Supporting information material: Assessing diversity in multiplex networks

Laura C. Carpi,¹ Tiago A. Schieber,² Panos M. Pardalos,³ Gemma Marfany,^{4,5}

Cristina Masoller,⁶ Albert Díaz-Guilera,^{7,8} and Martín G. Ravetti^{9,*}

¹Programa de Pós-Graduação em Modelagem Matemática e Computacional,

PPGMMC, Centro Federal de Educação Tecnológica de Minas Gerais,

CEFET-MG. Av. Amazonas, 7675. 30510-000. Belo Horizonte, MG, Brazil

²Departmento de Ciências Administrativas,

Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil

³Industrial and Systems Engineering, University of Florida, Gainesville, FL, USA

⁴Departament de Genètica, Microbiologia i Estadística,

Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain

⁵Institut de Biomedicina de la Universitat de Barcelona (IBUB-IRSJD), Barcelona, Spain

⁶Departament de Física, Universitat Politècnica de Catalunya. Rambla St. Nebridi 22, Terrassa 08222, Barcelona, Spain

⁷Departament de Física Fonamental, Universitat de Barcelona, Barcelona, Spain

⁸ Universitat de Barcelona, Institute of Complex Systems (UBICS), 08028 Barcelona, Spain

⁹Departmento de Engenharia de Produção,

Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil

(Dated: December 3, 2018)

NOTE S1. PROOF THAT D IS A METRIC BETWEEN NETWORKS

Equation (1) from the main text shows that D(p,q) = 0 if, and only if, both networks possess the same transition matrix and, consequently, the same adjacency matrix. D is a metric because the Jensen-Shannon divergence is square of a metric between probability distributions, then \mathcal{D} is a metric between layers, in fact, is a metric between labelled graphs.

Figure S1 and Table S1 presents a small example on how the metric works. Both networks are very similar, they have the same number of nodes, and all of them have the same degree. As it can be seen in Table S1, nodes 1 and 4 present dissimilarity zero. Node 1 has the same adjacency matrix in both networks and it is connected to different nodes at distance 2, then, node 1 has the same node distance distribution in both networks. The same is valid for node 4 that it is connected to nodes 1 and 2 in both layers. In this small example it is easy to see that the distance between networks is zero if all nodes share, with their counterparts in the other layers, the same adjacency matrix.

FIG. S1: Nodes and layer difference metrics. Example of the node and layer difference metrics in a bilayer network. Nodes and layers difference values are presented in Table S1.

TABLE S1: Nodes and layer difference values for networks depicted in Figure S1.

Nodes	$\mathcal{D}_i(a,b)$
1	0
2	0.2409
3	0.7247
4	0
5	0.7247
$\mathcal{D}(a,b)$	0.4059

NOTE S2. OTHER MEASUREMENTS

Here we discuss and compare different existing measures and methods that are used either, to compute dissimilarities between labeled nodes, or heterogeneity in multiplex structure. Table S2 presents, to the best of our knowledge, the most commonly used methods.

Measure	Description	References
Craph Edit Distance (CED)	Counts only the number of uncommon edges between two networks,	[1 2]
Graph Euro Distance (GED)	not considering topological differences between them.	[1-3]
	It is not proved to be a metric between networks. It is computed	
The Quantum Jonson Shannon	through the square root of the Jensen-Shannon divergence between	
divergence (OISD)	the eigenvalues of the normalized Laplacian Matrix. The main	[4-6]
	drawbacks of this measure are, the lack of local information and the	
	number of isospectral networks with different topological features.	
	The node-activity value is a binary operator returning 1 if the node	
	possesses at least one first neighbor. The layer-activity vector is a	
	vector containing all node activity value of the layer. In order to	
	quantify the relative overlap between two layers at the level of node	
Node and Layer activity vector	activity, Hamming distance between the two corresponding	[7, 8]
	layer-activity vectors was proposed in [7]. Since it returns zero if the	
	networks share the same set of active nodes, is a pseudometric	
	between networks. Therefore, pairs of connected networks are	
	indiscernible using this measure.	
	Computes how correlated the degree distributions of a pair of layers	
	are. The main drawback is the lack of information when networks	
Interlayer Mutual Information	with the same degree distribution, but different topological structure,	[9]
	are compared. For instance, a pair of networks can possess a high	
	interlayer mutual information value, not possessing common links.	
	Global measure of the multiplex system which computes the expected	
Average Edge Overlap	number of layers on which an edge is present. The main drawback is	
	the lack of information concerning local and global features of the system.	

TABLE S2: Methods used for comparing multiplex structures.

To highlight the fact that our measure looks beyond the degree distribution, we compare a Barabàsi-Albert (BA) scale-free network (m=2), and two networks generated by dk model [10], with k = 1 preserving its degree sequence and k = 2.5 preserving the degree sequence, degree correlation, clustering coefficient and clustering spectrum. We compute the node dissimilarity \mathcal{D}_i corresponding to the node with the highest degree in the BA network, and the layer dissimilarities, as shown in Figure S2. It is possible to see that, although each corresponding node in these networks has the same degree, \mathcal{D} recognizes that nodes are connected in a different way, giving different dissimilarity values. Measures based on the node degree, or on node activity, are no able to acknowledge this fact.

FIG. S2: Dk model experiment. Layer dissimilarity values for a Barabàsi-Albert (BA) scale-free network and two different networks generated through the dK null model. (b) BA network (N=100, m=2). (a) Network dk 1.0 preserves the BA degree sequence. (c) Network dk 2.5 preserves the joint degree distribution and clustering spectrum. Red colored node (ID=3) corresponds to a node with degree 18, and pink nodes are the ones connected to it. D₃ correspond to the node dissimilarity values of node 3 in the different layers.

In a previous work, our group proposed a pseudo-metric between graphs, a measure that is not designed to consider the identity of the nodes and to whom they are connected [11]. Then, this previously proposed measure cannot be applied to structures in which the position of specific nodes and their relationship with all other in the network is relevant. Some examples where labels are relevant are, for example, climate networks where each node is connected to the others depending on the variable considered, or social networks in which the same group of individuals is connected considering different social ties.

To illustrate the limitation of the measure presented in [11] when applied to multiplex networks, we present Figure S3, in which, nodes 1, 2 and 3 are connected in different ways by two links. As the distance proposed in [11] does not consider the identity of the nodes, networks A and B are seen as identical (D = 0). The measure developed in this work considers the identity of the nodes and captures the topological differences between networks A and B (D = 0.3109697).

FIG. S3: The distance defined in [1] does not capture the changes between labels 1 and 2 in networks A and B, then the structures are seen as equals (D=0). The new measure on the other hand, is capable of capturing and quantifying the difference (D=0.3109697).

NOTE S3. EXPERIMENT ON AARHUS MULTIPLEX NETWORK STRUCTURE.

Layers difference values

Matrix S2 presents the difference values between layers.

$$\mathcal{D}(p,q) = \begin{bmatrix} - & \text{lunch facebook coauthor leisure work} \\ \text{lunch} & 0 & 0.8273 & 0.9251 & 0.6731 & 0.5913 \\ \text{facebook} & 0.8273 & 0 & 0.4973 & 0.6073 & 0.8027 \\ \text{coauthor} & 0.9251 & 0.4973 & 0 & 0.6315 & 0.9052 \\ \text{leisure} & 0.6731 & 0.6073 & 0.6315 & 0 & 0.7129 \\ \text{work} & 0.5913 & 0.8027 & 0.9052 & 0.7129 & 0 \end{bmatrix}$$
(S2)

Node difference values

For the two highest and lowest values of node diversity, nodes 1,11, 58 and 60, we present their difference matrices, and local diversity values.

Difference matrix of node 1, Matrix S3. Its local diversity value is $U_1=0.9844$.

$$\mathcal{D}_{1}(p,q) = \begin{bmatrix} - & \text{lunch facebook coauthor leisure work} \\ \text{lunch} & 0 & 0.9844 & 0.9844 & 0.9844 \\ \text{facebook} & 0.9844 & 0 & 0 & 0 & 0 \\ \text{co-authorship} & 0.9844 & 0 & 0 & 0 & 0 \\ \text{leisure} & 0.9844 & 0 & 0 & 0 & 0 \\ \text{work} & 0.9844 & 0 & 0 & 0 & 0 \end{bmatrix}$$
(S3)

Difference matrix of node 11, Matrix S4. Its local diversity value is $U_{11}=3.1163$.

$$\mathcal{D}_{11}(p,q) = \begin{bmatrix} - & \text{lunch facebook coauthor leisure work} \\ \text{lunch} & 0 & 0.9844 & 0.8801 & 0.752 & 0.7366 \\ \text{facebook} & 0.9844 & 0 & 0.5458 & 0.8575 & 0.9844 \\ \text{co-authorship} & 0.8801 & 0.5458 & 0 & 0.8527 & 0.9276 \\ \text{leisure} & 0.752 & 0.8575 & 0.8527 & 0 & 0.8495 \\ \text{work} & 0.7366 & 0.9844 & 0.9276 & 0.8495 & 0 \end{bmatrix}$$
(S4)

Difference matrix of node 58, Matrix S5. Its local diversity value is U_{58} =3.0643.

$$\mathcal{D}_{58}(p,q) = \begin{bmatrix} - & \text{lunch facebook coauthor leisure work} \\ \text{lunch} & 0 & 0.9844 & 0.8801 & 0.752 & 0.7366 \\ \text{facebook} & 0.9844 & 0 & 0.5458 & 0.8575 & 0.9844 \\ \text{co-authorship} & 0.8801 & 0.5458 & 0 & 0.8527 & 0.9276 \\ \text{leisure} & 0.752 & 0.8575 & 0.8527 & 0 & 0.8495 \\ \text{work} & 0.7366 & 0.9844 & 0.9276 & 0.8495 & 0 \end{bmatrix}$$
(S5)

Difference matrix of node 60, Matrix S6. Its local diversity value is $U_{60}=0.9844$.

	- -	lunch	facebook	$\operatorname{coauthor}$	leisure	work
	lunch	0	0	0	0	0.9844
\mathcal{D} (m m)	facebook	0	0	0	0	0.9844
$\mathcal{D}_{60}(p,q) =$	co-authorship	0	0	0	0	0.9844
	leisure	0	0	0	0	0.9844
	work	0.9844	0.9844	0.9844	0.9844	0

The complete dataset is available as Supporting Information material in an Excel file at [12]. In the same file, the reader will find the diversity value for each on of the 1114 genes.

tat is an essential regulatory element. It is a HIV trans-activator and plays an important role in regulating the transcription of the viral genome [13–17].

nef and *vif* are considered belonging to the class of accessory regulatory proteins. *nef* is involved in multiple functions during the replication cycle of the virus, playing an important role to increase virus infectivity. *vif* is important for the infectivity of HIV-1 virions depending on the cell type [13-17].

The *env* and *gag* genes belongs to the class of viral structural proteins. *gag* codes for the precursor gag-polyprotein which is processed by viral protease during maturation of the protein matrix and *env* is responsible for a mechanism that embeds in the viral envelope to enable the virus to attach to and fuse with target cells [13-17].

NOTE S5. EUROPEAN AIR TRANSPORTATION NETWORK.

TABLE S3: Airlines considered in the experiments, the X indicates the participation of the airline in one of the three alliances.

	Airlines	One World	Star Aliance	Skyteam
1	Lufthansa		Х	
2	Ryanair			
3	Easyjet			
4	British Airways	Х		
5	Turkish Airlines		Х	
6	Air Berlin	Х		
7	Air France			Х
8	Scandinavian Airlines		Х	
9	KLM			Х
10	Alitalia			Х
11	Swiss International Air Lines		Х	
12	Iberia	Х		
13	Norwegian Air Shuttle			
14	Austrian Airlines		Х	
15	Flybe			
16	Wizz Air			
17	TAP Portugal		Х	
18	Brussels Airlines		Х	
19	Finnair	Х		
20	LOT Polish Airlines		Х	
21	Vueling Airlines			
22	Air Nostrum			
23	Air Lingus			
24	Germanwings			
25	Pegasus Airlines			
26	Netjets			
27	Transavia Holland			
28	Niki			
29	SunExpress			
30	Aegean Airlines		Х	
31	Czech Airlines			Х
32	European Air Transport			
33	Malev Hungarian Airlines			
34	Air Baltic			
35	Wideroe			
36	TNT Airways			
37	Olympic Air			

Difference matrix of the Star Alliance network.

	¯ —	Lufthansa	Turkish	Scandinavian	Swiss	Austrian	TAP	Brussels	Polish	Aegean
	Lufthansa	0	0.197	0.1906	0.1548	0.1663	0.1659	0.1564	0.1572	0.1809
	Turkish	0.197	0	0.1739	0.13	0.1481	0.1421	0.1435	0.1402	0.1502
	Scandinavian	0.1906	0.1739	0	0.1179	0.1453	0.1169	0.1202	0.1164	0.125
$\mathcal{D}(m, q) =$	Swiss	0.1548	0.13	0.1179	0	0.1071	0.0824	0.0811	0.084	0.0904
$\mathcal{D}(p,q) =$	Austrian	0.1663	0.1481	0.1453	0.1071	0	0.1145	0.1143	0.1075	0.1163
	TAP	0.1659	0.1421	0.1169	0.0824	0.1145	0	0.0779	0.0872	0.0917
	Brussels	0.1564	0.1435	0.1202	0.0811	0.1143	0.0779	0	0.0877	0.0905
	Polish	0.1572	0.1402	0.1164	0.084	0.1075	0.0872	0.0877	0	0.0881
	Aegean	0.1809	0.1502	0.125	0.0904	0.1163	0.0917	0.0905	0.0881	0

Pierre Auger Collaboration						
Global Diversity	Value (1.65795)					
10 Most Diverse Nodes	Node Diversity Value					
4	3.889323					
204	3.780326					
45	3.262540					
211	3.162804					
54	3.122001					
125	3.043063					
1	3.043063					
53	3.011467					
73	2.806901					
57	2.794919					

TABLE S4: Pierre Auger Collaboration:	global and node	diversity v	values	of the	10 most	diverse	nodes	in '	the
	multiplex ne	twork.							

Homo Sapiens						
Global Diversity	Value (1.692839)					
10 Most Diverse Nodes	Node Diversity Value					
MCM6	4.008031					
SUMO2	3.958065					
CDK2	3.957474					
PSMA5	3.952747					
PSMD1	3.951968					
PAIP2	3.945939					
BMP7	3.943887					
PSMA4	3.940710					
CREB1	3.939096					
HDAC2	3.933005					

TABLE S5: Human Genome: global and node diversity values of the 10 most diverse nodes in the multiplex network.

NOTE S6. QUANTIFICATION OF DIVERSITY IN OTHER REAL NETWORKS.

Pierre Auger Collaboration: the network consists of layers corresponding to different working tasks within the Pierre Auger Collaboration. considering all submissions between 2010 and 2012 and assigned each report to L=16 layers according to its keywords and its content: Neutrinos, Detector, Enhancements, Anisotropy, Pointsource, Mass-composition, Horizontal, Hybrid-reconstruction, Spectrum, Photons, Atmospheric, SD-reconstruction, Hadronic-interactions, Exotics, Magnetic and Astrophysical-scenarios. Readers should refer to [18] for details. The multiplex is weighted (see Table S4).

Homo Sapiens - genetic interaction: network concerns homo sapiens genetic interaction. There are 18222 nodes and 7 layers: Direct interaction, Physical association, Suppressive genetic interaction defined by inequality, Association, Colocalization, Additive genetic interaction defined by inequality and Synthetic genetic interaction defined by inequality. See [19, 20] for a better description of the data and Table S5 for the results.

Hepatitusc multiplex GPI network: is the multiplex genetic and protein interactions network of the Hepatitus C virus. The network contains 105 nodes, and 3 layers: Physical association, Direct interaction and Colocalization. Readers should refer to [19, 20] for a better description of the data and Table S6 for the results.

Human-Herpes4 multiplex GPI network: representing the multiplex genetic and protein interactions network of the EpsteinBarr virus, also known as human herpes-virus 4 (HHV-4). The network contains 216 nodes, and 4 layers: Physical association, Direct interaction, Association and Colocalization. Readers should refer to [19, 20] for a better description of the data and Table S7 for the results.

NYclimatemarch2014 multiplex social network: represents different types of social relationships amoung users, obtained from Twitter during the People's Climate March in 2014. The multiplex network used in the paper makes use of 3 layers, corresponding to retweet, mentions and replies observed between 2014-09-19 at 00:46:19 to 2014-09-22 at 06:56:25. There are 102439 nodes, labelled with integer ID between 1 and 102439. The multiplex is weighted

Hepatitus C virus							
Global Diversity V	Global Diversity Value (1.002419)						
10 Most Diverse Nodes	Node Diversity Value						
HCVgp1	1.38941						
SMURF2	1.02580						
SMURF1	1.02580						
SMAD3	1.02580						
NAP1L1	1.02580						
PSMB9	1.02580						
EFEMP1	1.02580						
MOB1A	1.02580						
FKBP8	1.02580						
TP53	1.02580						

TABLE S6: Hum	an Genome:	global and node	diversity value	s of the 10 mo	st diverse	nodes in	the Hepatit	us C	virus
			multiplex ne	twork.					

Herpes virus 4						
Global Diversity V	Value (0.8776402)					
10 Most Diverse Nodes	Node Diversity Value					
EBNA-LP	1.739951					
DDX5	1.463567					
EBNA-3B/EBNA-3C	1.406072					
EBNA-1	1.273689					
BAG2	1.211084					
HSPA4	1.211084					
CDKN2A	1.206365					
TUBB	1.184846					
TUBA1B	1.184846					
HSPA8	1.184846					

TABLE S7: Human Genome: global and node diversity values of the 10 most diverse nodes in the Herpes virus 4 multiplex network.

(obtained by summing up the number of a specific type of interaction over time).

London Transportation Network: Nodes are train stations in London and edges encode existing routes between stations. Underground, Overground and DLR stations are considered. There are 369 nodes in total. Readers should refer to [21]

S9

NY climate network						
Global Diversity	Value (1.211324)					
10 Most Diverse Nodes	Node Diversity Value					
77411	1.709796					
31679	1.709502					
30745	1.709361					
72515	1.708603					
30357	1.706790					
39843	1.706774					
87304	1.704423					
71052	1.704219					
98470	1.704098					
83809	1.704047					

TABLE S8: Human Genome: global and node diversity values of the 10 most diverse nodes in the NY climate network multiplex network.

London Transportation Network	
Global Diversity Value (0.9455894)	
10 Most Diverse Nodes	Node Diversity Value
shepherdsbush	1.538358
kensington(olympia)	1.538358
westbrompton	1.538358
euston	1.538358
highbury&islington	1.538358
westhampstead	1.538358
blackhorseroad	1.538358
canadawater	1.538358
barking	1.538358
whitechapel	1.538358

TABLE S9: Human Genome: global and node diversity values of the 10 most diverse nodes in the LondonTransportation Network multiplex network.

* martin.ravetti@dep.ufmg.br

- A., S. & S., F. K. A distance measure between attributed relational graphs for pattern recognition. *IEEE Transactions on Systems, Man, and Cybernetics* 13, 353–363 (1983).
- [2] Zeng, Z., Tung, A. K. H., Wang, J., Feng, J. & Zhou, L. Comparing stars: On approximating graph edit distance. Proc. VLDB Endow. 2, 25–36 (2009).
- [3] Gao, X., Xiao, B., Tao, D. & Li, X. A survey of graph edit distance. Pattern Anal. Appl. 13 (2010).
- [4] Lamberti, P., Majtey, A., Borras, A., Casas, M. & Plastino, A. Metric character of th equantum jensen-shannon divergence. *Physical Review A* 77, 052311 (2008).
- [5] Briet, J. & Harremoes, P. Properties of classical and quantum jensen-shannon divergence. Phys. Rev. A 79, 052311 (2009).
- [6] De Domenico, M., Nicosia, V., Arenas, A. & Latora, V. Structural reducibility of multilayer networks. Nature Communications 6 (2015).
- [7] Nicosia, V. & Latora, V. Measuring and modeling correlations in multiplex networks. *Phys. Rev. E* 92, 032805 (2015).
- [8] Battiston, F., Nicosia, V. & Latora, V. Structural measures for multiplex networks. Phys. Rev. E 89, 032804 (2014).
- [9] Lacasa, L., Nicosia, V. & Latora, V. Network structure of multivariate time series. Scientific Reports 15, 15508 (2015).
- [10] Orsini, C. et al. Quantifying randomness in real networks. Nature Communications 6, 8627 (2015).
- [11] Schieber, T. A. et al. Quantification of network structural dissimilarities. Nature Communications 8, 13928 EP (2017).
- $[12] \ \texttt{https://github.com/tischieber/assessing_diversity_in_multiplex_networks/.}$
- [13] Sierra, S., Kupfer, B. & Kaiser, R. Basics of the virology of hiv-1 and its replication. Journal of Clinical Virology 34, 233–44 (2005).
- [14] Simon, V., Ho, D. D. & Karim, Q. A. Hiv/aids epidemiology, pathogenesis, prevention, and treatment. Lancet 9534, 489–504 (2006).
- [15] Levy, J. Hiv pathogenesis: 25 years of progress and persistent challenges. AIDS 23, 147–60 (2009).
- [16] S., M., T.W., C. & A.S., F. Pathogenic mechanisms of hiv disease. Annual Review of Pathology 6, 223–48 (2011).
- [17] Naif, H. Pathogenesis of hiv infection. Infectious Disease Reports. 5(Suppl 1) (2013).
- [18] Domenico, M. D., Lancichinetti, A., Arenas, A. & Rosvall, M. Identifying modular flows on multilayer networks reveals highly overlapping organization in interconnected systems. *Physical Review X* 5 (2015).
- [19] Domenico, M. D., Porter, M. A. & Arenas, A. Muxviz: A tool for multilayer analysis and visualization of networks. *Journal of Complex Networks* 2, 159–176 (2015).
- [20] Stark, C. et al. Biogrid: a general repository for interaction datasets. Nucleic Acids Research 34, D535–D539 (2006).
- [21] De Domenico, M., Solé-Ribalta, A., Gómez, S. & Arenas, A. Navigability of interconnected networks under random failures. Proceedings of the National Academy of Sciences 111, 8351 (2014).