Supplement for PLATYPUS: A Multiple-View Learning Predictive Framework
for cancer drug sensitivity prediction

S1. Alternative Multiple-View Learning Approaches

Alternative forms of MVL have been applied to other bioinformatics problems. For exam-
ple, multiple kernel learning (a form of multiview learning) has been used in bioinformatics
problems in prostate chemical recurrence prediction,” and was used in several top-performing
methods in a DREAM competition to predict drug sensitivity.* While previous work has used
multiple kernel learning to combine different biological data platforms,®!? this approach is a
type of single view classifier because it only uses one form of prior (e.g. pathways). Another
approach in the same challenge uses a form of multiview learning that ignores samples with
missing data, using canonical correlation analysis (CCA) to combine data platforms. While us-
ing CCA is appropriate in situations where data are highly correlated,!! in biological problems
the data is noisy and different perspectives of the data are dissimilar, leading to low—correlated
views and poor classifier performance. Furthermore, neither multiple kernel nor CCA—based
multiview methods gracefully handle missing data.

Each of these MVL frameworks have a unique approach to data integration. CCA is an
example of early integration because it combines the data before supervised analysis. Multiple
kernel methods integrate during model training and operate as intermediate integration stages.
Ensembles and stacked learning approaches, such as PLATYPUS, use late—stage integration,
where individual models are trained on separate data then integrated after training. This
approach is more flexible but requires a second training phase. While each approach has it’s
benefits, we chose to use late stage integration for the increased flexibility in handling missing
data.

In the situation where multiple data types are available on a common set of samples, one
may be tempted to combine the dataset into one set of features and then apply a feature
selection strategy to the data (e.g. Random Forests). However, a combined dataset containing
all features would introduce many missing values. Separating the features into views minimizes
the missing data problem, allowing them to be handled within each data type. Using one large
combined feature set would force a developer to either restrict to a small set of samples for
which all data is available or would require a sophisticated method for handling large amounts
of missing data. PLATYPUS currently handles the missing data in the integration step of the
different classifiers and thus avoids introducing additional missing data for samples measured
only on a subset of platforms.

S2. Data in detail

CCLE data was downloaded from www.broadinstitute.org/ccle/home.

Mutation: CCLE includes mutation data in the form of Single Nucleotide Polymorphism
(SNP) and insertion or deletion (Indel) events for 1,651 genes. These were assessed by targeted



massively parallel sequencing and later filtered, e.g. for presumably neutral variants or common
polymorphisms. Additionally, 392 mutations in 33 genes known to be associated with cancer?”
were assessed by mass spectrometric genotyping. SNPs and Indels were combined into a set
of non-silent mutations that include all events changing the amino acid composition of the
resulting protein, including Indels or missense SNPs in the coding region, splice site, and stop
or start codon alterations.

Expression: Gene expression data measures expression over 18,900 genes using Affymetrix
U133 plus 2.0 arrays, converted to single gene values by Robust Multi-array Average (RMA)
and quantile normalization.

CNV: Copy Number Variation (CNV) data covers 23,316 genes and was determined using
Affymetrix SNP6.0 arrays, and normalizing the values with the most similar HapMap normal
samples. In the CNV data, some genes have the same value for each cell line because they lay
on the same genome segment varying in copy number. Each of these gene sets was merged
into one feature in order to reduce redundancy in the data, resulting in 20,247 features.

Clinical: Sample annotation data for the CCLE cell lines contains the gender of the cancer
patient and information about the cancer origin (i.e. 24 different tissue types, 21 histology
types, and 67 histology subtypes).

Drug Sensitivity: There is drug response data to 24 anti-cancer drugs for about 50% of the
cell lines in CCLE. A fitted dose-response curve from eight measurements is given, together
with the inferred values for EC50, IC50, and Activity Area (ActArea), the area over the dose-
response curve (see Fig. 2b from Barretina et. al.? for definition). ActArea was used for all
analyses in this work for three reasons:

(1) ActArea captures more information about the dose-response curve than a single point like
IC50 or EC50, i.e. the angle of the curve and initial points of sensitivity changes.

(2) ActArea is always given. EC50 in contrast is set to NA if no sufficient response was
measured with the maximal tested dose.

(3) ActArea has no artificial values, whereas IC50 is set to the maximal tested dose if no
response was measured.

S3. Views
S3.1. Baseline Views

Two major types of views are used in PLATYPUS — baseline and interpreted. Baseline views
are data platforms that do not incorporate prior knowledge. In this study, we use four baseline
views: copy number, non-silent mutation, RNA expression, and clinical /phenotype informa-
tion. The mutation view is composed of gene-level binary features representing the presence of
a non-silent mutation in a specific gene in a particular sample. Copy number and expression
data are normalized continuous gene-level values (Section S2). Data in the RNA expression
and copy number views is reduced to the 5,000 genes with the highest variance over all cell



lines.

The Sample- and Patient-Summary (SPS) view, is a collection of features based on clin-
ical /phenotypic data such as tissue, histology, and gender. For the CCLE cell lines, this in-
formation includes, for example, the gender of the cancer patient and information about the
cancer origin. In total, 24 different tissue types, 21 histology types, and 67 histology subtypes)
are represented. Additionally SPS includes two features representing overall genomic insta-
bility of the cell line: the total number of mutated genes and the sum over all absolute CNV
values, in each cell line. The values are quantized into ‘low’, ‘medium’, and ‘high’ instability
indexes.

S3.2. Interpreted Views

Interpreted views incorporate prior knowledge from scientific literature. Biological experiments
of the past century have elucidated the underlying rules of biological processes and a plethora
of databases exist that have collected this information. For example genes operate in pathways
(multi-protein complexes, signaling cascades, transcriptional regulons, chromatin domains,
etc.) and gene modules that summarize the activity in groups of genes in different aspects.
The use of pathways as gene sets has been shown to be effective at increasing interpretability in
the cancer setting, thus motivating their use to create views. Additionally, ‘master regulator’
analysis that finds transcription factors responsible for observed gene expression changes,
which has been shown to identify key transcriptional regulators driving the cancer phenotype,
can also serve as an informative view. Using such features could potentially highlight functional
changes in the samples which are not necessarily clear at the gene level.

PLATYPUS creates views from gene sets in two major ways: 1) By creating summaries
or 2) by restricting the data to the subset of genes in a given set. These two view creation
approaches are briefly described in the next sections.

Views Based on Gene Set Summaries. PLATYPUS converts the gene-level data to higher
interpreted information by creating views based on given gene sets representing pathways or
gene modules. In this study, We tested the use of views derived from gene expression data
combined with prior pathway knowledge. The Molecular Signatures Database (MSigDB)!?
was used as the source of pathway—specific gene sets as it contains many pathways relevant to
cancer processes. Simple aggregation statistics are used as views in this study to summarize
the expression levels of genes belonging to the same pathway including mean, median, and
variance. In addition, We included kurtosis to detect when gene sets contain one or multi-
ple genes with extremely different expression levels compared to the other members of the
pathway, which could be a sign of a perturbation to the pathway’s regulation.

The spatial form of the genome and chromatin structure are closely tied to the cell-of-origin
of tumors, which has a major influence on the manifestations of the cancer’s progression and
response. We created a view based on physical structural proximity of genes in the genome. A
recent study found that chromatin interaction domains are both highly stable and have few
boundaries that differ between cell types.’ It also deconvolves tissue-specific noise, which have
been strongly correlated with expression.?* Inclusion of the Drug—Gene Interaction database®
clarifies the effects of mutations on the response of cell lines to chemical agents. Both of these



Table S1. Median AUC for
single view CNV tests

Drug Median AUC
AEW541 0.502
A7ZD0530 0.506
A7D6244 0.524
Erlotinib 0.498
L-685458 0.505
Lapatinib 0.528
LBW242 0.532
Nilotinib 0.519
Nutlin—3 0.508
Paclitaxel 0.578
Panobinostat 0.630
PD-0325901 0.526
PD-0332991 0.530
PF2341066 0.503
PHA-665752 0.521
PLX4720 0.505
RAF265 0.544
Sorafenib 0.519
TAE684 0.495
TKI258 0.558
Topotecan 0.597
X17-AAG 0.504
7ZD—-6474 0.495
Mean 0.527

databases provide insights into the function of drug sensitivity, and knowing which genes a
drug interacts with helps focus attention to that subset of genes and their interactors.

Views Based on Restricted Gene Set Subsets PLATYPUS creates views as restricted sub-
sets of the feature data based on provided gene sets. The features in these views remain un-
changed from their original. Limiting to a relevant pathway may guide a predictor to identify
informative feature combinations that may be otherwise missed due to the high-dimensional
nature of the problem. The complete set of gene sets used to create subset views in this paper
are described in detail in Section S4. We also created these views with CNV data, however
they are excluded due to poor predictive power (average AUC 0.527, Table S1). In this paper,
gene set views are constructed from expression data and mutation data (Fig. S3).

S4. Biological Priors
S4.1. Biological Gene Sets

Metabolic Enzymes: The metabolic enzymes gene set was created by collecting all genes
in the CCLE data belonging to the Cytochrome P450 (CYP) family. CYP proteins are the
key players in drug metabolism; They deactivate or facilitate the excretion of most drugs, but
they also transform many drugs into their active form.?® There are 53 CYP proteins in the



CCLE expression data.

Multi-Drug Resistance Proteins: Expression data was subset to a list of multi-drug re-
sistance proteins based on.?? All 12 defined proteins are present in the data set.

Drug Targets: This view includes all proteins targeted by the 24 anti-cancer compounds
in the CCLE data set. The information about drug - protein interactions was collected from
DrugBank,3! a recent review of drug targets,'6 the Drug Gene Interaction Database (DGIdb),?
and manual literature curation for drugs without an annotated target in the sources named
before (Table S2). In total, 142 genes found to be drug targets were present in the gene
expression data set. In addition to the expression-based view, this prior was also used to
create a view using the mutation data, in which 82 of the drug targets are present.

Table S2. Drug targets curated from literature

CCLE Compound  Target Source
L-685458 PSEN1 18
L-685458 PSEN2 18
LBW242 XIAP 17
Nutlin-3 MDM?2 19
PHA-665752 MET 29
TAE684 ALK 20

Chromatin-Modifying Enzymes: This gene set includes chromatin-modifying pro-
teins.3%35 It contains 65 proteins, of which 56 are present in the gene expression data.

Druggable Genes: The druggable genes view was created from DrugBank,?! a recent drug
target review,'6 cell surface proteins as defined in,?! membrane proteins and genes on the
druggable genome list from DGIdb,® a manually curated list of kinases (Table S2), and the
Therapeutic Target Database (TTD,??). In contrast to the Drug Targets view, the proteins
in this set are not limited to the 24 CCLE compounds. Proteins that are not a target of any
existing drug, but have the characteristics to serve as one, are included. A total of 4,632 genes
from this gene set are present in the gene expression data.

Essential Genes: The information about essential genes in cancer cell lines was retrieved
from Project Achilles,?? an effort to identify genes having an effect on cell viability by using
short hairpin RNA (shRNA) screens. Two versions of Achilles were merged in order to maxi-
mize the overlap with the cell lines in CCLE: Achilles v.2.11 and v.2.4.3. The 30 most essential
genes for each cell line present in both CCLE and Achilles were retrieved. CCLE expression
data was subset to the union of these genes resulting in 2,064 features for this view.

S4.2. MSigDB Gene Sets

The Molecular Signatures Database (MSigDB)!® provides biological gene sets in different
collections. Median, variance, and kurtosis values of gene expression in each gene set was



calculated and defined as a feature. For using CCLE mutation data with MSigDB gene sets,
the enrichment of the mutated genes of a cell line in a gene set was tested using hypergeometric
distribution (R function phyper). The following MSigDB collections were chosen:

Hallmark Gene Sets: A collection of gene sets created from overlapping gene sets. It features
reduced noise and redundancy and contains 50 gene sets.

Motif Gene Sets: 836 gene sets containing genes that share conserved cis-regulatory motif.24

Transcription Factor Targets: A gene set contains all genes sharing a transcription factor
binding site defined by a TRANSFAC record.?® There are 615 gene sets in this collection.

Positional Gene Sets: Gene sets corresponding to the position of genes on the human
genome regarding chromosome and cytogenetic band. The collection holds 326 gene sets.

Oncogenic Signatures: Signatures of 189 cellular pathways which are often dis-regulated
in cancer.

Immunologic Signatures: The 1,910 gene sets represent cell states and perturbations
within the immune system.

S4.3. Drug Target Gene Sets

For each drug target defined in Section S4.2, all genes occurring in at least one gene set
together with the target gene were unified to build one drug target gene set. The MSigDB
collections Hallmark, Oncogenic, and Immunologic were used separately. As before, median,
variance, and kurtosis of the expression values were calculated for each drug target gene set
and used as features.

S4.4. Regulator Activity by Viper

Virtual Inference of Protein-activity by Enriched Regulon analysis (Viper) is a tool to trans-
form gene expression features into regulator activity.26 It takes as input gene expression, a
regulon (bipartite regulation network of regulators, e.g. transcription factors), and the genes
that are regulated by them. Here, a general regulon called ‘multinet’?® and the CCLE expres-
sion data were used. Viper was run in R as part of the Bioconductor project.?6

S5. Implementation

There are two main inputs to PLATYPUS: (1) the binary outcome labels (e.g. ‘sensitive’ or
‘non-sensitive’) of the labeled samples and (2) the data view objects. View objects contain the
feature matrix, classifier type, optimized parameters for the algorithm (optional), and weight
for that view (optional).

In each iteration, views are used to predict labels for unlabeled data. View votes are
weighted by either accuracy (as described in Section 2.3) or by a user—provided value. Weights
can be static or updated at each iteration, as specified by the user. PLATYPUS automatically



handles predictions on samples with missing data. To decide when to stop the process of label
learning, the user can define a maximum number of iterations and/or change the necessary
vote agreement by providing A\. When making new predictions using the trained PLATYPUS
model, users may select their preferred iteration and use that intermediary PLATYPUS model
instead of the final iteration’s model. Learned feature weights from each view, as well as the
models’ AUCs, can be extracted for each iteration.

S5.1. View Creation

PLATYPUS views were created using the package’s view—creation functions. Additionally
there is a function for creating view configuration files based on an existing view, which is useful
when running PLATYPUS from the command line. Configuration files contain parameters for
a view, which vary based on classifier type. At time of publication PLATYPUS supports
3 classifiers: support vector machine (SVM),5 elastic net (EN),!4 and random forest (RF).3
Configuration files and views can be created using the function generate.single.view, which
performs a parameter sweep to find the highest AUC parameters over 100 tests given a data
set, model type, and outcome labels.

Fig. S3 shows the single-view tests on the full CCLE data. At this stage a user can decide
which models to include based on their performance. Note that it is not always best practice to
remove a low—performing view, since view performance may either improve in later iterations
or be useful in downstream analysis.

Features must be processed before creating a view configuration file. There are two
functions for view feature processing/creation. For baseline views, the user can subset the
data to a user—specified number of features. Interpreted views can be created using the
generate. feature.data.summary function, which combines a biological prior with a feature set.
This function takes a dataset, a prior knowledge module network, and a summary metric (e.g.
median, variance, kurtosis, max), and outputs a sample-by-module feature matrix. To mini-
mize missing data issues, there is an optional parameter for the minimum number of features
per module required for that module to be included in the view (by default 3). Once features
and view objects are created, they can be used in PLATYPUS.

S5.2. PLATYPUS Output

After training, PLATYPUS returns an object containing information from each iteration.
This includes label lists for both the labeled and unlabeled samples, AUCs for each view, and
the full PLATYPUS model. PLATYPUS objects can be used to make predictions on new
samples or to extract features (plus their weights, if relevant) from the views. Label-learning
validation results can also be visualized as shown in Fig. S5(b). While unlabeled samples
cannot be included in the AUC calculation because their true labels are unknown, AUC based
on the labeled samples can be used as a proxy (Fig. S5(a)).

S5.3. Label learning Validation

In order to validate the learning process, we introduce label learning validation (LLV,
Fig. S5(b) and S6). Similar to cross—validation, LLV masks a subset of the labels, then trains



the model using the remaining labeled samples. Masked samples are treated as unlabeled data,
for which PLATYPUS then tries to infer the labels. LLV compares the learned labels to the
(masked) true labels. Views are trained using the (k — 1) folds of labeled samples and inferred
labels for unlabeled samples from earlier iterations. After performing all £ folds, all labeled
samples have an additional learned label, except in cases where it could not be learned either
due to strong disagreement between the views or extensively missing data.

Fig. S5(b) shows a label learning visualization of PD-0325901. PLATYPUS has correctly
relearned the majority of labels. This example would have benefited from stopping at an
earlier iteration of PLATYPUS, since the majority of incorrect labels are learned during later
iterations. The dashed grey line in parts ¢ and b show a recommended stopping point, which
would be selected by the user based on the LLV output. LLV is a useful tool for choosing an
appropriate maximum number of PLATYPUS iterations.

LLV can indicate PLATYPUS’ confidence in the predicted labels and how PLATYPUS
does not force a label on samples for which the single views disagree substantially. Fig. S6 shows
the LLV visualization for each of the 24 CCLE drugs. For each drug, PLATYPUS successfully
learns the majority of sample labels correctly. The learning processes differ between drugs
and we postulate that there is no globally optimal number of iterations. LLV helps the user
see how PLATYPUS performs on the labeled data, which can then be used to extrapolate its
performance on unlabeled data.

S6. Mutations Correlate with Drug Sensitivity

For every drug-gene pair in CCLE we used a two-sided t-test to identify markers of drug
sensitivity, using Bonferroni multiple hypothesis correction (Table S3). However, a simple t—
test approach fails to identify co—occurring mutation interference in the results. PLX4720 is an
example: While it does not target KRAS, there is a significant correlation between sensitivity
and mutation status. This is explained by BRAF-mutated cell lines, which are sensitive to
PLX4720 and which confound the results.

Two different types of BRAF-mutated cell lines interference are seen in this data (Fig. S1):
First, KRAS-PLX4720 appear to be significantly associated due to the strong responses of
BRAF-mutant cell lines making up a large portion of the KRAS—wildtype group. Because of
these cell lines, the KRAS—mutated cell lines appear incorrectly to have a significantly lower
response than the KRAS—wildtype cell lines. Similarly, other genes erroneously appear to be
significantly associated with PLX4720. Second, KRAS-mutant cell lines incorrectly do not
appear to be sensitive to PD-0325901 and AZD6244. As with PLX4720, this is due to the
large number of BRAF-mutants in the KRAS—wildtype cell lines.

To validate this theory, we repeated the experiment but excluded all data from cell lines
with a BRAF mutation. Excluding BRAF-mutated cell lines leads to KRAS-PD-0325901
and KRAS-AZD6244 correlation and removes the erroneous correlation between KRAS and
PLX4720. Thus is it inadvisable to make drug treatment decisions using a single gene mu-
tation status, since it is insufficient to make conclusions about sensitivity to a drug. More
sophisticated methods, which take many features into account, are important for identifying
co—occurring events which confound sensitivity predictions.



Table S3. Significant Gene—Drug Pairs

gene drug p—value annotated alternative name
BRAF PD-0325901 1.08e—7 yes

BRAF AZD6244 2.07e—7 yes Selumetinib
PPARGC1A PD-0332991 3.07e—6 no Palbociclib
RB1 PD-0332991 6.87e—6 no Palbociclib
CDKL2 PLX4720 7.88¢—6 no Vemurafenib
BRAF PLX4720 1.45e—5 yes Vemurafenib
FES Nilotinib 5.03e—5 no

KRAS PLX4720 1.01e—3 no Vemurafenib
DBF4 PF2341066 1.88¢—3 no Crizotinib
BAIl PLX4720 2.01le—3 no Vemurafenib
MMPS8 PD-0332991  5.94e—3 no Palbociclib
RHPN2 Erlotinib 9.18¢—3 no

FES TKI258 1.16e—2 no

CLTC PD-0332991 1.53e—2 no Dovitinib
ERCC6 PF2341066 2.95¢—2 no Crizotinib
ALK PF2341066 2.96e—2 yes Crizotinib
ROCK2 PLX4720 4.69e—2 no Vemurafenib

S7. Identifying Patients with an Aggressive Subtype of Prostate Cancer

Treatment to reduce or block testosterone in men with prostate cancer is often effective but
tumors progress in some patients. Two recent projects funded by Stand Up To Cancer —
a West Coast Dream Team (WCDT) and an East Coast Dream Team (ECDT) — collected
samples of advanced, treatment resistant prostate cancer and characterized their genomes and
transcriptomes with DNA and RNA sequencing. Out of 46 total samples with resistant cancer,
the WCDT identified 10 with a rare type of histology that they named treatment-emergent
small-cell neuroendocrine prostate cancer (t-SCNC).! To see if PLATYPUS could generalize
to a completely new domain, we asked the model to identify small cell disease in the ECDT
cohort of 189 samples for which no histology calls were available, but 117 samples had gene
expression data.

Before training PLATYPUS to predict t-SCNC from non-t-SCNC using the WCDT sam-
ples, the combined WCDT&ECDT RNA expression data was batch corrected using the Com-
Bat algorithm.'? From these data, 9 single views were built as described in Table S4. The
model for each view was trained 100 times using the same folds for cross-validation. Three
views had an average AUC higher than 0.80 and were selected to train the PLATYPUS model;
these views were ‘Hallmark Gene Sets’, ‘Expression 5k’, and ‘Chromatin-Modifying Enzymes’.

PLATYPUS trained for eight iterations with the user—specified learning threshold \ set to
70%. The initial WCDT training set included ten small cell and 36 adenocarcinoma samples.
After label learning, all of the training samples were predicted correctly. Whereas, in the initial
ensemble model, there was one mislabeled sample (Fig. S9).

Applying the fully trained PLATYPUS model to the ECDT data predicted seven small cell
(MO-1012, MO-1118, MO-1215, SC-9001, SC-9031, SC-9066, and SC-9096) and 109 adeno-

carcinoma samples. One sample, TP-2061, remained unlabeled. Comparing these predictions



Table S4. Single views considered for the combined run of ECDT&WCDT data

View Name Type # Features Origin AUC
Hallmark Gene Sets S 50 MSigDB 0.87
Expression 5k gs 5,000 most varying genes 0.84
Chrom. Mod. Enzymes  gs 65 Allis et al 2007 0.81
Oncogenic Signatures S 189 MSigDhB 0.79
Positional Gene Sets S 343 MSigDB 0.77
Druggable Genes gs 4,963 DrugBank,DGIdb,TTD 0.75
Transcr. Factor Targets s 615 MSigDB 0.72
Motif Gene Sets S 836 MSigDB 0.70
Immunologic Signatures s 1,910 MSigDB 0.62

AUC is the average calculated from 100 cross validation runs, each with a unique
sets of folds. The same fold sets were used on all views. Views with greater than
0.8 AUC are included in the PLATYPUS experiments. Type labeled as ‘s’ for
summary and ‘gs’ for gene set, see Section S4 for a detailed description of the
biological priors.

to the now available Neuroendocrine Prostate Cancer (NEPC) classification of the ECDT
samples reveals that both of the ECDT samples with neuroendocrine differentiation were
indeed classified as small cell by PLATYPUS (Table S5). Furthermore, all of the samples
predicted by PLATYPUS to be Adenocarcinoma are also classified by the ECDT as Adeno-
carcinoma. Finally, four samples listed as Adenocarcinomas have been reclassified as small
cell by PLATYPUS and thus may represent an important point of disagreement that further
clinical investigation may shed light upon.

Table S5. Comparison of PLATYPUS predictions to histology annotation in the
ECDT data set.

PLATYPUS prediction total NEPC Class A NEPC Class B unclassified

Adenocarcinoma, 109 98 0 11
Small Cell 7 4 2 1
No prediction 1 1 0 0

117 103 2 12

NEPC Class A = usual high grade prostatic adenocarcinoma; NEPC Class B =
high grade prostatic adenocarcinoma with neuroendocrine differentiation.
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Fig. S1. Mutation status and drug response of each cell line for significant (Bonferroni corrected)
compound-gene pairs; with a focus on KRAS mutation state and compound-KRAS combinations.
Heatmap on the bottom shows the mutation status of different genes (y-axis) in the cell lines (x-axis),
where red represents a non-silent mutation. The cell lines are ordered according to the mutation state
in the genes along the y-axis, starting from the top. The vertical lines separate cell lines with a mu-
tation in the first two genes (KRAS and BRAF, respectively) from cell lines with the wildtype genes.
Dot-plots on top show the according drug response of the cell lines in different compounds. Drug
response coloring reflects binary response (red=sensitive (top quartile), blue=insensitive (bottom
quartile), grey=intermediate (second and third quartile)). For the t-tests the actual ActArea value
was used. PLX4720 has a significant p-value in combination with KRAS is circled in (purple), but
KRAS is not an annotated target of PLLX4720. When removing the BRAF-mutant cell lines from the
data set, PD-0325901 and AZD6244 are significant towards KRAS mutation (green).
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Fig. S2. The ranked ActArea values of each CCLE cell line for the 24 CCLE compounds. Blue dots
are cell lines labeled as ‘non—sensitive’ for the correspondent drug, red ones are labeled ‘sensitive’,
gray ones ‘intermediate’. The number of cell lines in the non—sensitive class corresponds to the bottom
25% of cell lines the drug response was measured for, the ‘sensitive’ class to the top 25%.



Annotated Target Mut

Clinical ’
Expression .
» Baseline
CNV
Mutation J

Metabolic Enzymes \

Multi-Drug Resistant
Drug Targets

Drug Targets Mut } Gene SetS
Chromatin Modifying
Druggable Genes

Essential Genes J

Hallmark GS Expr ’
Motif GS Expr
TF Targets Expr MSigDB GS
Positional GS Expr } Expression

Oncogenic GS Expr

Immunologic GS Expr J

Hallmark GS Mut \

Motif GS Mut

TF Targets Mut } MSlgDB GS
Mutation

(e)

Positional GS Mut

Oncogenic GS Mut

Immunologic GS Mut J

DT GS Hallmark

(f) DT GS Oncogenic D rUg Ta rgEt

DT GS Immunologic Gene Sets

Viper

—_~

Q

S—
AZD0530
AEW541
Nilotinib
Erlotinib
TKI258
Sorafenib

Lapatinib .
ZD-6474
PLX4720
RAF265

PD-0325901 .
AZD6244
PD-0332991

TAE684 | |
PF2341066
Irinotecan

Topotecan I
LBW242
17-AAG
Panobinostat
PHA-665752
Paclitaxel
Nutlin-3
L-685458

o
o
N
o
>
o
o
o
©

Accuracy
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Fig. S4. Cross-validated number of correctly predicted samples (balanced accuracy X coverage)
of PLATYPUS for 100% agreement predictions. (a) ‘Ensemble’ represents the first iteration of the
MVL algorithm, in which no inferred labels have been added. (b) 'Best’ is PLATYPUS iteration with
the highest AUC. (c) ‘Last’ is the model from the final PLATYPUS iteration. Inferred labels were
added until 75% agreement. (d-e) Comparison between the different MVL models by subtracting the
Ensemble performance from the (d) Best and (e) Final performances. Each compound was predicted
with the data-specific (ds) views (SPS, Mutation, Expression), and with the 3, 5, 7, and 10 most
accurate interpreted single views.
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Fig. S5. (a-b) Dashed vertical line shows user—defined stopping point for the method, where the
overall disagreement in predictions between the views has started to increase and before the model
area under the receiver-operator curve (AUC) starts to significantly decrease. (a) Cross-validation
accuracy mean (solid line) and standard deviation (colored area) plotted at each iteration (x-axis).
Top plot: the prediction accuracy for single views (green lines), PLATYPUS ensembles with majority
(75%) agreement (blue line), or all view votes agreeing (red line) on unlabeled samples. Middle plot:
For each iteration, the number of samples for which labels have been learned (y-axis). Bottom plot:
The votes summed up for the unlabeled sample with the highest vote (pink line) and smallest
vote (green line) at each iteration across the cross-validation folds. (b) Label learning progress over
successive iterations (x-axis) showing confidence of predictions for each unlabeled cell line (y-axis).
Success or failure of the method to assign the correct label to each cell line shown in first column
(green, correct; black, incorrect). Darker color indicates higher vote confidence across the views for
either the non-sensitive (blue) or sensitive (red) class.
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Fig. S8. MTOR_up_V1_up gene set feature and its relationship to expression and outcome. (a)
ActArea for each cell line, sorted by the MTOR gene set kurtosis value; a higher proportion of resis-
tant cells (red lines) are associated with higher kurtosis values of this gene set (left side) compared to
sensitive cells (blue lines). (b) MTOR gene set kurtosis value for each cell line. (¢) RNA Expression
of the genes within the gene set. (d) Same genes as in (c), now showing gene—gene expression corre-
lation. Tree shows hierarchical clustering of the genes and highlights groups of similar genes. Genes
involved in EGFR signaling are marked with E, metastasis with M, basal vs mesenchymal BRCA
with B, and resistance to several cancer drugs with R. (e) Correlation between gene expression and

MTOR gene set kurtosis value determines sorting of genes in (c) and (d).
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