Genome analysis identifies the mutant genes for common industrial Silverblue and Hedlund white coat colours in American mink

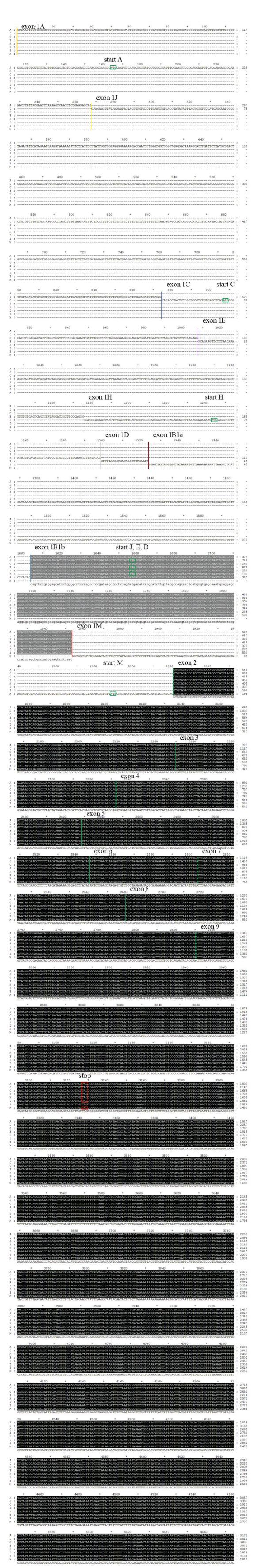
Andrey D. Manakhov^{1, 2, 3} (orcid: 0000-0002-5163-8747)

Tatiana V. Andreeva^{1, 3}

Oleg V. Trapezov^{4,5}

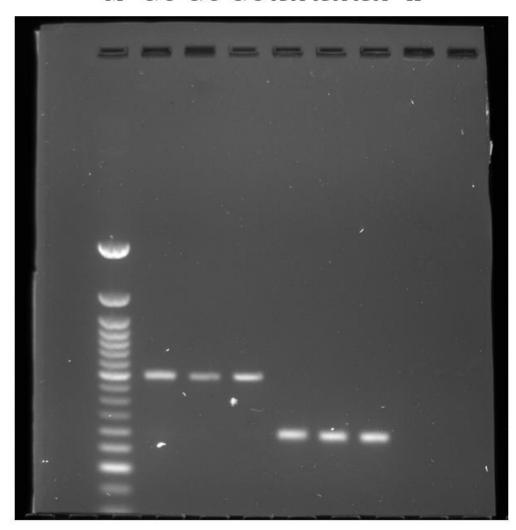
Nikolay A. Kolchanov² (orcid: 0000-0001-6800-8787)

Evgeny I. Rogaev^{1, 3, 6, 7} *

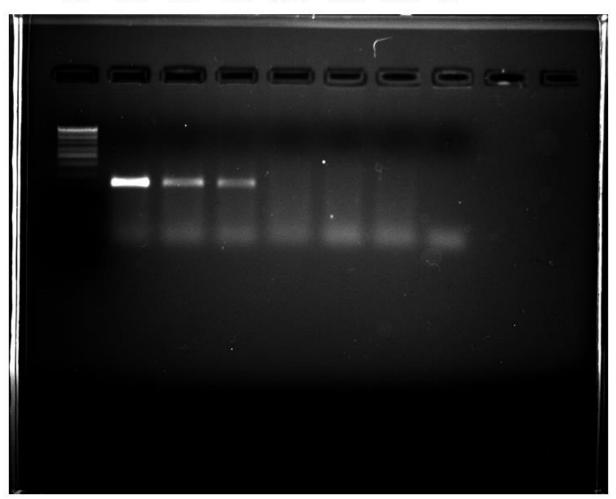

- 1) Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
- 2) Systems Biology Department, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Center for Genetics and Genetic Technologies, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- 4) Department of Animals and Human Genetics, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
- 5) Novosibirsk State University, Novosibirsk, 630090, Russia
- 6) Center for Brain Neurobiology and Neurogenetics, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01604, USA

^{*} Corresponding author (<u>rogaev@vigg.ru</u>; Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia; tel: 8 (499) 135-50-61)

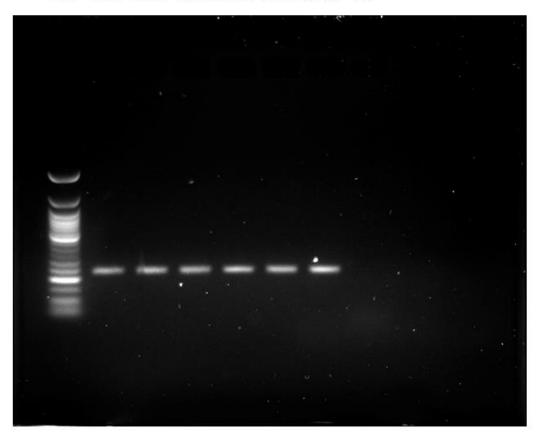
Supplementary Table 1. Results of sequencing American mink genomes. Statistics were calculated with samtools¹, picard, and GATK² software, ferret genome (MusPutFur1.0) was used as reference.


Sample	Colour	N of reads	Mapped %	Duplicates %	Coverage*
mink_3-261	Standard dark brown	266,270,413	96,18	4,41	10,04
mink_3-247	Standard dark brown	257,506,707	97,64	3,06	9,78
mink_3-265	Standard dark brown	235,071,238	96,77	2,56	9,14
mink_1-663	p/p	177,249,440	95,38	11,11	6,63
mink_0-329	p/p	170,946,890	97,18	3,43	6,54
mink_9-431	p/p	151,699,053	95,36	4,27	5,57
mink_1-679	h/h	140,973,939	95,14	4,38	5,29
mink_1-725	h/h	139,370,841	95,82	3,57	5,26
mink_1-681	h/h	136,213,566	94,09	3,27	5,02

- 1. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
- 2. McKenna, A. *et al.* The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res.* **20**, 1297–1303 (2010).


: 3335 : 3675 : 3201 : 3236 : 3191 : 3093 : 3348 : 2985 **Supplementary 3.** Original agarose gel electrophoresis of *MLPH* cDNA exons 6–9. M – 50 bp DNA Ladder (NEB, USA). Genotypes for GL896909.1:662639 G/A (MLPH C.901+1 G>A) mutation are presented.

M G/G G/G G/G A/A A/A A/A K-


Supplementary 4. Original agarose gel electrophoresis of MITF-M cDNA 1M-2 exons and B2M cDNA 1–2 exons. No MITF-M cDNA 1–2 exons were observed in the cortex of Hedlund white (h/h) minks, which were homozygous for this mutation. M – DNA ladder 100 bp + 50 bp (SibEnzyme, Russia). Genotypes for GL896899.1:18635719 G/A (MITF-M C.33+1 G>A) mutation are presented.

M G/G G/G G/G A/A A/A A/A K-

Supplementary 5. Original agarose gel electrophoresis of *B2M* cDNA 1–2 exons. 50 bp DNA Ladder (NEB). Genotypes for GL896899.1:18635719 G/A (MITF-M C.33+1 G>A) mutation are presented.

M G/G G/G G/G A/A A/A A/A K-

