Supplementary Table 1

List of energy terms.

Parameter Equation Description
- p% . . .
Uy Il 2pc? dV acoustic potential energy
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Ty i 5P dV acoustic kinetic energy
!
1 particle (shell) potential energy
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(elastic deformation)
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Tp.s {9 p:&ZwZJ particle (shell) kinetic energy
ps L=
U f p% v liquid core acoustic potential energy
o | 2pc? ‘ (only applies to the cell model)
1 L acoustic kineti o
T. i [EPUQ] qv liquid core acoustic kinetic energy
C

(only applies to the cell model)



Supplementary Table 2

List of simulation parameters.

Parameter Values (units) Description
w 20 (pm) burried channel width
h 15 (1um) burried channel height
L 315, 350 (nm) cantilever (channel) length
t 2 (pm) top. bottom silicon layer thickness
d 5 (pm) fluid channel separation
A 1-100 (pm) vibration amplitude
p 3 -6 (nm) particle radius
Te 3 -7 (nm) total radius of a cell model
ts 0.5 —5(%) thickness of the shell, relative to the radius
E, 0.1 - 100 (MPa) bulk Young’s modulus of the particle
Fy 2-10 (MPa) Young’s modulus of the shell in liquid-core elastic-shell model
Pf 0.997 - 1.08 (g/em?) fluid density
Pe 1.05 (g/cm?) cell density (both inner core and outer shell)
Pp 1.05 (g/cm®) bead density
v, 0.5 cell poisson’s ratio (outer shell)
v 0.34 bead poisson’s ratio




Supplementary Table 3

Different mechanical models.

Model

Model
1lustration

Simulation result

Viscous drop

cannot reproduce
positive node deviation

Acoustic cannot reproduce
Impedance positive node deviation
Mismatch

can reproduce positive
Bulk Elastic node deviation, but

results in positive slope
of 1soelasticity line



Supplementary Table 4

Mass distribution function (A(x)) for selected geometries and orientations.

Geometry Alx) m;;fzif;?n Description (used)
- L .
2 L L cylinder parallel
rl . 272 (hydrogels)
o r.
' — L cylinder perpendicular
L 2Vt = [ (hydrogels)
r,| .' (s —=%) [=remd] (before anaphase)
L ; A ,

L J - (HQ (et d/?)g) <0 I L merlz?ppmc spheres

‘D P 9 _ —3'3 (during anaphase
AN m(ri — (& —d/2)%), >0 transition)

r .

) - (73 —(z+ T,d)Z) ifr<0 doublet parallel
o. 5 2) i [—2r4, 2r4] (after anaphase
NN m(rg = (¢ =ra)%),if £ >0 transition)

£ doublet perpendicular

ST 2r (r3 — 2?) [—7d,7d] (after anaphase

e transition)

. m'%: if r < —q L overlapptinf; zpheres

i 2 e L o502 cos rotate
mry,if ¢ > q . 5 €08 f, 5 cos ! (during anaphase
A(ri,ra,d/2sinf), else transition)

Note: 71 = /17 — (z + q)%, 12 =

2 —(r —q)%,q=d/2cosf

A(rq,r2,d) refers to the area of overlapping circles of radius r1 and r2, with their
center separated by a distance of d



Supplementary Table 5

List of calculated cortical thickness change upon isometric volume expansion.

swelling amount
(% volume)

absolute cortex
thickness change (%)

cortex thickness to
diameter after
swelling (%)

Note

0 0 1
10 6.33 0.907
14.1 8.65 0.874 plotted in Fig. 4d
15 9.14 0.867
20 11.75 0.831




Supplementary Note 1. Theory
1.1 Introduction

Using the Rayleigh Ritz Theorem, which equates time average kinetic energy and time averaged potential energy,
resonant frequency of the Suspended microchannel resonator (SMR) containing a particle immersed in the fluidic
channel can be obtained!. It has been shown previously that a point-mass particle in the SMR of length L vibrating at
its second mode shifts the resonant frequency as a function of particle position (y) along the cantilever?,

A A —1/2 1 A
(f2> -1+ [1 vl (y/L) 20 ] ~ —ud(y/L) =
f2 Meff 2 Meff (1)

() = {(C‘Jﬁh(/\zf} ~ cos(Maz)) — (Hjj j((\‘;)) (sinh(Aaz) — sin(Aoz))

where fis the resonant frequency of SMR vibrating at its second mode before the particle is introduced, u, is the
normalized second mode shape, Am is the mass change in the system upon loading the particle, m. is the effective
mass of the unloaded cantilever, and A, is the eigenvalue for the second mode (1, = 4.6941). According to Eq. (1),
the resonant frequency does not change when a particle is at the node (i.e., Af/f|node = 0 when u,(y) = 0).
However, we observe a non-zero frequency shift at the node (i.e. node deviation) from beads and cells (Fig. 1a).

In this note, we start our discussion with the theory that was developed to derive Eq. (1) and provide the
assumptions that led to a discrepancy between theory (according to Eq. (1)) and measured node deviation (Fig. 1a).
Next, we provide the details of the FEM simulation, which revealed new energy terms that were accounted for when
calculating the resonant frequency change. Finally, we derive a new expression for the frequency response based on
the FEM simulation results that successfully described node deviation measurements for both beads and cells (Figs.
1d,e and 2b).

1.2 Theory

We assume the vibration amplitude of the SMR follows the normalized second mode shape (u,) from Euler-Bernoulli
beam equation and is unchanged for sufficiently small mass loading (Am < mgsf) !

z(y,t) = Aug (%) cos(wt)
= Au(y) cos(wt)

(2)

where A is the maximal amplitude and w = 2xf for a SMR vibrating harmonically with frequency f. For this note,
u(y) refers to the normalized second mode shape. In the earlier theory, potential energy from the bending of the
silicon layer surrounding the fluidic channel (Supplementary Fig. 1a) was considered to be the only term
contributing to the total potential energy of the system, U;¢4;- Therefore,

Utotal(t) P Usil(yat

~—




For the kinetic energy of the system, T;¢4:, there are three contributing sources for kinetic energy (silicon layer, fluid,
and particle) for which we provide

Trotat (. t) = Teit(y. t) + Ty (y,t) + Tp(y,t)

- 2 - 2 - 2
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where m,is the mass of the particle, pg; and ps are the densities of silicon layer and fluid, respectively. In the existing

theory, the interaction between the fluid and particle is ignored and it is assumed that the particle and fluid have the
same kinetics (i.e., v(y) = wu(y)). For this case, Eq. (4) simplifies to

1 . .
Tiotal (Y, t) = 5;’12w2 [meff + (my —my) -1:2(11)] sinz(wf} 5)

= Trnaz(Y) sinQ(wt‘)

where mgr = 1/2 [pu?dV + 1/2fpf u? dV when y = 0. Thus, using the Rayleigh-Ritz Theorem to equate the
time-averaged potential energy U,,,, /2 with the time-averaged kinetic energy T},,4,/2 at y=0

. 15
Umaz = Tinaz = 54;12w§?71-eff (6)

where we set w = w, when y=0 (i.e.,, resonant frequency before particle enters the channel). We assume the
potential energy of a system is not affected by the particle position and therefore constant (U4, = C). Then,
applying Rayleigh-Ritz Theorem to equate U,,,,/2 and T;;,4,/2 at non-zero and using Eq. (5),
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where Am = m;, —m; and ®w = w, + 4w. This then simplifies to Eq. (1),

(1 + A“)_d _ 1 () 2T (8)
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So far, we have described how energy balance between kinetic and potential energy of the system collectively
changes the resonant frequency of SMR. However, acoustic features in the SMR were ignored and several energy
terms associated with acoustic fields in the SMR were neglected. First, we have assumed that the only term
contributing to the potential energy is from the silicon layer. However, the potential energy stored in acoustic
standing waves (Supplementary Fig. 1b and Supplementary Video 1) in the embedded microfluidic channel, as well
as the energy stored in the elastic materials (particle and shell of the cell model) should also be included. Second, we
have only considered velocities in the z-direction (i.e., normal to the surface of the cantilever, Supplementary Fig.
1c). We determined that the velocities along the cantilever (y-direction) could be as large as 10% that of the z-
direction (Supplementary Fig. 1c, inset), and in the immediate vicinity of the node, the velocity in the y-direction is
even greater than in the z-direction. Third, and most importantly, we have neglected the interaction between the
particle and fluid environment by assuming the particle and nearby fluid have the same kinetics. However, as the
particle scatters the acoustic field, it alters the kinetics of the neighboring fluid medium as well (Fig. 1c, inset and




Supplementary Video 2). By incorporating these three considerations into our FEM model, our simulation results
match the experimental results (Fig. 1d,e and Supplementary Fig. 2).

1.3 Acoustofluidics

To develop a more general theory that includes the effect of the acoustic field, we begin with the governing equations
for the fluids and their acoustic energies. Kinetics of a fluid is determined by its density p, pressure p, and individual
fluid particle velocity v. These parameters are governed by the continuity equation for the mass and the Navier-
Stokes equation3. Acoustic fields that result from a perturbation to these parameters can be written in terms of the
zeroth, first, second, and third and higher-order terms as

p=potprt+p+...
p=po+pL+p2t... (9)
U=1"g+ U1 +Ua+...

where the subscripts denotes the order of perturbation. Ot order represents the quiescent state and for simplicity
we take vy = 0.

Taking only the 1st order perturbations into account and neglecting 2n and higher order terms, the governing
equations for fluids can be simplified into a wave equation
1 ?m

19 10
g ot? (10)

VQP1 =

where ¢, is the speed of sound in the fluid, and p; = cZp;. Assuming time-harmonic fields,
pr(7.t) = R{p(F)e™""}
pi(7.t) = R{pi(F)e” ™"} (11)
A t) =R {H (e}
Eq. (10) reduces to a Helmholtz equation, given by
42

Vi — —5p1 =0 (12)
=)

It is worth noting that the harmonic vibration of the cantilever is the only necessary source for the acoustic
perturbation. Since the equation governing the first order density p;, pressure p; and fluid velocity field v, is linear,
all first order parameters will be proportional to A. Therefore, the kinetic and potential energy terms from the first-
order acoustic fields,

.
wy, = 5,001'%
1 p% (13)
Wy = —
P2 pgcg

will have sin®(wt) or cos?(wt) dependence as well as A2, similar to the energy terms shown in Supplementary Table
1. Therefore, when equating the total kinetic energy and potential energy (Rayleigh Ritz Theorem) to obtain the
resonant frequency of the system, terms with A? effectively cancels out. In fact, we have experimentally seen that
amplitude does not affect our node deviation signal (Supplementary Fig. 3). It is clear that since p, is in-phase with
the cantilever vibration (« cos(wt), Supplementary Fig. 1b), w, « cos?(wt) and will therefore contribute to the



potential energy of the system, as expected. On the other hand, v, is out-of-phase with the cantilever movement («
sin(wt), Supplementary Fig. 1c,d), w, o« sin?(wt) and will contribute to the total kinetic energy of the system.
Next, we shift our discussion to the fluid-particle interaction, where a particle scatters the acoustic field around it,
causing nearby fluid velocity and pressure to be

F‘l = Uin + FS(_
in (14)

P1 = Din + Psc

where v;, and p;, are incident acoustic terms and v, and p,. are scattered terms. This will cause not only the
acoustic fields to be scattered but the particle in the acoustic field to gain kinetic energy T,, and potential energy

U, related to the elastic deformation of the particle. Following the time-harmonic assumption, the gained kinetic
energy can be obtained, as shown in Supplementary Table 1.

1.4 Revised theory incorporating acoustic effects

We incorporate all acoustic energy terms, including those resulting from fluid-particle interactions in to Eq. (3) and
Eq. (4) in order to derive the resonant frequency change of the SMR.

["Ttotul = {"rsil + {?f + (’TP (15)
.Ttoial = Tsil + Tf + .Tp

where Uy and U, denotes acoustic potential energy and stored elastic energy of the particle, respectively. For
sufficiently small changes in the frequency (Aw < wy),

Utotal = Up + AU (y)

. (16)
Tiotat = o (wo + Aw)” + AT (y)

where Uy and Ty = aw,? are the time-averaged potential and kinetic energy of the system without the particle

immersed in the SMR (i.e, y=0), respectively. AU(y) and AT (y) refer to change in potential and kinetic energy of

fluids and particles, respectively, as a function of the particle position, y.

Applying the Rayleigh Ritz Theorem leads to:

. AT AT 712
Aw e AT (y) : AU(y)
AU(y) — AT (y)
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Eg. (17) generalizes the resonant frequency change of the system upon particle loading to be dependent on the total
potential and kinetic energy of the system, unlike in Eq. (1), where frequency only depends on the particle position
and mass. Itis clear from Eq. (17) that even when a particle is located at the node with zero net out-of-plane motion,
the disruption of the acoustic field would still result in a non-zero frequency shift.

The simulation results shown in Fig. 1d,e and Supplementary Fig. 2 was computed using the Eq. (17). This was
accomplished by first numerically solving the Helmholtz equation (Eq. (12)) to obtain three fluid parameters (i.e., p,
v, p), while varying the position of the particle along the channel. Then, we obtained the kinetic energy and potential
energy of the system for each position (Supplementary Table 1), and subtracted the corresponding energy without
the particle to get the term AU(y) — AT (y). In Supplementary Note 2 we will discuss the necessary details of the
simulation as well as provide more details for computing Eq. (17).



Supplementary Note 2. Simulation

When the acoustic domain of interest has non-trivial geometry with complicated boundary conditions, solving the
governing equations analytically is challenging. Therefore we utilize Finite Element Method (FEM) simulations 4 to
solve the relevant equations provided in Supplementary Note 1. For FEM analysis, the governing equation (i.e.,, Wave
equation: Eq. (10) for the time domain; Helmholtz equation: Eq. (12) for frequency domain) is to numerically solve
for each individual ‘block’ within a mesh. In this note, we describe how the model is established and provide details
on the post processing.

2.1 Geometry

For FEM analysis, COMSOL Multiphysics software 4.3 was used. The exact geometry of the SMR used for experiments
in this work was reproduced in the software implementing the CAD design of SMR (Supplementary Fig. 1a and
Supplementary Table 2). We embedded a particle in the detection regime of the cantilever (i.e., buried channel which
is covered with thin silicon layers) and parameterized the y-position of the particle. We assumed the particle to be
perfectly spherical, except where the effect of particle shape was tested. All dimensions used in the simulations are
listed in Supplementary Table 2.

2.2 Model Setup

We used the 3-dimensional "Acoustic-Structure Interaction” module in the frequency domain provided by the
software. The mathematical details of the governing equation and boundary conditions for the simulation are
included in the manual*.

There are multiple possible sources that generate acoustic standing waves, but most of them will be second or higher
order terms in the acoustic parameters (e.g., centrifugal force acting towards the tip and node). Here we neglect
higher order acoustic sources and focus on the first order term, which is created by the out-of-plane motion of fluid
channel in the cantilever, as given in Eq. (2).

a; = % = wrAu(y)ap = 3 = —w?Au(y) (18)

where a; and a;, are acceleration of the top and bottom surface, respectively. All simulations except viscous sphere
model were performed under pressure acoustics model = fluid model =2 linear elastic. We used sound hard boundary
(wall) condition for the fluid-channel boundary because of the high elastic modulus (>10%!Pa) and acoustic
impedance of the silicon surrounding the fluid channel. We obtained the same results by using a boundary condition
that accounts for the silicon elastic modulus (data not shown). We assumed the entire particle (and shell region for
Cortical Shell - Liquid Core model) to be a linearly elastic material and isotropic solid. COMSOL then solves for the
elastic solid-acoustic interaction, which incorporates the re-radiation of the acoustic field by the vibration of the
solid interface driven by the incident pressure field. For the cell model, we treated the inner liquid core as a fluid
with density p = 1.05 g/cm3 and sound velocity similar to salt water of the same density. We used the default free
tetrahedral meshing for the entire geometries (Supplementary Table 2), except for the thin shell when performing
simulation of the cell models, where we first meshed the outer surface with free triangular and used a sweep function
towards the inner surface with number of elements set to 10. The mesh size of the free trianglular and free
tetrahederal mesh was set using the general physics option extremely fine and fluid dynamics option, finer respectively.
Using these options, the minimal edge length of a typical element was set to 0.105 um for outer surface meshing of
the particle and 0.285 pm for the rest of the geometry. The position of the particle or cell in the y-direction was
parameterized with steps of 5-10 um along the length of the cantilever to effectively capture the shape of the
frequency response and enable the comparison with experimental data (Fig. 1d,e). The center of mass was
positioned in the center of the channel for the all the simulations excluding the ones when we investigated how
SNACS is affected by the positional offset from center of the channel (Supplementary Fig. 6).



2.3 PostProcessing

Once COMSOL finished solving for the acoustic parameters as well as particle kinetics and elastic deformation, we
integrated parameters (e.g. velocity, deformation) over specific geometries to obtain each energy term (Eq. (15)) as
a function of the particle position (Supplementary Table 1). Once all energy terms were calculated as a function of
the particle position, we then exported the data to MATLAB. To obtain AT (y) and AU(y), we subtracted all energy
terms when the particle is at position y = 0, from the energy terms when the particles is at position y;

AU(y) = (Ug(y) + Ups(y) + Uc(y)) — (Ur(0) + Up(0) + Ue(0))

| (19)
AT(y) = (Ty(y) + Tps(y) +Te(w)) — (T(0) +T,(0) + Tc(0))

where U, ¢ and T, ; denote the potential and kinetic energy, respectively, of the whole particle or the shell region of
the cell model. The average deformation of the cell or particle was calculated assuming isometric expansion (i.e.,
Ups = EAAx?/2x, where E is elastic modulus, A4 is the surface area of the cell or particle and x is the length before
deformation, 4x). U, and T, only apply to the cell model, where encapsulated inner core was treated as a fluid.

Lastly, to directly compare simulations with experiments, we converted the energy difference (in units of Joules, Eq.
(19)) to a frequency shift (in units of Hz, Eq. (17)). To do this, we ran 10 um polystyrene beads in both simulations
and experiments and calibrated the energy difference (AU(y) — AT (y)) simulated when the bead is at the antinode
(¥ = yY4n) with the resonant frequency shift measured experimentally at the antinode (Af/f (Van))-

2.4 Different mechanical models for cells

We also tested models other than the Cortical Shell - Liquid Core model, such as the Viscous Drop, the Acoustic
Impedance Mismatch and the Bulk Elastic (Supplementary Table 3). For the Bulk Elastic model, the assumption of a
uniform linearly elastic material was used. For Acoustic Impedance Mismatch, we assumed the cell to be a liquid
sphere, with acoustic impedance set under the Impedance option. The Viscous Drop and Cortical Shell - Liquid Core
model (Supplementary Fig. 5b) with the viscous core were simulated by selecting the viscous fluid model under
pressure acoustics model while parameterizing the dynamic and bulk viscosity of the entire sphere or the fluid core of
the Cortical Shell - Liquid Core. To simulate the effect of cytoplasmic pressure in our Cortical Shell - Liquid Core
model (Supplementary Fig. 5¢), we set the pressure under initial values to be parameterized within the range of 0-
1000 Pa. The cortical tension model (Supplementary Fig. 5d) was developed similarly to previously reported
COMSOL models. Briefly, we applied a constant mechanical tension in the cortex by assigning an initial stress to the
shell domain under initial stress and strain. Using Laplace’s relationship, we assigned the initial stress in spherical
coordinate (p, 0, @; relative to the center of the liquid core) as

0 0 0
0 pre/2ts 0 (20)
0 0 pre/2ts

where p is the internal pressure, 7, is the cell radius, and ¢, is the shell thickness.



Supplementary Note 3. Correcting mass distribution
3.1 Deconvolution of mass and acoustic signal

As we showed in the previous notes, the resonant frequency shift of the SMR at any point in time due to a particle
present in the integrated channel is a superposition of the frequency change due to the added particles mass and
acoustic scattering created by the particle (Supplementary Fig. 2),

Af?]lEﬂS'!tT‘Ed = Afmass + AfﬂCO'ltSf'iC (21)

Here we assume Af,,,ss iS the frequency shift caused by a point-mass particle as shown in Eq. (1), which is
proportional to the squared amplitude dependence of the mode shape, u?(y). However, a particle with a mass
distribution along the cantilever would cause a frequency shift deviating from the squared mode shape. Therefore,
in order to obtain the shape-insensitive acoustic term, Af,, . oustic, We need to correct for the mass distribution , Af;, 455
affecting Af,casureqd- Here, we ignore the contribution of acoustic effects to the frequency shift and discuss only the
contribution of the mass distribution to the resulting frequency shift. If a particle of length 2L with a linear mass
distribution, A(x), is located at the position y along the cantilever, the shift in the resonant frequency is given by

fL,\ 2y +x)dx

Afmass(u Afmerwur‘ed Uan
f AMa)u2(Yan + x)dx

(22)

where y,,is the position of the antinode and Af,,casured Van) is the measured frequency shift at the antinode (i.e.,
buoyant mass). Although a point mass would create no mass-dependent frequency shift at the node (y,,, u(y,,) = 0),
a particle with a non-zero size along the length of the cantilever will create a non-zero frequency shift when it is
centered at the node. This contribution can be calculated from Eq. (22), and thus a correction can be made provided
the size, shape and mass of the particle is known. The list of mass distributions, A(x), for some of the geometries that
we encountered during this work is shown in Supplementary Table 4. For simplicity, we assumed the mass is
homogeneously distributed around the geometry. As expected, compared to the single spherical particle, a doublet
of particles will result in a larger frequency shift due to mass elongation. Although spheres have positional invariance
making A invariant to particle rotation, the A for a doublet depends on its orientation relative to the cantilever
(Supplementary Table 4).

3.2 Correction for cell elongation in anaphase

During the transition from a singlet to a doublet during anaphase, we assume that the total volume remains constant
and that all geometries are the result of an overlap of two equally sized spheres (Supplementary Fig. 9). To
accomplish this, we numerically solve for an individual sphere radius, r;, with total elongation length, L, and volume,
V, matching the following conditions:

L = 4'I‘f —d
ri—y/2 o (23)
V= ‘2[ m(ry — x)°dx

i
where d is the length of intersection between two identical spheres (Supplementary Table 4). With r; obtained
above, we add the following frequency shift to the node deviation we measured to correct for the mass elongation
effect.

T2 M@)o+ 0)de [ A (2 g, + 2)d

Af(‘arrectian(yn) = Afmeasur’ed(lkm) T T ;
fﬁz Ae(2)u2(Yan + x)dx J5 As(@)u? (Yan + 2)da




where y,, is position of the node and A; and A, refer to the linear mass distribution of the overlapping spheres of
individual radii of r,and singlet of radius g, respectively (Supplementary Table 4). However, since 1; depends on the
exact orientation relative to the channel, there will be an error estimating the frequency shift, Af., rection- For all
data shown throughout this work, we assumed that the cells are oriented by an intermediate angle (i.e., 8,,,4x/2)
during late mitosis (Supplementary Fig. 15). We further discuss the details of such orientation-dependent error in

Supplementary Note 4.



Supplementary Note 4. Orientation-dependent noise

Orientation of a particle relative to the channel can affect mass distribution along the channel and result in a SNACS
that is independent of the mechanical properties (Supplementary Note 3 and Supplementary Table 4). For example,
the SNACS from a cylindrical particle flowing parallel through the channel at the node will be different from the case
where the same particle has a perpendicular orientation (Supplementary Table 4, 1st and 2nd row, respectively).
Thus, for non-spherical particles, the SNACS measurement contains an intrinsic noise that results from an uncertain
orientation during detection at the node. For suspension cells, the shape is generally spherical up until late mitosis
and so the orientation noise is negligible. This is evident by the low noise in our SNACS measurement during
interphase (Fig. 3a,b).

For cells that deviate from a spherical shape, a spurious SNACS signal could arise if the cell gradually changes its
orientation as it flows back-and-forth through the channel. There are two approaches for determining if a signal is
spurious. The first applies to situations where the time range of a possible mechanical change is known (e.g. during
mitosis). In this case, the SNACS signal can be measured from multiple cells. The resulting signals can be aligned and
an analysis for statistical significance can be performed (for example Fig. 3c, where mitotic cells were aligned at the
metaphase-anaphase transition). If a cell’s orientation should gradually drift during a measurement, it will not be
correlated across different cells.

The second approach applies to situations where changes in mechanics occur stochastically. In this case, the error
resulting from orientation noise must be quantified. A threshold can then be established for determining if the SNACS
measurement is revealing statistically significant changes in cell mechanics. The maximum orientation error in node
deviation (AND, ientation) can be calculated provided the cell shape is known (e.g. by DIC imaging),

Ai?\rDorien.ta.tion = Afmu:ass.orl (yn) - Afmass,or‘? ( yn) (25)

where Afass ) is given in Eq. (22). If the change in SNACS is sufficiently larger than the error obtained from Eq.
(25), the resulting signal will be associated with changes in cell mechanics. We next present three examples to
illustrate how orientation noise is estimated.

4.1 Cylindrical geometry
For a cylindrical particle of radius r and length L, the maximal node deviation change due to orientation error given
by Eq. (25) is
AN Dorientation = A fmass.cl|(Yn) — A fmass,cL(Yn)
fﬁg Ao ()0 (Y, + 2)dxe [T Aet ()0 (yn + 2)da | (26)

- Afmeasured(yan) : - -
;L_éiQ /\'-”H (:l’)tig(yan + x)dx f—r AcL (T)uz (yfm. + x)dx

where, 4|, A is mass distribution function of a cylindrical sample lying parallel and perpendicular to the channel,

respectively. From Eq. (26), a cylindrical hydrogel with a 10 um diameter, 8 pm height and 4f,,cqsured Van) = 17 Hz,
the resulting orientation noise is ~ 0.004 Hz, which is equivalent to SNACS noise of ~0.006 (a.u.).

4.2 Cells in late mitosis

Here we estimate the orientation noise of a cell in late mitosis. Specifically, we use Eq. (25) to calculate the maximum
error from orientation uncertainty as the cell elongates. Similar calculation done for the cylindrical hydrogel shown
in Supplementary Note 4.1 will be performed. However, since the length of the elongated cell is greater than the
channel width, the maximal rotation is now constrained. For example, overlapping spheres of total elongation length



L, and individual radius r; flowing through the channel of width w can only rotate by an angle 6 from y-axis (i.e.
direction of a particle/fluid flow through the cantilever) (Fig. 1a and Supplementary Fig. 1a) which is given by,

2ry + (L — 4ry) sin(Bmae) = w (27)

Using w = 20 um for our cantilever and the maximal angle provided from Eq. (27), Supplementary Fig. 15a bounds
the maximum error due to orientation uncertainty as the cell elongates. Initially the error increases as the cell
elongates. At a critical elongation length, the error reaches a maximum because the rotation within the channel
begins to be constrained (6,4, < 90°).

4.3 Effect of sample orientation uncertainty on measured and corrected SNACS

In Supplementary Note 3, we described how to correct the SNACS signal for changes in mass distribution obtained
by simultaneously measuring cell shape. Here, with the goal of showing the interplay between Supplementary Notes
3 and 4, we show the expected SNACS signal from a hypothetical cell that elongates during mitosis. In one case, we
allow the mechanical properties to remain constant during elongation (Supplementary Fig. 15b, top panel, left), and
for the other case, to change in a fashion similar to what we’ve observed in L1210 cells (Supplementary Fig. 15b, top
panel, right). As shown in previous note (Eq. (22)), elongation causes the measured SNACS signal to be decreased
due to mass distribution changes, but also variable depending on the orientation relative to the channel. The SNACS
decrease and increased noise are independent from the cell’s mechanical properties (Supplementary Fig. 15b,
middle panel; gray area bounded by red and blue dashed line). In other words, SNACS measured at any given time
point can fall along the gray region in Supplementary Fig. 15b middle panel. If we then apply the mass distribution
correction scheme discussed in Supplementary Note 3 to the expected SNACS curves, we recover the trajectory
where our error is determined by the upper and lower bound calculated from the orientation (Supplementary Fig.
15b, bottom panel; gray area bounded by red and blue dashed lines). It is clear that our orientation-dependent noise
is small enough to distinguish cellular mechanical changes observed in mitotic L1210 cells (Supplementary Fig. 15b,
right) from the hypothetical constant case (Supplementary Fig. 15b, left).



Supplementary Note 5. Swelling driven cortical expansion

Here we present the mathematics that govern the reduction of cortical thickness when the total volume expands.
For this calculation, we assume that the volume expansion is isometric and that the cortical actin content and density
does not change as a result of the expansion. Therefore, when a shell of thickness t,, and total radius 7, (Figs. 2a and
4d) undergoes isometric volume expansion to bigger radius 7./, the shell thickness would be reduced to t;’,

%?r-rg’ — %?T(P‘C —t,)% = %m‘éa - %W(ri —t)3 (28)
Supplementary Table 5 lists some of the values that were calculated using Eq. (28).
Our FEM simulation revealed that increasing volume by 14.1% and, consequently, decreasing the cortex thickness
to radius ratio by ~10% required an additional 10% decrease in cortical elastic modulus to match with the SNACS
change we observe in early mitosis (Fig. 4c). This could be because cortical expansion during swelling causes actin
cortex to be detached from the surfaceé or because F-actins get partially damaged or ruptured by an increase in
intracellular pressure?’.
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