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Supplementary Note 1. The stochastic individual-based and ODE implementations
of the mixed-carriage model are equivalent

Overview — In the main text, we introduce the “mixed-carriage” model for analysing the
evolution of antibiotic resistance in commensal bacteria. We provide details of two
alternative implementations of this model: one which uses stochastic individual-based
methods and one which uses deterministic systems of ordinary differential equations
(ODEs). We have asserted that the two implementations are equivalent under certain
limiting assumptions, and in this supplementary note we provide some evidence for that
assertion.

Section 1.1 formally shows that, under certain limiting assumptions, the individual-based
and ODE implementations of the mixed-carriage model are equivalent in the absence of
within-host strain growth.

Section 1.2 gives details on how within-host strain growth is introduced to the ODE
implementation by approximating growth using a series of discrete steps.

Section 1.3 discusses how within-host competitive exclusion—that is, cells of one strain
being eliminated completely from a host on account of being “crowded out” by other
strains—is implemented in both the individual-based and ODE implementations.

Section 1.4 shows graphically that the individual-based and ODE implementations produce
similar results.

1.1 Equivalence of the individual-based and ODE implementations in the absence
of within-host strain growth

In this section, we formally show that when f,;5, = Yjnin = 0, wg = 1,1 and At are
arbitrarily close to zero, and the population size N is infinite, the individual-based and
ODE implementations of the mixed-carriage model are equivalent. Differential within-
host strain growth is discussed in section 1.2.

Briefly, the equivalence of the individual-based and ODE implementations can be seen
by interpreting the rates of change in the system of ODEs described by equation (2) in
the main text as rates of transitions between host states, verifying that these transition
rates are equivalent to the event rates used in the individual-based implementation, and
noting that events have an equivalent impact upon hosts in the individual-based
implementation as the transitions in the ODE implementation do.

Suppose that, in the individual-based mixed-carriage model implementation, we have:
two strains, no minimum host carriage frequency (finin = 0), no minimum number of
carriers of each strain (Y,;, = 0), the germ size ¢ infinitesimally small, and equal within-
host fitness for both strains (ws = 1). Recall that we denote hostias h; = (s;,1;), where s;
is the host’s sensitive-strain carriage and r; is the host’s resistant-strain carriage.
Suppose further that at some time ¢t there are N hosts in total, and that of these N hosts,
Nx hosts are non-carriers (i.e. Nx hosts have host state h; = (0,0)), Ng hosts carry only



the sensitive strain (h; = (1,0)), Ng hosts carry only the resistant strain (h; = (0,1)), Ng,
hosts carry the sensitive strain plus a very small amount of the resistant strain (h; =

(1 —6;,6;),where all §; are infinitesimally close to zero), and Ngg hosts carry the
resistant strain plus a very small amount of the sensitive strain (h; = (§;,1 — §;)). We
are assuming that, at time ¢, all hosts can be classified as one of these five host types, so
N = Nx + Ng + Ng + Ng, + Ng,. Since all §; terms are infinitesimally small and Yy, = 0,
the force of infection terms A, = f max(Yin, 2 S;) /N and A, = (1 —

B(NS+NSR) ﬁ(l—C)(NR'FNRS)

¢) max(Yyin, 2:i 1) /N can be simply written A, = >

and 4, =
The individual-based model implementation proceeds via (i) events of transmission,
clearance, and treatment modelled as inhomogeneous Poisson point processes, and (ii)
updates to within-host strain growth, which occur regularly at time intervals of At.
Recall that the updating step applies the transition

(1) = ( wsq(s;) q(r;) )

wsq(s)) + q(r) " wsq(s;) + q(ry)
to all hosts with non-zero carriage, where

q(a) = {0 ifa < fin

and wg = wit. Note that when wg = 1 and fmin = 0, this updating step has no effect, so it
can be ignored for our purposes.

Recall that the “events” in the mixed-carriage model are

Kids [ s+ T
(i) — )
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) (sensitive strain transmission)

) (resistant strain transmission)

(s;,17) 4 (0,0) (clearance)
t ((0,0) ifr; =0

(s;,1) — {(0,1) ifr, > 0 (treatment) .

Recalling that k; = 1if (s;,7;) = (0,0) and k; = k otherwise, we can write out these

transitions for each of the five host types, yielding:

sensitive strain transmission
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resistant strain transmission
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clearance
“X” (0,0) > (0,0) “X”
“S” (1,0) > (0,0) “X”
“R” (0,1) - (0,0) “X”
“Sg” (1 — 85, 8;) - (0,0) “X”
“Rg” (8,1 — 6;) - (0,0) “X”

treatment
“X” (0,0) > (0,0) “X”
“S” (1,0) > (0,0) “X”
“R” (0,1) - (0,1) “R”
“Sw” (1 - 6;,6) = (0,1) “R”
R’ (6,1 - 8) > (01) 'R’ (s1)

where some of the states on the right-hand side of each transition have been rewritten
using &;, which are arbitrary values infinitesimally close to zero but which may differ
from §;. Since all §; and §; are infinitesimally small, their precise values have no impact
upon the overall model dynamics. In the transitions above, we have been able to classify
all potential host states after events occur as one of the original five host states, so these
five host states are sufficient to capture the full dynamics of the individual-based model.

Finally, it is a property of the Poisson distribution that when X; ~ Poisson(x;) for all i,
Y.i X; ~ Poisson(}}; x;). In other words, an event which happens at rate x to individual
hosts of type A will happen at rate N,x to all hosts of type A collectively.

Taking this all together, over a sufficiently small period of time At, such that only one
event occurs within the period, transitions (S1) will have the following impact upon the
number of hosts of each type:

ANg = Tx-s — Tsox — Tsosy

ANR = Tx>Rr — Trox — Trorg + Tsgor + TrRgoR

ANs, = Tsosz — Tsgox — Tsgor

ANgg = Trorg — TrRg-x — Trg—R

ANy = —ANs — ANg — ANs, — ANg, , (S2)



where
B(Ns + Ns,)
N
Ts_x ~ Poisson((u + T)NSAt)
(1-c)(Ng + N,
Ts,sy ~ Poisson (k A (Ng + Ne,) NgAt
N

ﬁ(l — C)(NR + NRS)

N

Txog ~ Poisson( NXAt>

Tx_gr ~ Poisson ( NXAt>

Tr-x ~ Poisson(uNgAt)

B(Ns + Ns,)

Trorg ~ Poisson (k N

)

Tspor ~ Poisson(TNSRAt)
Trgor ~ Poisson(rNRsAt)
Tspox ~ Poisson(uNSRAt)
Trgox ~ Poisson(uNRsAt) .
(S3)

This is the stochastic, finite-population, individual-based analogue of the deterministic,
infinite-population, ODE-based mixed-carriage model. To see this, substitute variates
(S3) into equations (S2), divide both sides by NAt, and make a change of variables such

N N N
thatS =—2 R =-R 5, =R
N N N

go to infinity, which permits replacing all variates of the form T,_,z ~ Poisson(a,_pAt),
where A and B are any two host types, with their expected values, E(T4_5) = a4_,5At.

(For example, replace Trg_x ~ Poisson(uNRSAt) with E(TRS*X) = uNg At.) This yields

N
,Rs = —Rs, and X = —NX. Also, allow the population size N to
N N

% =B(S+S)X — (u+1)S —kB(1—c)(R + Rs)S

% =B(1 —c)(R + Rs)X — uR — kB(S + Sg)R + ©(Sg + Ry)

“AitR =kB(1—c)(R + Rs)S — (u + 17)Sg
=55 = k(S + Sp)R — (u + T)Rs

X=1_S_R_SR_RS
By taking the limit as At — 0, this gives the mixed-carriage ODE model implementation,

d
d_f = BSiotX — (w4 1)S — kB (1 — )RS

dR

E = ﬁ(l - C)RtOtX —UuR — kﬁStOtR + T(SR + Rs)
o= kB~ O)ReotS = (u + )5

dR

d_ts = k.BStOtR - (u + T)RS

X=1_S_R_SR_RS

Therefore, the individual-based and ODE implementations are equivalent under the
stipulated limiting assumptions. The equivalence of the two implementations of the
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Fig. S1 | Schematic of within-host strain growth. Carriage compartments (filled blue circles) in
the ODE approximation of the mixed-carriage model with differential within-host strain growth.
Compartments between Rs and Sr are equally spaced along a logistic curve (dashed red line). The
“growth model” curve (solid black line) was generated by the individual-based model and also
defines a logistic curve. The transition from R to Rs occurs via transmission of the sensitive strain
at rate kA, transitions between compartments Rs, Dz, Dz-1, ..., D1, and Sr occur via within-host
strain growth at rate b, and the final transition from Sg to S occurs at rate bo. Additionally, a
transition from S “back” to Sk may occur via transmission of the resistant strain at rate kA,.

knockout model can be seen in a similar way, noting that each transition specified by the
individual-based implementation corresponds to a term in the ODE implementation,
which makes the implementations equivalent when the population size N is very large.

1.2 Within-host strain growth in the individual-based and ODE implementations

The individual-based implementation captures differential within-host strain growth by
eliminating any strains with a host carriage frequency of less than f;,;,,, multiplying the
size of the sensitive strain by a factor wgs = wAt —leaving the size of the resistant strain
unchanged—then normalising each carrier’s overall strain carriage so that the size of
the sensitive strain and the size of the resistant strain sum to 1; this procedure is carried
out for each host at time steps separated by At. Because of the normalisation step, there
is only one degree of freedom in the system, and the size of the sensitive strain relative
to the resistant strain follows a predictable curve. Technically, additional co-
colonisation events will slightly speed up or slow down the movement along this curve,
but as an approximation, we can ignore this effect on the grounds that it will not change
dynamics of strain growth very much. Accordingly, to capture strain growth in our ODE-
based implementation of the mixed-carriage model, we simulate within-host growth by
moving dual carriers along discrete points on this curve, as illustrated in Fig. S1.

Note that the size of an exponentially-growing strain, relative to the combined size of
exp(at)
1+exp(at)’

which defines a logistic curve. Accordingly, in the ODE implementation, we assume that
strain frequencies follow a logistic curve over time, with dual carriers moving between
discrete points along this curve at rate b. Fig. S1 illustrates this movement, and also

itself and another exponentially-growing or non-growing strain, can be written



shows that the logistic curve used by the ODE implementation is indistinguishable from
the explicit growth model used by the individual-based implementation. Note that as the

number of intermediate compartments Z approaches infinity, the relationship between
log wg

b and wy is approximately b = —(Z + 1) Tog:

1.3 Within-host competitive exclusion

Because we assume within-host strain growth is exponential, it would be technically
possible for the resistant strain to be driven to lower and lower within-host frequencies
by the growth of the sensitive strain, and yet never reach zero frequency. This might be
undesirable, as it could result in a situation where antibiotic treatment eliminates the
sensitive strain from carriage and allows the resistant strain to completely take over the
host in spite of the within-host frequency of the resistant strain being extremely low—
possibly so low that it would correspond to less than a single cell. This could unfairly
promote coexistence, because it would effectively allow the frequency-dependent
advantage of resistant strains to remain the same regardless of the relative growth rate
of the sensitive strain. To avoid this unrealistic scenario, we stipulate that strains below
a certain within-host frequency are eliminated completely. In the individual-based
model implementation, this is done using the parameter f,,;,—any strain whose within-
host frequency falls below this value is eliminated during the host “updating” step (see
Methods). To control this behaviour in the ODE model implementation, we use the
parameter bo, which determines how quickly resistant cells are eliminated from Sg
carriers (because it is the rate of the transition from host state Sg to host state S). In the
individual-based mixed-carriage model, we assume that f,;, = 3X107>, which means
that strains are eliminated once they reach 3% of the germ size, t = 0.001.

In order to match this behaviour in the ODE implementation, we set by = %b. This

corresponds approximately to fii, = 3X107° for the following reasons. First, recall
(Methods) that the proportion of a host’s carried cells that are resistant

1
1+ exp(y(v)) ’

TDv

where y(v) = log(1) (% — 1), v is the ODE compartment number (Fig. S1), and Z is the

number of intermediate compartments. Note that we have rp, = 3.16x107° when v =
—2,t=0.001,and Z = 7 (we assume ¢t = 0.001 and Z = 7 throughout the paper). That is,
starting from the Sg compartment (equivalent to compartment v = 0) on Fig. S1, if we
assume it takes two additional “growth steps” to the right in order to completely
eliminate the resistant strain and reach the S compartment, this takes us to a resistant-
strain frequency of aboutrp = 3x107>. It takes twice as long to take two steps as it
does to take one step, which is why we assume the rate of this Sg to S transition is equal

to half the normal rate, i.e. by = %b.

This still leaves the question open as to whether our chosen value of f,,;, = 3x1075 is
realistic. However, the minimum infective dose for S. pneumoniae has been estimated to
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Fig. S2 | Correspondence between ODE and individual-based model implementations. We
recapitulate the right-hand column of Fig. 3 of the main text to show that the individual-based
implementations (black crosses) produce similar results to the ODE implementations (red lines)
of each model. We assume ¢ = 0.001, f,in = 3%x107°%, and N = 100,000. Across all models, we have
L =5mol,u=1mo 1, and k and 7 as shown. Values of ¢, b, and ws are chosen so that resistance
prevalence passes through 0.5 at 7 = 1 y~1. Specifically, for the knockout model, from top to
bottom, we have ¢ =0.0769, 0.0660, 0.0538, and 0.0383; for the mixed-carriage model with equal
growth, we have ¢ =0.0769, 0.0992,0.1112, and 0.1241; and for the mixed-carriage model with
differential growth, we have b = 3.8225, 3.1698, and 2.8644 for the ODE implementation with Z =
7 intermediate compartments, and ws = 34, 20, and 14 for the individual-based implementation

(wg values were estimated rather than chosen with an automated model calibration procedure).
In all cases, the individual-based models were run for 200 years, with the vertical bars of each
black cross showing the 95% interquantile range over the last 150 years of the simulation.

lie in the thousands, and the minimum infective dose for E. coli in the tens to millions1.

Accordingly, making the assumption that strains disappear once they reach 3% of the

frequency of the typical germ size—where the typical germ size may well be larger than

the minimum infective dose—is likely to be a safe estimate.

1.4 Illustration of the correspondence between individual-based and ODE

implementations

To demonstrate how the two alternative model implementations produce very similar

results, we show overlapping results from the individual-based and ODE model

implementations in Fig. S2.




Supplementary Note 2. Dual carriage promotes coexistence

Overview — In this supplementary note, we identify model parameters that impact upon
the rate of dual carriage (i.e. carriage of both sensitive and resistant strains) and, in doing
so, modulate the extent of coexistence between sensitive and resistant strains. We conclude
that it is the rate of dual carriage per se that determines the extent of coexistence, and that
strain knockout within hosts (which occurs in the knockout model) inhibits coexistence at
the population level

Efficiency of co-colonisation and knockout — In the main text, we interpret the
parameter k as the relative efficiency of co-colonisation compared to primary
colonisation. We show that as k increases, coexistence increases across both the
knockout and mixed-carriage models. We describe k as the conditional probability of
successful co-colonisation given the transmission of a germ to a host who is already
colonised. However, k can also be interpreted more generally as a multiplier on the base
rate of colonisation, such that values of k > 1 represent a scenario in which carriers are
more likely than non-carriers to be newly (co-)colonised.

The parameter k can potentially summarize multiple phenomena. For example, resident
strains may interfere with an incoming strain’s ability to establish itself within the host
through competition or because they have activated host immunity, either of which
could inhibit co-colonisation, effectively reducing k. Alternatively, the resident strain
may induce inflammation of host tissues, which could promote acquisition of further
strains, effectively increasing k. It is also possible to interpret k as capturing increased
contact among carriers compared to non-carriers, and hence values of k > 1 could
capture higher than expected transmission among individuals who are prone to
carriage, standing in for a “population-structuring” effect whereby individuals who are
more prone to acquiring carriage tend to associate preferentially with each other. There
is often good evidence for this phenomenon—for example, children are more
susceptible to colonisation by S. pneumoniae than adults!3, and children are also more
likely to make physical contact with other children than with adults.

Since the amount of co-colonisation increases with k, higher values of k might, in theory,
allow the knockout model to account for more coexistence. However, as we show in Fig.
S3a, increasing k in the knockout model also increases the rate of knockout, such that
overall, increases to k even above k = 1 do not substantially increase coexistence for the
knockout model. Increasing k does, however, have a comparatively greater effect on the
extent of coexistence in the mixed-carriage models (Fig. S3b&c).

Germ size — Another difference between the knockout model and the mixed-carriage
model is that the knockout model assumes that a successfully co-colonising strain
reaches a within-host frequency of 1/2, while the mixed-carriage model assumes that
co-colonising strains are initially present at a within-host frequency of ¢/(1 + ¢). This
might potentially impact upon the relative extent of coexistence shown by each model.
However, as we show in Fig. S3d, when we set: = 1 in the mixed-carriage model
(making the within-host frequency of newly co-colonised strains 1/2, the same as in the
knockout model) there is almost no impact upon the potential for coexistence.
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Fig. S3 | Factors inhibiting or promoting coexistence. (a-c) Increasing k above 1 promotes
coexistence, but the effect is considerably smaller in the knockout model (a) than in the mixed-
carriage models (b, ). Parameters are otherwise the same as in Fig. 3¢, f, i in the main text. (d) In
the mixed-carriage model with equal within-host strain growth, increasing the germ size from
negligably small (¢ — 0, solid black line, ODE implementation) to large (¢ = 1, dashed red line,
individual-based implementation) has very little impact upon coexistence. Other parameters are
L =5k=1u=1,and ¢ = 0.124 (black line) versus ¢ = 0.0456 (red dashed line), chosen such
that resistance prevalence passes through 0.5 at t = 1 y'L. (e) Increasing b, from its normal value
of b/2 decreases the potential for coexistence, but b, must be increased substantially to have a
major impact upon how much coexistence is exhibited by the model. On the right side of the
figure, the equivalent fmin, expressed as a relative percentage of the germ size ¢, is shown for two
different values of the germ size. For example, if we assume bo = b/2, then for t = 10-3 we are
assuming that a strain disappears once it decreases to ~3% of its germ size, and for ¢ = 10-6 we
are assuming that a strain disappears once it decreases to ~0.1% of its germ size. Other
parameters as in (c), with b chosen so that resistance prevalence passes through 0.5at7 =1y

Within-host competitive exclusion — Finally, we test the extent to which within-host
competitive exclusion of resistant strains by sensitive strains owing to within-

host growth of sensitive cells impacts upon coexistence. In Fig. S3e, we show that
increasing bo reduces the amount of coexistence exhibited by the model. However, bg
must be increased substantially in order to appreciably reduce coexistence.

All in all, these findings suggest (i) that it is the strain-knockout property of the
knockout model that inhibits coexistence in particular; (ii) that increased co-
colonisation promotes coexistence in all models, so factors that increase co-colonisation
(such as greater k) promote coexistence while factors that decrease co-colonisation
(such as greater bo) inhibit coexistence; and (iii) that increasing k has a comparatively
smaller impact upon coexistence in the knockout model compared to the mixed-carriage
model because k not only leads to the creation of dual carriers, but simultaneously
depletes the population of dual carriers through strain knockout.

In support of point (iii) above, note that when we re-fit all models to empirical data
allowing k to exceed 1 (specifically, adopting a uniform prior over 0 < k < 5 instead of

10
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Fig. S4 | Model fits when we allow k to exceed 1 (0 < k < 5). Fits are not markedly different
than when 0 < k < 1 (see Fig. 4, main text). Solid lines and ribbons show the single best-fit run for
each model (solid lines) and the 67% highest density interval incorporating between-country
random effects (ribbon). Regions bounded by dashed lines show the 67% HDI across the
estimated posterior, again incorporating between-country random effects.

0 < k < 1), the fit of the knockout model is not substantially improved (Fig. S4). Further
details of this model fitting scenario are given in Supplementary Note 4.

Fig. S5 illustrates more directly the relationship between the frequency of dual carriage
and the amount of coexistence. We constructed this figure by fitting the mixed-carriage
model with differential within-host growth for a fixed f and u (f = 2,u = 1 for S.

pneumoniae and 8 = 2,u = 0.25 for E. coli), with a uniform prior on k from 0 to 25, and
multiplying the likelihood by a penalty P = Beta(d(9)|a =1000d", 8 = 1000(1 — d*))
where Beta(x|a, B) is the beta distribution PDF, d(0) is the fraction of carriers carrying

. . .. 1-X-S-R L ” .
both sensitive and resistant strains (i.e. T), and d*is a “target” fraction of dual

carriers. Effectively, this forces the fraction of dual carriers to be close to d* and
illustrates our assertion that it is the fraction of dual carriers—rather than other
parameters such as the transmission rate or rate of co-colonisation per se—which
determines the extent of coexistence in the model. We show d* = 0.6, 0.4, 0.2 for E. coli
and d*= 0.3, 0.2, 0.1 for S. pneumoniae.
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Supplementary Note 3. The mixed-carriage model is structurally neutral

Overview — In the main text, we introduce the mixed-carriage model and claim that it is
structurally-neutral. We support this assertion in this supplementary note.

Section 3.1 gives an intuitive argument that the mixed-carriage model is structurally
neutral, then further argues that the mixed-carriage model meets the two key criteria for
structural neutrality established by Lipsitch et al.3: “ecological neutrality” and
“population-genetic neutrality”. It also shows graphically that the mixed-carriage model,
when analysing the dynamics of two equivalent strains, keeps relative strain frequencies
unchanged over time irrespective of initial conditions.

Section 3.2 discusses how structurally-neutral models may or may not exhibit within-host
neutrality.

3.1 Structural neutrality of the mixed-carriage model

Intuitively, a structurally-neutral model is one in which, when multiple equivalent
strains are being analysed, all model dynamics are essentially unbiased with respect to
the identities of the strains being analysed, such that the model dynamics are governed
entirely by unbiased random sampling of individual pathogens (i.e., by drift).

Suppose that two equivalent strains, A and B, were analysed with the knockout model.
Since these strains are equivalent, assume without loss of generality that they are both
unaffected by antibiotic treatment. Alternatively, they could both be affected by
antibiotic treatment, which then becomes indistinguishable from an inflated rate of
natural clearance, u’ = u + 7. In the knockout model, when a non-carrier is colonised,
the probability that it becomes colonised with strain A is equal to the relative frequency
of strain A in the population, while the probability that it instead becomes colonised
with strain B is equal to the relative frequency of strain B in the population. Therefore,
colonisation is neutral with respect to strain identities. When a carrier is co-colonised,
the contents of one of its two subcompartments is replaced with either strain A or strain
B, again proportionally to the relative frequency of that strain in the population.
Accordingly, co-colonisation is also neutral with respect to strain identities. Finally,
carriers undergo natural clearance irrespective of the actual strains they are carrying in
either subcompartment, so clearance is also neutral with respect to strain identities. In
summary, when analysing equivalent strains, the knockout model’s dynamics are
governed entirely by drift, which shows that the knockout model is structurally neutral.

The mixed-carriage model is structurally neutral for similar reasons. Suppose we were
to use the mixed-carriage model to analyse equivalent strains. This requires that we
assume no differential within-host growth and that fi,;;; = Yjnin = 0 to prevent strain
identities from having any impact upon model dynamics. Then, colonisation is neutral
with respect to strain identities because when a non-carrier is colonised, the strain they
are colonised with is chosen with probability equal to its population-level frequency. Co-
colonisation is also neutral because it replaces a fraction t/(1 + ¢) of cells in a carrier
with cells of a random strain, also chosen with probability equal to that strain’s
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population-level frequency. And clearance is neutral because hosts experience clearance
events independently of the mix of strains they are carrying. For that reason, when
analysing equivalent strains, the mixed-carriage model is governed entirely by drift and
is therefore structurally neutral.

This argument can be made more rigorous. We argue below that the mixed-carriage
model meets the two criteria for structural neutrality proposed by Lipsitch et al.3—
“ecological neutrality” and “population-genetic neutrality”—and hence is structurally
neutral.

3.1.1 Ecological neutrality

In order for a model to be ecologically neutral for identical strains, it must be possible to
rewrite the model in terms of “ecological state variables”—namely, the number of
uninfected hosts and the number of hosts that have been colonised 0, 1, 2, etc., times—in
a way which is independent of identities of any particular strains involved3. To meet the
assumption of indistinguishable strains, we set c = 0,7 = 0 and wg = 1, and in order to
prevent neutral labels from having an impact upon strain dynamics, we assume that
fmin = Ymin = 0. Now note that we can rewrite the mixed-carriage model as a series of
transitions between host states N, N1, N5, ... defined by the subscript M, the multiplicity
of infection (i.e., the total number of colonisations experienced by a specific host since
their last episode of natural clearance):

Atot . .
Ny, — N; (colonisation)

kito
Ny J>NM+1 forall M > 0 (co-colonisation)

Ny 5 Ny forallM >0 (clearance),

where Aot = B(N7 + Ny + -+ + Noo) is the total force of infection in the population. This
is enough to fully specify the model if we are indifferent to the identities of the
indistinguishable strains that are circulating.

Note that the within-host frequency f, attributable to the mth colonising strain in a host
that has been colonised M times is

1

f1=m,
L

fm:W forallm > 2.

3.1.2 Population-genetic neutrality

In order for a model with two strains to meet the criterion of population-genetic
neutrality, the expected frequency of either strain should not change over time if the
two strains are identical apart from a biologically-meaningless label3. For the mixed-
carriage model, this means that both strains will have equal within-host fitness
(meaning that within-host growth can be neglected; see above) and either that both
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strains are resistant (in which case treatment has no effect, so we can assume 7 = 0) or
both strains are sensitive (in which case treatment and natural clearance can be treated
together as clearance atrate u’ = u + t). We will also assume fp,i, = 0 and Yy, = 0.

Since we are free to ignore treatment and within-host growth, this means that the only
changes to a given population will occur through a random sequence of transmission
and clearance events. Let us refer to the two strains of the model as strain A and strain
B. Each random clearance or transmission event will cause a small perturbation to the
frequency of strain A, and an equal and opposite perturbation to the frequency of strain
B. Our aim here is twofold. First, we will show that the expected value of these
perturbations to the frequency of strain A is zero for each type of event regardless of the
state of the population. In doing so, we will show that the mixed-carriage model does
not favour either strain A or B arbitrarily. Second, we will show that the magnitude (i.e.
absolute value) of any such perturbation goes to zero as the number of carriers goes to
infinity. This shows that as the total population size goes to infinity, the combined effect
of all transmission and clearance events in a fixed time period goes to zero, and hence
the mixed-carriage model satisfies population-genetic neutrality, suggesting that any
stochastic fluctuations for a finite population are attributable to drift.

Suppose that there are N hosts in total, K of which are carriers (the remaining N - K are
non-carriers). Of the K carriers, the ith carrier’s carriage of strain A is x; and their

carriage of strain B is 1 — x;. The overall frequency of strain A in the population is X =

1

EZle x;, while the total carriage of strain A is KX = Zle x;; note that X is also the

. . 1 1
expected value of x; for a random carrier, since E(x;) = Zlegxi = EZle x; = X.If the

frequency of strain A before some event is X, and the frequency of strain A following the
eventis X', our aim is (1) to show that E(X") = X for both clearance and transmission
events and (2) that the magnitude of any of these perturbations is inversely

. . . 1
proportional to the number of carriers, i.e. | X' — X| o« <

Clearance — When clearance occurs, a random carrier j has their carriage eliminated,
which means the number of carriers, K, decreases by 1 and the total population carriage
of strain A, KX, decreases by x;. Therefore, the expected frequency of strain A following a
clearance event is

_ KX - E(x;)

K—1
_KX-X
T OK-1

_(K-1DX

T OK-1 7

i.e. clearance leaves the expected frequency of strain A unchanged. Note that any one
clearance event changes the frequency of strain A by
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KX—.X]'

which goes to zero as K — co.

Transmission — There are two types of transmission events: transmission events which
result in the colonisation of uncolonised hosts, and transmission events which result in
the colonisation of already-colonised hosts. For the first type of transmission event, the
probability that strain A is being transmitted is X and the probability that strain B is
being transmitted is 1 - X. The outcome is that an extra carrier is added, such that the
total number of carriers becomes K + 1, and the new carrier is a strain-A carrier with
probability X (increasing total carriage of strain A by 1) and a strain-B carrier with
probability 1 - X (keeping total carriage of strain A the same). Therefore the expected
frequency of strain A following a transmission event to an uncolonised host is

, KX +1 KX
E(X)ZX(K+1)+(1_X)(K—+1)
KX? + X + KX — KX?

- K+1
X(K+1)
S TKk+1 A

i.e. transmission to an uncolonised host leaves the expected frequency of strain A
unchanged. Note that any single transmission to an uncolonised host changes the
frequency of strain A by

if strain A is being transmitted and

if strain B is being transmitted, which both go to zero as K - <°.

Finally, if a carrier j experiences a transmission event, their carriage of strain A will
change from x; to % if strain A is being transmitted and to % if strain B is being
transmitted, where ¢ is the germ size. Equivalently, carrier j's carriage of strain A
N =1 — x ) wi ili K= =y
changes by N T (1 — x;) with probability X, and changes by VR By
with probability 1 - X. If a single carrier’s strain-A carriage changes by some amount y,
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then the population frequency of A changes by y/K; overall, the expected population-
level frequency of strain A following a transmission event to a colonised host is

E(X’)=E<X(X+L1_xj)+(1—x)(x— : ﬁ))

1+4: K 1+: K

A 1—E(x]) L E(XJ)

=X(x — L2 1-X)x- —
( +1+L K * ) 1+: K
—X(X+ : 1_X)+(1 X)(X ‘ X)
B 1+¢ K 14+ K
L XA -X) L X1 -X)

=Xt ———"t XX ———=X

+1+t K + 1+ K ’

i.e. transmission to a colonised host also leaves the expected frequency of strain A
unchanged. Note that, as stated above, any single transmission to a colonised host
L xj

. 1-xj . . . . .
changes the frequency of strain A by ﬁ% if strain A is being transmitted and — ryvlrs

if strain B is being transmitted, and both of these go to zero as K — <o.

Since the expected value of any perturbation to strain frequencies is zero, and the
magnitude of any one perturbation to strain frequencies goes to zero as the number of
carriers goes to infinity, the mixed-carriage model exhibits population-genetic neutrality
when the population size is infinite.

3.1.3 Dynamics of the mixed-carriage model

We can also informally illustrate the population-genetic neutrality of the mixed-carriage
model graphically — note that, when strains are identical (i.e. Tt = 0,c = 0), the ODE-
based model retains the strain frequencies it begins with (Fig. $6, top row).

3.2 Within-host neutrality

As we argue in the main text, the knockout model meets the criteria for structural
neutrality proposed by Lipsitch et al.3, but violates the spirit of structural neutrality by
assuming that all cells from one of two “subcompartments” are eliminated from carriage
during knockout. Whether this, in fact, is compatible with the idea of structural
neutrality depends upon the interpretation of “SR” (dual-strain) carriers in the model.

One possibility is that hosts really are subdivided into two physically distinct
subcompartments which can, for whatever reason, only be occupied by one strain at a
time. In this case it would make sense for knockout to eliminate all of the cells in one of
the two host subcompartments, but there are clear difficulties interpreting what these
subcompartments might physically correspond to, and moreover there is ample
evidence that individuals can carry two strains or more in a single physical niche#-7.
Another interpretation is that hosts are only capable of carrying up to two bacterial cells
at once. In this case, it is possible that an invading cell might only replace one of the two
cells. Although this is an obviously unrealistic scenario, it illustrates how the neutrality
of a model can partly depend upon the interpretation of host states. Finally, a third
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Fig. S6 | Dynamics of the ODE implementation of the mixed-carriage model. Top row: Model
dynamics for the mixed-carriage ODE model where the S strain and R strain are equivalent. That
is, we have t = 0, ¢ = 0, and b = 0. Other parametersare § = 5, u = 1, and k = 1. Each panel of
the top row shows the same parameters but different initial frequencies of S and R carriers. Note
that the relative prevalence of the R strain—i.e. (R + Rs)/(R + Rg + Si + S)—stays constant over
time, remaining equal to initial prevalence at t = 0 as shown in the figure headings. Bottom row:
example dynamics for non-equivalent strains are illustrated. These correspond to Fig. 3f of the
main text, i.e. § =5, ¢ =0.124, b =0, k=1, u =1, and 7 as given in the figure heading.

possibility is that hosts comprise a single niche, and SR carriers represent hosts in which
the niche carries half resistant cells and half sensitive cells. This interpretation is
incompatible with structural neutrality, because even when S cells and R cells only differ
by a biologically-meaningless marker, they are eliminated en bloc during knockout.

In summary, we argue that the knockout model cannot simultaneously be used to model
transmission dynamics among hosts capable of carrying a large number of diverse
pathogens in the same niche, while also adhering to the motivating concept of structural
neutrality which dictates that model dynamics should not be influenced by a neutral
label applied to some subset of pathogens. We suggest that models incorporating
within-host dynamics should endeavour to treat individual pathogens (whether
microbes, viruses, or macroparasites) neutrally, rather than only treating strains

neutrally.
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Supplementary Note 4. Model fitting details

Overview — In this supplementary note, further details are given of the model fitting
procedure used in the main text.

4.1 Prior distributions for model fitting

Table S1 summarises prior distributions used in model fitting. Note that for S.
pneumoniae, we assume an average duration of carriage of 1 month for consistency with
previous studies28, while for E. coli, we assume that the average duration of carriage is
59 to 98 days?19, and accordingly set a uniform prior for u over the range 0.3-0.5
months-t. The transmission rate §is indirectly constrained by a likelihood penalty on
prevalence of carriage, so we set a uniform prior for fwide enough to overlap the full
range of permissible carriage prevalence, Y, given the range of clearance rates u and
treatment rates T (i.e. Y = 1 — (u + 1) /p for the sensitive strain alone,and ¥ = 1 —
u/([?(l — c)) for the resistant strain alone).

E.coli/ E. coli / S. pneumoniae /  S. pneumoniae /
Aminopenicillins:  Fluoroquinolones: Macrolides: Penicillins:
5 parameters 5 parameters 4 parameters 4 parameters

Fitted parameters

B (transmission rate) 0.75-10 mo-! 0.75-10 mo-1 1-6mo-?! 1-6mo-?!

¢ (transmission cost of
resistance: knockout &

equal-growth mixed- 0-1 0-1 0-1 0-1
carriage models only)

b (within-host growth
benefit of sensitivity:

) ) : 0-10 0-10 0-10 0-10
differential-growth mixed-
carriage model only)
k (relative efficiency 0-1 0-1 0-1 0-1
of co-colonisation)
u (natural 0.3 -0.5mo-! 0.3 - 0.5 mo-! fixed (1 mo-1) fixed (1 mo-1)

clearance rate)

o (additional between-
country variability in 0-1 0-1 0-1 0-1
resistance prevalence)

Likelihood components

Y (prevalence of carriage) 0.499 - 0.942 0.499 - 0.942 0.3-0.8 0.3-0.8

Table S1 | Priors used in model fitting. All priors are uniform over the ranges specified.
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In the Methods, we detail how the likelihood function used in model fitting constrains
model output such that all countries must exhibit a prevalence of carriage Y such that
Y < Y < Y. For S. pneumoniae, we follow Colijn et al.2 in assuming 0.3 <Y< 0.8 in
children. Carriage of E. coli is essentially universal, but because we are interested in
strains that can potentially cause invasive disease, we restrict our attention to
extraintestinal pathogenic E. coli (ExPEC), a subset of E. coli that is responsible for most
invasive infections. We assume that the carriage of ExPEC is in the range 0.499 < Y <
0.942, which corresponds to 95% confidence intervals around the observed prevalence
of carriage of EXPEC in a study by Martinez-Medina et al.6 (which found that ExPEC was
carried by 9 out of 12 healthy subjects).

4.2 Details of MCMC

We use the differential evolution MCMC algorithm!?, running 10n chains, where n is the
number of free parameters in the model, i.e. 10n = 40 for S. pneumoniae (for which
carriage duration is fixed at 1 month) and 10n = 50 for E. coli (for which carriage
duration is not fixed). The burn-in period lasts 1,000 iterations, after which 100,000
samples from the posterior are taken across all chains. MCMC convergence and effective
sample sizes, calculated using the R package coda?, are in Appendix S1.

4.3 Posterior distributions from model fitting

Posterior distributions from model fitting are shown in Figs. S7 and S$8. Pairwise joint
distributions for the main analysis are shown in Appendix S2.

4.4 Model fitting assessment

We use AIC in the main text to formally assess model fit. Deviance, defined as -2.L,
where L is the likelihood, is an alternative way of assessing model fit which gives a
distribution rather than a single value. We provide 95% HDIs for the deviance of each
model fit in Appendix S3. Note that the mixed-carriage model with and without within-
host growth are more comparable for S. pneumoniae than when 0 < k< 1.

Fig. S7 (next page) | Posterior distributions for model fitting when 0 < k< 1 (i.e., from the
main text). Here, carriage gives the overall prevalence of carriage in the population; dual gives
the fraction of carriers who carry both sensitive and resistant strains; beta gives the transmission
rate; c gives the transmission cost of resistance; u gives the clearance rate (if the clearance rate is
subject to fitting; for S. pneumoniae, u = 1); k gives the relative efficiency of co-colonisation; b
gives the within-host growth rate of the sensitive strain; and sigma gives the standard deviation
of unexplained between-country variation in resistance prevalence. Knockout: knockout model;
Mixed / Equal: mixed-carriage model with equal within-host growth; Mixed / Diff: mixed-
carriage model with differential within-host growth. Note that each histogram has been scaled to
the full height of the panel.
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Supplementary Note 5. The mixed-carriage model with multiple serotypes and
host immunity

Overview — In the main text, we present results from an extended mixed-carriage model
that allows us to analyse dynamics of multiple serotypes (i.e, more than two strains at a
time) and host adaptive immunity. In this supplementary note, we describe how the model
is implemented and show results for our analysis of resistance evolution among
pneumococcal serotypes in the absence of adaptive immunity.

Here, we provide details of the “extended” mixed-carriage model that can accommodate
any number of strains. In this individual-based model implementation, there are N
hosts, L serotypes, and M = 2L strains. The frequency of host i’s carriage of strain j is f; ;,
and a host’s total carriage is F; = X f; ;. We assume that strains 1 and 2 are of serotype
1, strains 3 and 4 are of serotype 2, strains 5 and 6 are of serotype 3, and so on, and that
odd-numbered strains are sensitive while even-numbered strains are resistant. Two
different kinds of process act upon hosts: “updates” to within-host growth occur at
discrete time intervals of At = 0.001, while transmission, clearance, and treatment
events are Poisson processes that occur at random times between updates.

During updating, any strains which have a frequency of less than fuinare cleared; then

each strain in each carrier grows by a factor w; = wj“

time within-host growth rate; then each carrier’s total carriage is normalised so that
F; = 1. That s,

£, where wj is strain j’s per-unit-

(f' fi fi ) R ( w1¢1(fi,1) CUzQ(fi,z) wMQ(fi,M))
v T NS 0 (i) By i) E wa(fip))

where

q(a) = {0 ifa < o’

Note that if all carried strains have a frequency of less than fuin, then the right-hand side
of the transition notated above evaluates to (g,%, s %). In this case, we set a host’s state
to (0,0, ...,0).

The force of infection for each strain jis 4; = B; max(Ymin, i fi,j) /N (we can set Yp,in =
1 to effectively assume there is always at least one carrier of each strain in order to
avoid stochastic elimination of strains!3, or set Y,;; = 0 to not do this). Here, f; is the
transmission rate for strain j, including any transmission-rate penalty for resistance—
that is, for a two-strain model with a sensitive and a resistant strain, we could write

b1 = B, B2 = B(1 — ¢). Events comprise transmission events, clearance events, and
treatment events. Specifically: transmission events for each strain j occur at rate k;4; to
each host, where k; = 1if F; = 0 and k; = k if F; > 0; clearance events for each serotype
£ occur at rate u, to each host, where u, is the clearance rate for serotype ¢; and
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treatment events occur at rate 7 to each host, where 7 is the antibiotic treatment rate.
Events have the following effect on hosts:

Kidj .
(fl-,j) — (fl-J + t) (transmission)
Uy
(fize-1, fi2e) — (0,0) (clearance)
T
(fiv fis fis - fim—1) — (0,0,0,...,0) (treatment),

where each of the above transitions is immediately followed by the transition

fir fiz  fim
(fi,llfi,zr ---'fi,M) d (?i,Ti, ,Tl)
if F; > 0, to re-enforce carrying capacity. Above, we only notate the components of host
carriage that may change for each event; that is, transmission of strain j only affects f; ;
initially (i.e., prior to enforcement of carrying capacity); clearance of serotype ¢ only
affects f; ,,_1 and f; ,, initially; and treatment only affects the sensitive strains of each
serotype (i.e., odd-numbered strains) initially.

When serotype-specific adaptive immunity is introduced, we introduce birth events,
which occur at rate a (i.e., the birth rate) for each host, and we also keep track of
immunities m; », where m; , = 1 if host i is immune to serotype £ and m; , = 0 if hostiis
not immune to serotype €. Inmunity to a serotype is gained when hosts naturally clear
that serotype, and immunity confers total protection against future colonisation by that
serotype. Birth represents the entry of new, immunologically-naive and uncolonised
hosts into the set of potentially-susceptible hosts and the simultaneous departure of
older hosts. Events are now

(f ) (A=-mypj2)Kir;
i,j ?

(fl-,]- + L) (transmission)
(fize-1 fize)s (mie) 20,0); (1) (clearance)
(fi,l,fi,3,fi,5, 'fi,M—l) 5 (0,0,0, ...,0) (treatment)
(fits Fizs oo firt); (Mits Mgy i g) = (0,0, ...,0); (0,0, ...,0) (birth),

where [-] is the ceiling function, and each of the above transitions is immediately
followed by the transition

f‘,l f',Z f'}M
iz fin) = (G782

if F; > 0, to re-enforce carrying capacity. That is, transmission of serotype ¥ is blocked if
the host is immune to that serotype; clearance of serotype £ by host i makes host i
immune to serotype £ does not affect immunity to other serotypes; and birth replaces
host i with a new host that carries no strains and is immune to no serotypes. At the start
of the simulation, all m; , = 0.
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Fig. S11 | Immunity is needed to maintain significant serotype diversity. As serotypes vary
greatly in duration of carriage, the mechanism of serotype-specific clearance alone is not able to
reproduce observed patterns of pneumococcal carriage or resistance prevalence, as all but the 8
serotypes with the highest duration of carriage are eliminated. Resistance prevalence is close to
50% for eliminated serotypes as stochastic importation of rare strains maintains carriage of both
sensitive and resistant strains of each serotype at low prevalence. The lowest-ranked eliminated
serotypes (e.g. serotypes 25-30) exhibit less variability in resistance prevalence than the highest-
ranked eliminated serotypes (e.g. serotypes 9-15) because the lower-ranked serotypes are more
quickly cleared away when they do occasionally recirculate, meaning that the calculated
resistance prevalence is more highly dominated by the fixed value of Ymin. See Fig. 5, main text,
for details.

Serotype-specific parameters for the extended mixed-carriage model run in Fig. 5 of the
main text are given in Appendix S4. Introducing serotype-specific immunity to this
model was necessary because serotype-specific clearance alone was insufficient to
support the high diversity of pneumococcal serotype carriage observed in human
populations, with only 8 of the 30 serotypes maintained (Fig. S11).

Repeatability of model runs — In Figs. 5 and 6 of the main text, we show results from
various runs of the extended individual-based mixed-carriage model. Each plot
summarises results from a single run rather than from multiple runs. To show that
simulation results presented in the main text are repeatable, we show results from
multiple independent runs here. Running the model multiple times necessitated using
smaller population sizes and a coarser time step so that the runs would finish in a
reasonable amount of time. This means that the trends are noisier than with larger
population sizes, but the results are equivalent overall (Fig. $12).
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Fig. S12 | Repeatability of the stochastic individual-based model implementation.
(a, b) The simulation which produced Fig. 5 of the main text (left) is repeated 10 times (right).

Boxplots summarise the carriage prevalence and resistance prevalence of each serotype at

simulation end over the 10 runs. These 10 runs used a smaller population size, N = 10%, and a
coarser time step, At = 1/32 mo-L. See Fig. 5 (main text) for details. (¢, d) The simulations which

produced Fig. 6b&c of the main text (left) are repeated 10 times each (right). Boxplots summarise
the resistance prevalence of each serotype at simulation end over the 10 runs. These 10 runs
used a smaller population size, N = 105, and a coarser time step, At = 1/32 mo-L See Fig. 6 (main

text) for details.

26

Growth rate



Supplementary Note 6. Long-term trends in resistance prevalence

Overview — This supplementary note analyses European trends in penicillin resistance
prevalence in S. pneumoniae since 2007 in greater detail and argues that there is no
evidence for a significant “lag” between drug consumption and drug resistance in this data
set, suggesting that penicillin resistance in S. pneumoniae may be at equilibrium. This is
consistent with observed coexistence between resistant and sensitive strains being a stable
equilibrium, rather than a transient phase on the way to competitive exclusion.

In Fig. 1d of the main text, we argue that observed intermediate resistance prevalences
reflect stable coexistence between sensitive and resistant strains, rather than a transient
phase on the way to competitive exclusion, because average resistance prevalence in the
four pathogen-drug combinations we are investigating has essentially not changed from
2007-2015. The average resistance prevalence in Europe for 2007-2015 was calculated
as a weighted mean of the resistance prevalence for each country415—with resistance
prevalence sampled 1000 times from a beta distribution with parametersa =r + 1,8 =
n + 1 —r (i.e. assuming a uniform prior for the underlying binomial probability)—each
time weighted by the population of the country in the corresponding year, across only
those countries reporting resistance data for all years in 2007-2015, which left ca. 20
countries in each pathogen-drug data set.

Another way of looking at this question is to ask whether high consumption in a given
year tends to predict a large increase in resistance in the following year. Looking at each
European country in the data set from 2007-2015, there is a clear trend that penicillin
consumption in a given year strongly predicts the percentage of S. pneumoniae isolates
testing as non-susceptible in that year (Fig. S13a). However, having high consumption
in a given year is not significantly associated with an increase in penicillin non-
susceptibility into the next year (Fig. S13b) or two years hence (Fig. S13c). This
seeming lack of a temporal relationship does not appear to be explained by countries
with high consumption decreasing their consumption in further years, as there is no
significant relationship between current consumption and the change in consumption in
the following year (Fig. S13d). Taken together, this suggests that the response of
resistant strains to antibiotic use may be relatively fast.
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Fig. S13 | Trends in resistance prevalence. (a) Penicillin consumption predicts resistance
prevalence in S. pneumoniae (8 = 0.443,F(1,250) = 61.07, P = 1.53x107!3), but does not

significantly predict either (b) the change from the current year to the next (f =

—0.0847,F(1,218) = 1.575,P = 0.211), (c) the change between the current year and two years
hence (8 = —0.140, F(1,190) = 3.801, P = 0.0527), or (d) the change in consumption from the
current year to the next (8 = 6.73x1073, F(218,1) = 9.89x1073, P = 0.921). We report
standardized coefficients (), F-statistics and P-values for the slope term in a linear regression.
Linear regressions are shown with 95% confidence intervals. DDD = defined daily doses.
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Supplementary Note 7. Data sources and interpretation of resistance

Overview — This supplementary note summarizes the data sources used for analysis of
drug resistance and drug consumption across European countries. In this section, we also
defend our modelling assumption that invasive isolates drawn from carriers of both
resistant and sensitive strains would not necessarily test positive for resistance.

We summarize the data used and sources for the four data sets analysed (Table S2). The
ECDC reports the number of invasive isolates that are susceptible (i.e. not resistant),
intermediate (i.e. partially resistant), and resistant (i.e. highly resistant) out of all
isolates tested. We decided to use the proportion of isolates that were intermediate or
resistant (proportion non-susceptible) as the resistance prevalence of S. pneumoniae,
and the proportion of isolates that were fully resistant (proportion resistant) as the
resistance prevalence of E. coli, in keeping with both ECDC reporting conventions
(typically, S. pneumoniae non-susceptibility and E. coli resistance are the “headline”
figures reported for AMR in these pathogens) and previous studies81é (which have
focused on S. pneumoniae non-susceptibility).

Interpretation of resistance — Note that we assume that the overall frequency of
resistant cells in the population is the appropriate proxy for resistance prevalence
among invasive isolates in our models. That is, we do not count an individual who
carries 1/2 resistant and 1/2 sensitive bacteria as being “clinically resistant”, even
though if one were to take a large sample of that individual’s bacterial carriage, it would
test positive for resistance. Rather, we assume that that individual, should they progress
to an invasive disease state, has a 50% probability of yielding a resistant isolate.

Data set

Consumption:
ATC code, sector, year, and source

Resistance:
Pathogen, resistance metric,
year, and source

E. coli aminopenicillin
resistance, 2015 (Fig. 4a,
main text)

JO1C (Beta-lactam antibacterials,
penicillins), primary care, 201515

E. coli, percentage resistant to
aminopenicillins, 201517

E. coli fluoroquinolone
resistance, 2015 (Fig. 4b,
main text)

JO1MA (Fluoroquinolones),
primary care, 201515

E. coli, percentage resistant to
fluoroquinolones, 201517

S. pneumoniae macrolide
resistance, 2015 (Fig. 4c,
main text)

JO1FA (Macrolides), primary
care, 201515

S. pneumoniae, percentage
non-susceptible to
macrolides, 201517

S. pneumoniae penicillin
resistance, 2007 (Fig. 4d,
main text)

JO1C (Beta-lactam antibacterials,
penicillins), primary care,
20071518t

S. pneumoniae, percentage
non-susceptible to penicillin,
200719

Table S2. Data sources for antibiotic consumption and antimicrobial resistance across five
pathogen-drug combinations. fPortugal recorded no penicillin consumption for 2007 in the
online ECDC databasel5, but a 2011 ECDC report!8 provides the corrected figure of 11.3 defined
daily doses per 1000 inhabitants per day for 2007.
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This is because the data we are comparing our model output to is the fraction of invasive
isolates which test positive for resistance, not the fraction of carriers who carry any
resistant bacteria. Invasive disease is caused when a small number of (typically)
genetically-identical cells leaves the normal, commensal host niche and invades the
bloodstream or other normally-sterile sites. Isolates from blood or cerebrospinal fluid
represent a sample of these invasive cells, and the protocol for testing resistance from
these invasive cells involves isolating a single colony-forming unit from this sample.
Accordingly, tested isolates are very likely to represent a single lineage of carried cells
even when hosts carry multiple different strains.

Crucially, what we are modelling as carriage corresponds to commensal (non-invasive)
carriage. Therefore, we make the assumption that if an individual carrying an equal
number of resistant and sensitive bacteria progresses from commensal carriage to
invasive disease, there will be a 50% chance (rather than a 100% chance) that an
invasive isolate from the individual would test positive for resistance, and we assume
that all carriers are equally likely to progress to invasive disease regardless of which
strains they carry. Accordingly, the total fraction of invasive isolates testing positive for
clinical resistance is equal to the total fraction of commensally-carried cells that are
resistant, regardless of how these resistant cells are distributed among individual hosts.
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Appendix S1
MCMC diagnostics from model fitting (0 <k < 1)

Effective sample sizes (ESS) and upper bound of the 95% confidence interval for Gelman and Rubin’s R
(Rg7.5) for MCMC. All effective sample sizes are > 1900 and all upper ClIs for R are < 1.05. Calculated using
the R package coda.

B c k u b
E. coli / Aminopenicillins
Knockout ESS 5340.47 5166.66 5372.3 5523.95 N/A
Ro7s 1.01 1.02 1.01 1.01 N/A
Mixed- ESS 5137.58 4881.96 4732.2 5478.58 N/A
carriage,
equal growth Rg75 1.01 1.02 1.02 1.02 N/A
Mixed-
, ESS 5335.89 N/A 5076.31 5739.88 5809.44
carriage,
diff. growth Ro7s 1.02 N/A 1.02 1.02 1.02
E. coli / Fluoroquinolones
Knockout ESS 6544.89 6526.19 6575.91 6466.13 N/A
Ro7s 1.01 1.01 1.01 1.01 N/A
Mixed- ESS 5656.38 5605.33 4867.81 5904.84 N/A
carriage,
equal growth Rg75 1.01 1.01 1.02 1.01 N/A
Mixed- ESS 5026.66 N/A 4422.71 5620.85 5589.87
carriage,
diff. growth Ro7s 1.01 N/A 1.02 1.01 1.01
S. pneumoniae / Macrolides
Knockout ESS 8403.84 8150.76 8260.59 N/A N/A
Ro7s 1.01 1.01 1.01 N/A N/A
Mixed- ESS 4877.06 1911.66 4591.86 N/A N/A
carriage,
equal growth Rg75 1.02 1.02 1.01 N/A N/A
Mixed- ESS 6334.32 N/A 6348.99 N/A 4190.04
carriage,
diff. growth Ro7s 1.01 N/A 1.01 N/A 1.03
S. pneumoniae / Penicillins
Knockout ESS 5921.5 5893.09 5724.86 N/A N/A
Ro7s 1.01 1.03 1.01 N/A N/A
Mixed- ESS 4763.84 4677.62 4719.38 N/A N/A
carriage,
equal growth Rg75 1.02 1.01 1.01 N/A N/A
Mixed- ESS 5128.53 N/A 5143.72 N/A 3728.18
carriage,
diff. growth Ro7s 1.02 N/A 1.01 N/A 1.02
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MCMC diagnostics from model fitting (0 < k <5)

Knockout

Mixed-
carriage,
equal growth
Mixed-
carriage,
diff. growth

Knockout

Mixed-
carriage,
equal growth
Mixed-
carriage,
diff. growth

Knockout

Mixed-
carriage,
equal growth
Mixed-
carriage,
diff. growth

Knockout

Mixed-
carriage,
equal growth
Mixed-
carriage,
diff. growth

ESS
Rog75

ESS

Ro75

ESS

Ro75

ESS
Rog75

ESS

Ro75

ESS

Ro75

ESS
Rog75

ESS

Ro75

ESS

Ro75

ESS
Rog75

ESS

Ro75

ESS

Ro75

Jij c k
E. coli / Aminopenicillins
2561.41 2273.37 2515.04
1.03 1.03 1.03
6085.44 5650.41 5796.76
1.01 1.01 1.01
5646.04 N/A 5702.31
1.01 N/A 1.01
E. coli / Fluoroquinolones
1978.58 2011.53 2099.66
1.03 1.04 1.03
5353.49 5506.28 5007.36
1.01 1.01 1.02
5965.55 N/A 5744.64
1.02 N/A 1.01
S. pneumoniae / Macrolides
7988.45 8283.92 8177.58
1 1.01 1
6790.96 6129.58 6825.4
1.01 1.01 1.01
7267.47 N/A 7256.43
1.01 N/A 1.01
S. pneumoniae / Penicillins
3298.08 3155.58 3034.79
1.01 1.01 1.01
6618.19 6066.34 6529.98
1.01 1.01 1.01
7462.49 N/A 7251.45
1.01 N/A 1.01
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2813.1
1.03

5852.26
1.01
6018.79

1.01

2597.95
1.04

5614.77
1.01
6516.3
1.01
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

N/A

N/A
N/A

N/A
N/A
6011.58
1.01
N/A
N/A
N/A
N/A
6407.98
1.01
N/A
N/A
N/A
N/A
6644.38
1.01
N/A
N/A
N/A
N/A
6144.1

1.02



Appendix S2
Joint posterior distributions
E. coli / Aminopenicillins

These are pairwise joint

posterior distributions and

correlations between fitted

parameters from model Knockout
fitting. We focus on the case model
where 0 < k < 1.

Mixed-carriage
model
(equal growth)

Mixed-carriage
model
(differential growth)
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Joint posterior distributions
E. coli / Fluoroquinolones

Knockout
model

Mixed-carriage
model
(equal growth)

Mixed-carriage
model
(differential growth)
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Joint posterior distributions
S. pneumoniae / Macrolides

Knockout
model

Mixed-carriage
model
(equal growth)

Mixed-carriage
model
(differential growth)




Joint posterior distributions
S. pneumoniae / Penicillin

Knockout
model

Mixed-carriage
model
(equal growth)

Mixed-carriage
model
(differential growth)
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Appendix S3

Assessment of model fits

We use AIC in the main text to formally assess model fit. Deviance, defined as -2L, where L is the
likelihood, is an alternative way of assessing model fit. Deviance provides a distribution rather than a
single value, which some readers may prefer. We provide the AIC and the 95% HDI for deviance
below, for both the case of 0 < k < 1 (main text) and 0 <k <5 (Supplementary Note 2).

AIC
E.coli / E.coli / S. pneumoniae /  S. pneumoniae /
Aminopenicillins  Fluoroquinolones Macrolides Penicillins
MODEL 0<k=<1
Knockout 426.2 4119 253.6 217.3
Mixed-carriage
414 387.5 247.8 215
equal growth
Mixed-carriage
382.5 375.7 247 214.9
differential growth
0<ks<5
Knockout 4189 406.9 245.3 208.2
Mixed-carriage
399.5 370.7 234 206.2
equal growth
Mixed-carriage
367.2 356.1 234 206.1
differential growth
95% HDI for deviance
E.coli / E.coli / S. pneumoniae /  S. pneumoniae /
Aminopenicillins  Fluoroquinolones Macrolides Penicillins
MODEL 0<k=<1
Knockout 416.2-422.6 404.4-408.3 247.9-251.4 209.3-216.3
Mixed-carriage
404.2-413.9 377.7-386.6 239.9-249.4 207.0-216.4
equal growth
Mixed-carriage
372.8-381.7 365.9-375.5 239.5-247.7 206.9-215.2
differential growth
0<k<5
Knockout 409.1-414.1 396.9-405.6 239.5-243.2 200.3-209.1
Mixed-carriage
390.0-397.7 360.9-368.9 226.1-233.7 198.2-205.2
equal growth
Mixed-carriage
357.3-364.9 346.3-353.9 226.1-233.5 198.1-204.7

differential growth
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Appendix S4
Model parameters for 30 pneumococcal serotypes

Serotype-specific parameters used for the individual-based model runs parameterised with 30 serotypes.
The serotype-specific clearance rates (u ) are derived from an infant pneumococcal carriage study (see
Lehtinen et al, 2017, for data source).

Serotype Sensitive strain Resistant strain y
(fitness rank) w B w B

1 30 3.2 24 2.88 0.218040621
2 29 3.2 23.2 2.88 0.228524919
3 28 3.2 22.4 2.88 0.24931694
4 27 3.2 21.6 2.88 0.281635802
5 26 3.2 20.8 2.88 0.31037415
6 25 3.2 20 2.88 0.313250944
7 24 3.2 19.2 2.88 0.313897489
8 23 3.2 18.4 2.88 0.3242715

9 22 3.2 17.6 2.88 0.34137673
10 21 3.2 16.8 2.88 0.34253003
11 20 3.2 16 2.88 0.346826302
12 19 3.2 15.2 2.88 0.35742264
13 18 3.2 14.4 2.88 0.392980189
14 17 3.2 13.6 2.88 0.403939796
15 16 3.2 12.8 2.88 0.412149955
16 15 3.2 12 2.88 0.414961346
17 14 3.2 11.2 2.88 0.44995069
18 13 3.2 10.4 2.88 0.479758149
19 12 3.2 9.6 2.88 0.491383953
20 11 3.2 8.8 2.88 0.527151935
21 10 3.2 8 2.88 0.535504695
22 9 3.2 7.2 2.88 0.540260509
23 8 3.2 6.4 2.88 0.55102657
24 7 3.2 5.6 2.88 0.553030303
25 6 3.2 4.8 2.88 0.561193112
26 5 3.2 4 2.88 0.565365551
27 4 3.2 3.2 2.88 0.603505291
28 3 3.2 2.4 2.88 0.686606471
29 2 3.2 1.6 2.88 0.749178982
30 1 3.2 0.8 2.88 0.777919864
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