SUPPLEMENTAL INFORMATION:

Bile acid analogues are activators of Pyrin inflammasome

Irina Alimov¹, Suchithra Menon¹, Nadire Cochran¹, Rob Maher¹, Qiong Wang¹, John Alford¹, John B. Concannon¹, Zinger Yang¹, Edmund Harrington¹, Luis Llamas¹, Alicia Lindeman¹, Gregory Hoffman¹, Tim Schuhmann², Carsten Russ¹, John Reece-Hoyes¹, Stephen M. Canham^{1*}, Xinming Cai^{1,3*}

¹Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA

² Novartis Institute for Biomedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, 4056 Basel, Switzerland

³Present address: Sanofi US, 270 Albany Street, Cambridge, MA 02139, USA

Supplemental Figure 1. Primary bile acids such as Taurocholic acid (TCA), Taurochenodeoxycholic acid (TCDA), and Lithocholic acid (LA) do not activate the inflammasome pathway in PBMCs. PBMCs were primed with 0.1 ng/ml LPS overnight followed by compound treatment for 16 h and AlphaLISA detection of secreted levels of IL18 (A). Data presented is mean \pm SEM (n=3), *p value <0.0001 (one-way ANOVA).

Supplemental Figure 3. More detailed annotation of the BAA473 CRISPR screen which also appears as Figure 4D. Gene-centric visualization is shown of average log2 fold change versus significance score. Inositol phosphate signaling pathway and IFN transcription factor complex hits are highlighted in green.

GO Biological Process	Genes	Number of Genes	P-value
		in Gene Set	(-Log 10)
Inositol Trisphosphate Kinase Activity	IPMK, ITPK1	11	4.1
Inositol Phosphate Metabolic Process	ІРРК, ІРМК, ІТРКІ	56	4.4
Alcohol Metabolic Process	CEBPA, IPPK, CLN3, IPMK, ITPK1	348	4.2
Defense Response To Other Organism	PYCARD, IRF8, SPN, EIF2S1, SLC35C1, REP15	505	4.5
Immune System Development	SPI1, SIN3A, NCOA6, CEBPA, IRF8, CDC42, SPN	582	5.2
Regulatory Region Nucleic Acid Binding	CXXC1, SPI1, RBBP5, SIN3A, CEBPA, IRF8, MEF2D	818	4.3
Regulation of Immune System Process	PAXIP1, SPI1, SIN3A, PHB2, PYCARD, CDC42, SPN, EIF2S1, SLC35C1, REP15	1403	5.2

Supplemental Table 1. Enriched gene sets identified by MSigDB analysis in the BAA473 CRISPR screen.

Supplemental Table 2. Individual sgRNAs sequences selected for validation experiments according to sgRNA sequences used in the study.

Gene	gRNA	sgRNA sequence
MEFV	Pyrin-1	GCAGCTGGACCTGCTTCAGG
MEFV	Pyrin-2	GGTGCCCAGAAACTGCCTCG
PYCARD	ASC-1	GAACTTCTTGAGCTCCTCGG
PYCARD	ASC-2	GTTCAAGCTGAAGCTGCTGT
CTRL0002	Control-1	GACCGGAACGATCTCGCGTA
EGFP	Control-2	GGGCGAGGAGCTGTTCACCG