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Supplementary Informations

Sensitivity analysis

We vary parameters to test our model for stability, respectively to identify the
sensitivity of the ESSS with respect to the variation of the parameters.

As noted before, the ESSS is invariant under rescaling of time. We thus fix
the reproduction rate of bacteria, β0 = 1/h. The other values used as reference
are b = 1.0/h and ẑ = 50 (see section 1.1.1 for the figures with these parameter
values).

Variation of the reproduction rate of plasmids

We test b = 0.8/h, b = 0.9/h, b = 1.0/h, b = 1.5/h, and b = 2/h. We present
for each parameter set the ESSS (pz), the copy number distribution (population
density over copy number) and the average copy number in both daughters over
the mothers’ copy number.
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Figure A: Parameters: β0 = 1/h, ẑ = 50, and b = 0.8.
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Figure B: Parameters: β0 = 1/h, ẑ = 50, and b = 0.9.
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Figure C: Parameters: β0 = 1/h, ẑ = 50, and b = 1.0.
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Figure D: Parameters: β0 = 1/h, ẑ = 50, and b = 1.0.
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Figure E: Parameters: β0 = 1/h, ẑ = 50, and b = 1.5.
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Figure F: Parameters: β0 = 1/h, ẑ = 50, and b = 2.0.
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If b ≈ 0.9/h or larger, we find unequal segregation pattern to appear (Fig. 1-
6). If b is too small (in comparison with β), equal segregation is optimal. Only
for those values, cell division is not able to If b is distinctively smaller than β0,
bacterial division is able to effectively counteract plasmid reproduction, and the
population does not accumulates at z = ẑ. In this case, equal segregation is
best.

Variation of the carrying capacity of plasmids

We test ẑ = 100 and ẑ = 200.
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Figure G: Parameters: β0 = 1/h, b = 1.0/h, and ẑ = 100.
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Figure H: Parameters: β0 = 1/h, b = 1.0/h, and ẑ = 200.

The ESSS scales approximately linearly with ẑ (rescaling the x-axis for ẑ =
100 by factor 2 almost yields the figure for ẑ = 200, see Fig. 7, 8).

Scaling the metabolic burden

In the model we always assume that the cell reproduction rate becomes zero for
z = ẑ. We now consider

β(z) = β0(1 − θ z/ẑ),

such that we have the original model for θ = 1. If θ < 1, the metabolic burden
per plasmid is decreased and cells are still able to divide, even for z = ẑ. We
consider θ = 0.9 and θ = 0.8.
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Figure I: Parameters: β0 = 1/h, b = 1/h, ẑ = 50, and θ = 0.9
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Figure J: Parameters: β0 = 1/h, b = 1/h, ẑ = 50, and θ = 0.8
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If the metabolic burden is only 80% of the chosen one (where cells with
copy number ẑ cannot divide any more) leads to an equal segregation behavior.
Unequal segregation only becomes an ESSS if the metabolic burden is heavy for
z = ẑ (Fig. 9, 10).

Effect of horizontal plasmid transmission

We extend the model by horizontal transmission of plasmids from cell to cell
(e.g. by conjugation) to ensure that our conclusion are stable. The relevance of
this transmission is rather unclear, the rates estimated in literature range from
≈ 10−10/(h cell) [1], 4.2 10−8/(h cell) [2] to 2.5 10−11/(h cell) [3].
However, it might happen that this effect is of importance in the long run.
Therefore it is sensible to check the influence of horizontal plasmid transmission.
We repeat the complete modeling process, including the horizontal plasmid
transmission.

Dynamical process I: Replication of plasmids between two cell di-
visions. The plasmids within a cell follow a logistic birth process. Consider
a fixed cell with z plasmids. The plasmids reproduce within this cell at rate
bz(1 − z/ẑ)+, where ẑ denotes the maximum number of plasmids. Note that
we will introduce below horizontal plasmid transfer, such that the number of
plasmids may exceed the plasmid carrying capacity ẑ. In this case, we take
the reproduction rate for plasmids bz(1− z/ẑ)+ to zero (indicated by the index
“+”). If we only consider the number of plasmids, the dynamics of uz(t) is
described by the master equations for this birth-death process,

u̇z = − bz(1 − z/ẑ)+ uz + b(z − 1)(1 − (z − 1)/ẑ)+ uz−1

where we formally define u−1(t) = 0.

Now we consider a second effect: plasmid re-distribution via horizontal trans-
mission. This is a kind of infection process: infected cells (cells with z > 0)
infect other cells, undiscriminating cells without plasmids (z = 0) and cells with
plasmids (z > 0). There are two fundamentally different approaches to model
infection: mass action and standard incidence [4, 5]. We use here the standard
incidence. At rate d a plasmid is transferred from a cell to a randomly selected
cell within the population. We define the total amount of plasmid bearing cells

Z(t) =
∑
z∈N

uz(t).

The parameter d denotes the rate at which a plasmids is lost (because it is
transferred). Let furthermore N(t) =

∑
z′∈N0

uz′ denote the total population
size. The probability that a given cell transfers the plasmid to a cell with
z plasmids reads uz(t)/N(t). Hence, the rate at which a plasmid bearing cell
transfers a plasmid is d, and the rate at which a cell receives a plasmid is dZ/N .
We introduce the indicator function, χ>0(z) = 1 if z > 0 and χ>0(z) = 0 else.
Then,

u̇z = −[bz(1 − z/ẑ)+ + χz>0(z) d+ dZ(t) /N(t)] uz + χz>0(z + 1) d uz+1

+[dZ(t) /N(t) + b(z − 1)(1 − (z − 1)/ẑ)+] uz−1.

The following proposition indicates the consistency of the model in simple cases.
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Prop.: In the model developed so far, we always have N ′(t) = 0. That is, the
total population of cells is constant. Moreover, if b = 0, then d

dt

∑
z=∈N z uz(t) =

0 which does mean that the total number of plasmids is constant.
Proof: First of all, we have

N ′ = −
∞∑
z=0

(
[bz(1 − z/ẑ)+ + χz>0(z) d+ dZ(t) /N(t)] uz

)
+

∞∑
z=0

(
χz>0(z + 1) d uz+1

)

+

∞∑
z=0

(
[dZ(t) /N(t) + b(z − 1)(1 − (z − 1)/ẑ)+] uz−1

)
= −(dZ + d(Z/N)N) + dZ + (dZ/N)N = 0.

Next we take b = 0, and find

u̇z = −[χz>0(z) d+ dZ(t) /N(t)] uz + χz>0(z + 1) d uz+1 + d (Z(t) /N(t)) uz−1.

Hence,

d

dt

∞∑
z=0

zuz = −

( ∞∑
z=0

[dχ>0(z) + dZ(t) /N(t)] z uz

)

+

( ∞∑
z=0

dχ>0(z + 1) z uz+1

)
+

( ∞∑
z=1

[dZ(t) /N(t)] z uz−1

)

= − d

( ∞∑
z=0

zuz

)
− d (Z(t) /N(t))

( ∞∑
z=0

zuz

)
+ d

( ∞∑
z=1

(z − 1)uz

)

+d (Z(t) /N(t))

( ∞∑
z=0

(z + 1)uz

)
= 0

�
Dynamical processes II+III: Cell divisions and cell death. Cell

division and cell death is added in the same way as we did in the main text. All
in all, we obtain

u̇z = −[bz(1 − z/ẑ)+ + dχz>0(z) + dZ(t) /N(t)] uz

+dχz>0(z + 1) uz+1 + [dZ(t) /N(t) + b(z − 1)(1 − (z − 1)/ẑ)] uz−1

−β(z,A)uz +

∞∑
z0=z

[g(z; z0) + g(z0 − z; z0)]β(z0, A)uz0 − µ(z,A)uz. (1)

In contrast to the model in the main text, we have a nonlinear ODE. The
right hand side of this ODE is homogeneous of degree one: if we define ~u =
(u0, u1, . . .), we may write the ordinary differential equation as ~u′ = F (~u,A),
where F (θ~u,A) = θF (~u,A) for θ > 0 and ~u > 0 (component wise).

Long term behavior. It is well known that population growth and
distribution of the population structure can be separated in a system that is ho-
mogeneous of degree on [5]: Define N(t) =

∑
z∈N0

uz(t), and v(t) = u(t)/N(t).
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Then,

N ′ =

(∑
z∈N0

Fz(v,A)

)
N

v′ = F (v,A) −

(∑
z∈N0

Fz(v,A)

)
v.

Numerical simulations show that v(t) becomes stationary in the long run. If v∗

is the stationary state, then F (v∗, A) indicates the long term growth rate of the
population. As before, an ESSS is defines as the plasmid segregation strategy
that maximizes that growth rate.

Parameters. The parameter d represents the rate at which plasmids are
horizontally transferred. We use here standard incidence. The papers that es-
timated this parameter implicitly assumed mass action. In order to determine
dm we need to multiply the rates estimated by experiments with a typical pop-
ulation size (density), which is typically in the range of 106 cells per ml. As the
(mass action) transition rate is in the range of 10−10/(h cell) [1, 2, 3], we choose

d = 0.0001/h

As above, we use β0 = 1/h, b = 1.2/h and ẑ = 50. In the present model, we
need to specify explicitly the growth and eath rate for unprotected cells. We
assume that cells without pasmids do not grow in the presence of antibiotics,
and that they die at rate 5/h.
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Figure K: β0 = 1/h, b = 1/h, ẑ = 50, birth rate for unprotected cells is 0, death
rate of unprotected cells is 5/h, d = 0.0001/h. Note that the population density
is not only shown for the plasmid-bearing cells, but also for z = 0.
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Figure L: β0 = 1/h, b = 1/h, ẑ = 50, birth rate for unprotected cells is 0, death
rate of unprotected cells is 5/h, d = 1/h. Note that the population density is
not only shown for the plasmid-bearing cells, but also for z = 0.
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Numerical procedure. In order to estimate the asymptotic growth rate
in an environment with antibiotics, we used an explicit Euler method with step
width h = 0.001/h and solve the ODE for 15h, such that v approaches its
stationary state. We average the growth rate for the next 4h. To find the ESSS,
we use the steepest ascent method as described in the main part of the paper.

Result. Horizontal plasmid transfer hardly makes an effect (Fig. 11,
12), even if we take the rate d = 1/h, which is approximately 1000 times of
the parameters that adequately describes the biological system. If u0 is small,
Z(t) ≈ N(t). The rate to lose and receive a plasmid is about the same. That is,
plasmid re-distribution will not change the invariant copy number distribution.
Only if the plasmid-free population becomes large, there is a net flow of plasmids
from cells with plasmids to plasmid-free cells, i.e. (as the plasmid-free cells
receive a plasmid) to u1.
If the rate to transmit a plasmid would heavily depend on the copy number (e.g.
is linearly increasing with the copy number), then horizontal plasmid transfer
would effectively re-shuffle plasmids in the population. In this case, we would
find a distinct effect.

Monotonicity of the Fitness in a

We show that the fitness decreases in a in the F1 generation given a heuristic
weight to the fitness that represents plasmid loss. Common positive constants
are eliminated in the subsequent steps - only the sign of the derivative is of
interest.

d

da

(
q((1 + a)z1/2)

(
1 − 1

2
(1 + a) z1/ẑ

)
+ q((1 − a)z1/2)

(
1 − 1

2
(1 − a) z1/ẑ

))
= q′((1 + a)z1/2)

z1
2

(
1 − 1

2
(1 + a) z1/ẑ

)
− q((1 + a)z1/2)

1

2ẑ

−q′((1 − a)z1/2)
z1
2

(
1 − 1

2
(1 − a) z1/ẑ

)
+ q((1 − a)z1/2)

1

2ẑ

use: q((1 + a)z1/2) > q((1 − a)z1/2), q′((1 + a)z1/2) < q′((1 − a)z1/2) and a > 0

< q((1 + a)z1/2)
z1
2

{(
1 − 1

2
(1 + a) z1/ẑ

)
−
(

1 − 1

2
(1 − a) z1/ẑ

)}
< q((1 + a)z1/2)

z1
2

{(
1

2
(−1 − a) z1/ẑ

)
+

(
1

2
(1 − a) z1/ẑ

)}
< 0
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