
SUPPLEMENTARY MATERIALS 

Dataset introduction 

We established a small, manually segmented dataset, including 27 FIB-SEM images 

from WT monkey islets and 67 images from the MS monkey islets, each with the 

resolution of 1792×2048.  

The annotated image sequence (saved as data.tiff) is a set of 94 sections that are 

randomly selected from different groups of focused FIB-SEM datasets for the insulin 

granules from WT and MS rhesus monkeys.  

The corresponding labels (saved as label.tiff) for binary segmentation are provided 

in an in-out fashion, i.e., black for the pixels of vesicles and white for the other pixels 

(which correspond to other structures within beta-cells or alpha-cells, such as the 

nucleus and cytoplasm). 

Optimization of the MFCN 

Suppose a training dataset S={(x , ), 1,..., }n ny n m , containing m images, each composed 

of L pixels. ( , )n nx y  denoted n th input image and its segmented ground truth 

respectively. For a multi-class problem with k classes in total, we define ( , )f x as the 

input of the softmax layer (θ represents parameter of the whole net). For each pixel l 

in an image pair
( ) ( )( , )i ix y , we defined the predicted probability of it belonging to 

class j (j∈N) to be 
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and the corresponding cost function at each pixel l as :   
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Specifically, since discriminating the vesicle from the non-vesicle region is a binary 

classification,
( ) {0,1}i

ly  , we defined:  
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then the cost function  lJ  can be rewritten as:          

( ) ( ) ( ) ( ) ( )( ; , ) log ( ) (1 )log(1 ( ) )i i i i i

l l l l lJ x y y h x y h x                (4) 

Finally, we added a regularization item to the model to avoid the overfitting 

problem, and obtained the final cost function as: 
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The latter part of equation (5) is L2 regular term in order to prevent overfitting, 

improve the generalization of the model, and help to solve the matrix with bad 

condition number. We selected L2 regularization with a small  of 0.0001 in 

experiments. 

Our goal is to minimize the  J  as a function of the model parameters θ. In model 

learning, parameters are updated by backpropagation and we follow the optimization 

process of the classic stochastic gradient descent with momentum to train the model. 

Specifically, by combining the gradient of the whole cost function ( )J  and the 

current velocity vector
tV , we update the parameters θ as follows:     

                       

  1 ( )t tV V J                                 (6) 

                        +1 t 1=t tV                                  (7) 

where represents the learning rate, and  is the momentum coefficient.  

In the training process, we used a combination of Gaussian distribution and random 



numbers from the Xavier algorithm to generate the initial values of the model 

parameters.  

Segmentation of new images  

Suppose a testing dataset T with N images is 1 2 *{ , ... }, , 1792, 2048N i m nT t t t t R m n    , 

for a pixel l in an test image i, its predicted result 
( )*i

lj  can be expressed as: 
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We found other post-processing procedures such as CRF (Chen, 2016) rendered the 

segmented grey granules smaller and more non-continuously, so this was not used 

here.  

Experimental settings 

To reduce the dependence of the trained network on only specific proportion of the 

dataset and the network performance deviations, we used 5-fold cross-validation. By 

randomly dividing the dataset into five equal parts, we selected four for model 

training, and used the remaining group for model testing. We performed the same 

cross-validation procedure five times and used the average results. In the training 

stage, we randomly cropped each image to 640×704 pixels to reduce memory 

consumption and training time, while keeping the size of images for testing or 

validation unchanged. Random cropping could also be used for data augmentation to 

prevent overfitting. The pre-processing and post-processing were implemented by 

Matlab, and the training and testing of MFCN were under the open-source deep 

learning framework Caffe library (Jia, 2014) with a Tesla K40M GPU. All of the 

software and our annotated dataset described here, is available at 

https://github.com/644zhang/MFCN. 

Implementation of various segmentation methods 



we compared the performance of our MFCN method with other previously published 

methods. First, following a previous report (Diaz et al., 2010), we implemented a 

conventional rule-based segmentation that involved the top-hat, the watershed 

transformation and the Hough transformation. However, this method only detected 

insulin granules of high contrast and most with regular shape, thus performed poorly 

when came to our problem of granule segmentation. Thus, we removed this method 

from the comparison tables and limited the comparisons only among different 

machine learning algorithms. 

We implemented random forest algorithm embedded in WEKA (Smith and Frank, 

2016), which is a classical machine learning method in a wide-used platform. Here we 

selected the default training features including Gaussian blur, Sobel filter, Hessian, 

Difference of Gaussians, and Membrane projections, and used 200 decision trees for 

the training. The second one was the standard convolutional networks (Van Valen et 

al., 2016), in which we selected a sliding window of 61×61 pixels to approximate the 

size of granules in our data for patch-wise prediction. In these two methods, we 

selected the most suitable procedures and parameters. The last one was a revision of 

U-Net (Ronneberger, 2015), in which we followed the same procedure to train the 

network as that used for MFCN. A different point is that we fine-tuned the U-Net 

based on the already trained network (Ronneberger, 2015) to ensure the U-Net 

starting from a good initialization point, while trained the MFCN from scratch when 

the optimization became harder. 

Evaluation metrics 

We adopted two sets of evaluation metrics. One was designed for the common 

semantic segmentation and scene parsing (Long, 2014) , including pixel accuracy, 

mean accuracy, and mean region intersection over union (Mean IU), as defined by the 

following equations: 

Pixel Accuracy: 
i

/ii ii
n t  ; 



Mean Accuracy: 1/ ) /cl ii ii
n n t（ ; 

Mean IU: (1/ ) / ( )cl ii i ji iii j
n n t n n   ; 

in which ijn quantifies the number of pixels in class i predicted to be in class j, and 

i ijj
t n  denotes the number of pixels belonging to class i, with cln  classes in all. 

However, the metrics based on the single pixel may not be able to exactly and 

correctly evaluate the segmentation accuracy of insulin granules. Thus, we also 

designed a metric based on detecting single objectives such as granules. In 

segmenting the single granules, we regarded an intersection over union (IoU) between 

the manually annotated region and the prediction region larger than 0.5 as a correct 

prediction. The number of correct or wrong predictions was used to calculate five 

ratios as follows. Specifically, we defined TP (True Positive) as correctly identified 

granules, FP (False Positive) as incorrectly identified granules, TN (True Negative) as 

correctly rejected non-granular structures, and FN (False Negative) as incorrectly 

rejected granular structures. With these, we calculated the following parameters: 

Precision Ratio = TP / (TP + FP) 

Recall Ratio = TP / (TP + FN) 

Error Ratio = (FP + FN) / (TP + FN) 

Miss Ratio = TN / (TP + FN) 

F-measure = 2 × P × R / (P + R) 

Experiments on different structures of MFCN 

We have tried to benchmark the performance of proposed multi-scale inception and 

multi-branch modules against MFCNs with different structures, such as replacing the 

multi-scale inception module with one fixed size of kernel, replacing three branches 

with one branch, four branches, or five branches modules, etc. From Table S1, we 

concluded that models of one branch or of branches more than 3 did lead to reduced 



mean accuracy and mean IU. If the inception module was replaced with small kernels 

like 3×3, we also found a degenerated performance of the model. From these 

experiments, we conclude that the current network design is the most suitable for the 

segmentation of insulin granules in EM images.  

Islet isolation and culture from rhesus monkeys 

Dissected pancreases from rhesus monkeys (Macaca mulatta, aged 14-19 years) were 

obtained from the Non-human Primate Research Center, Peking University, Beijing, 

China (Zhang et al., 2011). The study was approved by the Ethics Committee of 

Peking University and performed in the animal facility of Peking University 

accredited by the Association for Assessment and Accreditation of Laboratory Animal 

Care International. Procured pancreases were stored in Belzer-UW solution and 

briefly sterilized with Betadine (5 mg/ml), Fungizone (2.5 mg/ml) and Cefazolin (0.5 

mg/ml), sequentially. The islets were isolated by enzymatic digestion (0.5 mg/ml 

collagenase Type 1 and collagenase P) for 30 min at 37℃ and hand-picked. Isolated 

islets were cultured in M1066 medium containing 10% FBS and 5.5 mmol/l glucose 

in a 5% CO2 incubator for 12~24 hours. 

FIB-SEM 

Islets were harvested and fixed in 2.5% glutaraldehyde in PBS with a pH of 7.4 at 

room temperature for 1 hour. Samples were post-fixed with 1% osmium tetroxide in 

0.1 mol/L sodium cacodylate for 1.5 h and stained with 2% (w/v) uranyl acetate in 

double-distilled water for 50 min to increase the contrast under SEM. After washing 

and dehydration in a graded series of acetone, samples were embedded in Embed 812 

resin.  

The resin-embedded block was trimmed with a diamond knife using a Leica 

ultra-microtome EM UC6 (Leica, Germany). The block was remounted with the 

exposed islet upwards and glued for use. The surface of the block was coated with a 

thin layer of carbon to increase the electrical conductivity. The block was transferred 

into the FIB-SEM chamber, and sectioned with a Helios Nanolab 600i dual-beam 



SEM (FEI, the Netherlands), which combined high-resolution field-emission SEM 

with a focused gallium ion beam. A 1-mm-thick layer of platinum was deposited on 

the block above the region of interest to protect the specimen and reduce FIB milling 

artifacts. Automated sequential FIB milling and SEM imaging were conducted as 

described previously (Merchan-Perez et al., 2009). A layer of platinum (~0.8 mm 

thick) was deposited on a surface perpendicular to the block face. The block face was 

imaged using an electron beam with an acceleration voltage of 3 kV, a current of 0.17 

nA and a dwell time of 10 μs. The image was captured with a 2K×2K CCD camera 

with a horizon field width (HFW) at 13.8 μm. After the surface was imaged, a gallium 

ion beam with an acceleration voltage of 30 kV and a current of 0.79 nA was used to 

remove a 20-nm thick superficial layer from the block face for the next round of 

imaging and milling. 

Statistic analysis 

To benchmark MFCN with other algorithms, we randomly selected electron 

micrographs to be segmented. Morphological parameters of individual insulin 

granules were assessed and quantified using various algorithms in combination with 

manual processing in ImageJ (NIH, USA). All results were presented as a frequency 

distribution histogram or mean ± SEM. Statistical significance was evaluated by 

Student t-test or Kolmogorov-Smirnov test using GraphPad Prism 6. Asterisks 

denoted statistical significance compared with the WT, with p values less than 0.05(*), 

0.01(**), and 0.001(***). 



Supplementary Figures and Legends 

 

Figure S1. Flow diagram of whole image processing procedure. Whole image 

processing can be divided into three parts: histogram equalization, MFCN binary 

segmentation, and watershed-based instance segmentation.  

 

Figure S2. Histogram equalization for efficient image pre-processing. (A, B) 

FIB-SEM images of beta cells from WT (A) and MS (B) monkeys in original format 

(left) and after processing with histogram equalization (right). (C, D) Intensity 

histograms of images in (A, B) before (left) and after (right) histogram equalization. 

Scale bar, 1 μm. 



 

Figure S3. Binary segmentation maps of insulin granules in WT monkey beta 

cells by four algorithms. (A) Original image. (B) Manually labeled segmentation as 

gold standard. (C) Segmentation result of random forest algorithm. (D) Segmentation 

result of standard CNN algorithm. (E) Segmentation result of U-Net algorithm. (F) 

Segmentation result of MFCN algorithm. Scale bar, 1 μm. 



 

Figure S4. Binary segmentation maps of insulin granules in MS monkey beta 

cells with four algorithms. (A) Original image. (B) Manually labeled segmentation 

as gold standard. (C) Segmentation result of random forest algorithm. (D) 

Segmentation result of standard CNN algorithm. (E) Segmentation result of U-Net 

algorithm. (F) Segmentation result of MFCN algorithm. Scale bar, 1 μm. 



 

Figure S5. Comparison of performance of U-Net and MFCN in detecting insulin 

granules from nucleus background in WT monkey beta cells. (A) Three beta cells 

from WT rhesus monkey imaged with FIB-SEM. (B) Gold standard of manually 

segmented data. (C) Segmentation result of U-Net. (D) Segmentation result of MFCN. 

In (A-D), boundary of nucleus is labeled with red curve lines and two typical vesicles 

are indicated with red arrowhead. Scale bar, 2 μm. 



 

Figure S6. Segmentation of insulin granules in mouse beta cells imaged with 

different modes of EM by MFCN. (A) Our trained MFCN readily detected insulin 

granules in one slice of tomogram of beta cell from C57BL/6J mouse imaged with 

STEM tomography. Scale bar, 1 μm. (B) Our trained MFCN resolved insulin granules 

in beta cell from C57BL/6J mouse imaged with thin-slice of TEM. Scale bar, 2 μm. 

  



Supplementary Tables  

Table S1. Benchmarking of different network structures in segmenting insulin 

granules from both WT and MS monkeys. In some cases, we showed segmentation 

results (shown as mean value ± SEM) of the complete testing dataset containing both 

WT and MS samples. Three different structures of inception module were shown in 

the following figure (a-c): the number of channels of feature maps was denoted on top 

of the cuboids and the arrows denoted the different operations (kernel size/stride). 

Inception 

module 

Branch 

number 

Pixel 

accuracy 

Mean 

accuracy 

Mean IU 

b (ours) 3 0.99 ± 0.0008 0.92 ± 0.0050 0.89 ± 0.0047 

a 3 0.98 ± 0.0008 0.88 ± 0.0056 0.87 ± 0.0050 

c 3 0.98 ± 0.0009 0.87 ± 0.0056 0.85 ± 0.0051 

b 1 0.97 ± 0.0011 0.84 ± 0.0062 0.81 ± 0.0058 

b 4 0.98 ± 0.0009 0.86 ± 0.0056 0.84 ± 0.0052 

b 5 0.98 ± 0.0010 0.85 ± 0.0066 0.82 ± 0.0057 

 

Table S2. Pixel-based accuracy and speed evaluation of various algorithms in 

segmenting insulin granules from both WT and MS monkeys. In some cases, we 

showed segmentation results (shown by the mean value ± SEM) of the complete 

testing dataset containing both WT and MS samples, as well as the results for only 

WT samples. 

Method 
Animal 

type 

Pixel 

accuracy 

Mean 

accuracy 
Mean IU 

Segmentation 

speed 

(s/image) 

Random forest  WT+MS 0.96 ± 0.0037 0.72 ± 0.0181 0.69 ± 0.0171 ~ 403 

CNN  WT+MS 0.97 ± 0.0048 0.73 ± 0.0177 0.70 ± 0.0163 ~ 2480 

U-Net 
WT+MS 0.97 ± 0.0013 0.82 ± 0.0087 0.75 ± 0.0074 

~ 3 
WT 0.97 ± 0.0018 0.86 ± 0.0132 0.78 ± 0.0110 

MFCN 
WT+MS 0.99 ± 0.0010 0.92 ± 0.0057 0.89 ± 0.0061 

~ 3 
WT 0.99 ± 0.0012 0.95 ± 0.0062 0.92 ± 0.0055 



Table S3. Granule-based comparison of various algorithms in segmenting insulin 

granules from both WT and MS monkeys. In some cases, we showed segmentation 

results (shown as mean value ± SEM) of the complete testing dataset containing both 

WT and MS samples, as well as the results for only WT samples. 

Method 
Animal 

type 
Precision Recall Miss Error F-measure 

Random 

forest  
WT+MS 0.51 ± 0.0529 0.51 ± 0.0537 0.49 ± 0.0537 0.52 ± 0.0383 0.51 ± 0.0559 

CNN  WT+MS 0.46 ± 0.1003 0.50 ± 0.0777 0.50 ± 0.0777 0.53 ± 0.0905 0.48 ± 0.0871 

U-Net 
WT+MS 0.68 ± 0.0156 0.78 ± 0.0184 0.22 ± 0.0184 0.38 ± 0.0312 0.73 ± 0.0167 

WT 0.71 ± 0.0286 0.88 ± 0.0264 0.12 ± 0.0264 0.22 ± 0.0771 0.79 ± 0.0280 

MFCN 

WT+MS 0.87 ± 0.0134 0.89 ± 0.0117 0.11 ± 0.0117 0.13 ± 0.0243 0.88 ± 0.0118 

WT 0.91 ± 0.0122 0.92 ± 0.0106 0.08 ± 0.0106 0.12 ± 0.0147 0.91 ±0.0104 
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