base position, 14,398 did not even overlap by 10% or more with
their mapped locations on the reference. For those 14,398 mappings the distribution of the (a) mapping qualities and (b)
alignment scores, (c) the scatter plot between the alignment scores, (d) the distribution of repeat diversity and (e) the mapping
location of the mappings that did not contain repeats were almost identical to respective plots for disparate alignments
–different by at least one base position.
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Supplementary Note 1 - Detailed Methodology of the merging
This supplementary note elaborates the merging method in detail together with some implementation details.

Serialising (dumping) of the internal state

For each part of the partitioned index, a separate intermediate file (which we refer to as a dump) is created in the binary
format [refer line 36-44 in https://github.com/hasindu2008/minimap2-arm/blob/v0.1-alpha/merge.
c]. After a read is aligned to the partition of the index currently in memory, all the intermediate states for its alignments
are dumped into this binary file [line 501-506 in https://github.com/hasindu2008/minimap2-arm/blob/v0.
1-alpha/map.c]. Binary format was preferred as it reduces the file size compared to ASCII. When the last read is mapped
to the current partition of the index in memory, the dump will contain the intermediate state of the mappings for all the reads, in
the same order as the reads in the input read set. If the partitioned index had n partitions, at the end of the nth partitions we will
have n such dumps.

The dumped internal state includes; fifteen 32-bit unsigned integers (such as the reference ID, chaining scores, query and
reference start and end), two 32-bit signed integers and one floating point value. All these information are inside a single
structure in Minimap2 (called mm_reg1_t in minimap.h) which made the dumping convenient. The size required for a single
alignment is around 80 bytes.

If the user has requested Minimap2 to generate the base-level alignment, then the internal state for base-level alignment are
also dumped. Base-level alignment information include; six 32-bit integers (such as the base level alignment score, number of
CIGAR operations and a variable size flexible integer array for storing CIGAR operations. These information are stored inside
another structure in Minimap2 (called mm_extra_t), which is only allocated if the base level alignment has been requested.
The memory address to this structure is stored as a pointer in the previously mentioned mm_reg1_t structure. When dumping,
we flatten the information linearly (eliminate memory pointers) to the file.

In addition to the above, a quantity called replen (sum of lengths of regions in the read that are covered by highly repetitive
k-mers) is dumped. This is a per read quantity. We save the replen to the same dump file that we discussed above, just after the
information for each mapping. For each read there will be a replen for each part of the index, that is saved in the dump for that
particular part of the partitioned index [line 495 of https://github.com/hasindu2008/minimap2-arm/blob/
v0.1-alpha/map.c].

Merging operation

When alignment of all reads to all parts of the index completes, the merging operation is invoked [merge function in
https://github.com/hasindu2008/minimap2-arm/blob/v0.1-alpha/merge.c]. We simultaneous open
the read file and the dump files for all parts of the partitioned index. Reads are sequentially loaded while loading all the internal
states for the alignments of that read. This includes the internal state for all its alignments (includes the base-level information
if it had been requested) as well as the replen from each dump file. The flattened data in the files are restored to their original
structures when loading to the memory.

If no base-level alignments had been requested, the alignments are sorted based on the chaining score in descending order
[function mm_hit_sort_by_score in https://github.com/hasindu2008/minimap2-arm/blob/v0.1-alpha/
merge.c]. If base-level alignment had been requested, they are sorted based on the base-level DP alignment score. Cate-
gorisation of primary and secondary chains is performed on the sorted alignments according to the same method done on
Minimap2 (using mm_set_parent function). This fixes the issue with the primary vs secondary flag. Then the alignment entries
are filtered based on the user requested number of secondary alignments and the priority ratio (using mm_select_sub function).
This eliminates the issue of outputting secondary alignments for each part of the index that makes the output size huge. If the
output has been requested in form of a SAM file, the best primary alignment is set to the primary flag while all other primary
alignments are set to supplementary (using mm_set_sam_pri function).

The mapping quality (MAPQ) estimation depends on the length of the read covered by repeat regions in the genome. To
compute a perfect value for this quantity, the whole index needs to be in the memory which is the case for a single reference
index. However, we estimate this quantity by taking the maximum out of the replen values that were dumped for the particular
read. The Spearman correlation of this estimated value to the perfect replen was 0.9961. As the mapping quality is anyway an
estimation, computing the mapping quality based on the estimated replen does not affect the final results significantly.
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Emulated single reference index

For memory efficiency, Minimap2 stores meta-data of reference sequences (such as the sequence name and sequence length)
only in the reference index (refer to mm_idx_t struct in minimap.h). The order in which the sequences reside in the struct array
forms a unique numeric identifier for each reference sequence.

In the internal state for mappings only this numeric identifier is stored. The meta-data for the reference sequence are
resolved using these numeric identifiers, only during the output printing. However, during merging we do not have the
reference indexes in memory and the numeric identifiers cannot be resolved. Hence, we construct an emulated single reference
index. For this, we save the meta-data of the reference sequences when each part of the partitioned index is loaded [line
47-54 in https://github.com/hasindu2008/minimap2-arm/blob/v0.1-alpha/merge.c]. These meta-
data go to the beginning of the dump file for the particular part of the index. At the beginning of the merging, the meta-data
is loaded back to form an emulated single reference index [line 164-173 in https://github.com/hasindu2008/
minimap2-arm/blob/v0.1-alpha/merge.c]. However, the numeric identifiers in the internal states from the dump
files are incorrect (as numeric the identifier is an independent incrementing index for each part of the index). These are corrected
to be compatible with the numeric identifiers in the emulated single reference index by adding the correct offset [line 254 in
https://github.com/hasindu2008/minimap2-arm/blob/v0.1-alpha/merge.c].

As a side effect of this emulated single reference index, a correct SAM header can be output even in the partitioned mode.
Further, the merging process which merges the mappings for a read at a time, outputs the mappings for a particular read ID
adjacently. Hence, no additional sorting is required for any downstream analysis tools that require so.

Supplementary Note 2 - Detailed Methodology of the chromosome balancing
Memory efficiency for references with unbalanced lengths

The existing partitioned index construction method in Minimap2, does not balance the size of index partitions when the
reference genome has sequences (chromosomes) with highly varying lengths. This existing index construction method puts
the reference sequences to the index in the order they exist in the reference genome. When constructing a partitioned index,
it moves to the next part of of the index only when the user specified number of bases per index (by default 4 Gbases) is
exceeded. When building a partitioned index for overlap finding, the parts would be approximately equal in size as the length
of the longest read would be a few mega bases. However, in case of a reference genomes like the human genome where the
chromosomes are of highly variable lengths, the size of the parts are unbalanced. The largest part of the index determines
the peak memory. Hence, an unbalance will hinder the maximum efficiency for systems with limited memory. For instance,
consider a hypothetical genome (total length 700M) with following chromosomes and lengths in the order chr1 (300M), chr2
(320M), chr3 (60M), chr4 (20M). Providing a value of 350M as the number of bases in a partition (with the intention of splitting
into 2 parts), will create an unbalanced index as follows.

• part1 : chr1, chr2 : total length - 620M

• part2 : chr3, chr4 : total length - 80M

We follow a simple partitioning approach to balance this out. Instead of the number of bases per partition, the number of
partitions is taken as a user input. The reference sequences are first sorted in descending order based on the sequence length
(length without the ambiguous N bases). The sum of bases in each partition is initialised to 0. The, the sorted list in traversed in
order while assigning the current sequence into the partition with the minimum sum of bases. The sum of bases in that partition
is updated accordingly. Using this strategy, we get a distribution as follows.

• part1 : 300M, 60M : total length - 360M

• part2 : 320M, 20M : total length - 340M
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Supplementary Note 3 - Instructions to run the tools
Example

1. Download and compile minimap2 that supports partitioned indexes and merging

wget https://github.com/hasindu2008/minimap2-arm/archive/v0.1.tar.gz
tar xvf v0.1.tar.gz && cd minimap2-arm-0.1 && make

2. Download the human reference genome and create a partitioned index with 4 partitions

wget -O hg38noAlt.fa.gz http://bit.ly/hg38noAlt && gunzip hg38noAlt.fa.gz
./misc/idxtools/divide_and_index.sh hg38noAlt.fa 4 hg38noAlt.idx ./minimap2 map-ont

Note : http://bit.ly/hg38noAlt redirects to
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/seqs_
for_alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.
gz

3. Download a Nanopore NA12878 dataset and run Minimap2 with merging

wget -O na12878.fq.gz http://bit.ly/NA12878
./minimap2 -a -x map-ont hg38noAlt.idx na12878.fq.gz --multi-prefix tmp > out.sam

Note : http://bit.ly/NA12878 redirects to
http://s3.amazonaws.com/nanopore-human-wgs/rel3-nanopore-wgs-84868110-FAF01132.fastq.
gz

Notes :

• To perform mapping without base-level alignment use:

./minimap2 -x map-ont hg38noAlt.idx na12878.fq.gz --multi-prefix tmp > out.paf

• From Minimap2 version 2.12-r827 [https://github.com/lh3/minimap2/blob/master/NEWS.md#release-212-r827-6-august-
2018] onwards, the merging functionality has been integrated into the main repository. This version additionally
supports paired-end short reads and the merging operation is multi-threaded. Use --split-prefix option instead of
--multi-prefix.

Index construction with chromosome size balancing

divide_and_index.sh is the wrapper script for balanced index construction. It takes the reference genome and outputs a
partitioned index optimised for reduced peak memory. Its usage is as follows:

usage : ./divide_and_index.sh <reference.fa> <num_parts> <out.idx> <minimap2_exe>
<minimap2_profile>

reference.fa - path to the fasta file containing the reference genome
num_parts - number of partitions in the index
out.idx - path to the file to which the index should be dumped
minimap2_exe - path to the minimap2 executable
minimap2_profile - minimap2 pre-set for indexing (map-pb or map-ont)

Example : ./divide_and_index.sh hg19.fa 4 hg19.idx minimap2 map-ont
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http://bit.ly/hg38noAlt
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz
http://bit.ly/NA12878
http://s3.amazonaws.com/nanopore-human-wgs/rel3-nanopore-wgs-84868110-FAF01132.fastq.gz
http://s3.amazonaws.com/nanopore-human-wgs/rel3-nanopore-wgs-84868110-FAF01132.fastq.gz


Functionality of divide_and_index.sh is as follows.

1. Compiling divide.c using gcc to produce divide.

2. Calling the compiled binary divide to split the reference genome into partitions such that the total length of chromo-
somes in each partition are approximately equal.

3. Calling the minimap2 binary separately on each reference partition to produce a separate index file for each partition.

4. Combining all the index files to produce a single partitioned index file.

Running Minimap2 on a partitioned index with merging

To run minimap2 on an index created using the above method :

minimap2 -x <profile> <partioned_index.idx> <reads.fastq> --multi-prefix <tmp-prefix>

--multi-prefix which takes a prefix for temporary files, enables the merging of the outputs generated through iterative
mapping to index partitions.
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