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Different mechanical models. 

   



  

  

Supplementary Table 4 
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Supplementary Note 1. Theory 

1.1 Introduction 

Using the Rayleigh Ritz Theorem, which equates time average kinetic energy and time averaged potential energy, 
resonant frequency of the Suspended microchannel resonator (SMR) containing a particle immersed in the fluidic 
channel can be obtained1. It has been shown previously that a point-mass particle in the SMR of length L vibrating at 
its second mode shifts the resonant frequency as a function of particle position (y) along the cantilever2, 

where 𝑓is the resonant frequency of SMR vibrating at its second mode before the particle is introduced, 𝑢2 is the 
normalized second mode shape, ∆𝑚 is the mass change in the system upon loading the particle, 𝑚𝑒𝑓𝑓 is the effective 

mass of the unloaded cantilever, and  𝜆2 is the eigenvalue for the second mode (𝜆2 = 4.6941). According to Eq. (1), 
the resonant frequency does not change when a particle is at the node (i.e., ∆𝑓/𝑓|𝑛𝑜𝑑𝑒 = 0  when 𝑢2(𝑦)  = 0). 
However, we observe a non-zero frequency shift at the node (i.e. node deviation) from beads and cells (Fig.  1a).  
 
In this note, we start our discussion with the theory that was developed to derive Eq. (1) and provide the 
assumptions that led to a discrepancy between theory (according to Eq. (1)) and measured node deviation (Fig. 1a). 
Next, we provide the details of the FEM simulation, which revealed new energy terms that were accounted for when 
calculating the resonant frequency change. Finally, we derive a new expression for the frequency response based on 
the FEM simulation results that successfully described node deviation measurements for both beads and cells (Figs. 
1d,e and 2b).  
 
1.2 Theory 

We assume the vibration amplitude of the SMR follows the normalized second mode shape (𝑢2) from Euler-Bernoulli 
beam equation and is unchanged for sufficiently small mass loading (∆𝑚 ≪ 𝑚𝑒𝑓𝑓) 1 

where 𝐴 is the maximal amplitude and 𝜔 = 2𝜋𝑓 for a SMR vibrating harmonically with frequency 𝑓. For this note, 
𝑢(𝑦) refers to the normalized second mode shape. In the earlier theory, potential energy from the bending of the 
silicon layer surrounding the fluidic channel (Supplementary Fig. 1a) was considered to be the only term 
contributing to the total potential energy of the system, 𝑈𝑡𝑜𝑡𝑎𝑙. Therefore, 



  

  

For the kinetic energy of the system, 𝑇𝑡𝑜𝑡𝑎𝑙, there are three contributing sources for kinetic energy (silicon layer, fluid, 
and particle) for which we provide 

where 𝑚𝑝is the mass of the particle, 𝜌𝑠𝑖𝑙  and 𝜌𝑓 are the densities of silicon layer and fluid, respectively. In the existing 

theory, the interaction between the fluid and particle is ignored and it is assumed that the particle and fluid have the 
same kinetics (i.e., 𝑣(𝑦) = 𝜔𝑢(𝑦)). For this case, Eq. (4) simplifies to 

where 𝑚𝑒𝑓𝑓  =  1
2⁄ ∫ 𝜌 𝑢2 𝑑𝑉  + 1

2⁄ ∫ 𝜌𝑓 𝑢2 𝑑𝑉 when 𝑦 = 0. Thus, using the Rayleigh-Ritz Theorem to equate the 

time-averaged potential energy 𝑈𝑚𝑎𝑥/2 with the time-averaged kinetic energy 𝑇𝑚𝑎𝑥/2 at y=0 

where we set 𝜔 = 𝜔0  when y=0 (i.e., resonant frequency before particle enters the channel). We assume the 
potential energy of a system is not affected by the particle position and therefore constant (𝑈𝑚𝑎𝑥 = 𝐶) . Then, 
applying Rayleigh-Ritz Theorem to equate 𝑈𝑚𝑎𝑥/2 and 𝑇𝑚𝑎𝑥/2  at non-zero and using Eq. (5),  

 where Δ𝑚 = 𝑚𝑝 − 𝑚𝑓 and ω = ω0 + 𝛥ω. This then simplifies to Eq. (1),  

So far, we have described how energy balance between kinetic and potential energy of the system collectively 
changes the resonant frequency of SMR. However, acoustic features in the SMR were ignored and several energy 
terms associated with acoustic fields in the SMR were neglected.  First, we have assumed that the only term 
contributing to the potential energy is from the silicon layer. However, the potential energy stored in acoustic 
standing waves (Supplementary Fig. 1b and Supplementary Video 1) in the embedded microfluidic channel, as well 
as the energy stored in the elastic materials (particle and shell of the cell model) should also be included. Second, we 
have only considered velocities in the z-direction (i.e., normal to the surface of the cantilever, Supplementary Fig. 
1c). We determined that the velocities along the cantilever (y-direction) could be as large as 10% that of the z-
direction (Supplementary Fig. 1c, inset), and in the immediate vicinity of the node, the velocity in the y-direction is 
even greater than in the z-direction. Third, and most importantly, we have neglected the interaction between the 
particle and fluid environment by assuming the particle and nearby fluid have the same kinetics. However, as the 
particle scatters the acoustic field, it alters the kinetics of the neighboring fluid medium as well (Fig. 1c, inset and 



  

  

Supplementary Video 2). By incorporating these three considerations into our FEM model, our simulation results 
match the experimental results (Fig. 1d,e and Supplementary Fig. 2). 
 
1.3 Acoustofluidics 

To develop a more general theory that includes the effect of the acoustic field, we begin with the governing equations 
for the fluids and their acoustic energies. Kinetics of a fluid is determined by its density 𝜌, pressure 𝑝, and individual 
fluid particle velocity 𝑣. These parameters are governed by the continuity equation for the mass and the Navier-
Stokes equation3. Acoustic fields that result from a perturbation to these parameters can be written in terms of the 
zeroth, first, second, and third and higher-order terms as 

where the subscripts denotes the order of perturbation. 0th order represents the quiescent state and for simplicity 
we take 𝑣0 = 0. 
 
Taking only the 1st order perturbations into account and neglecting 2nd and higher order terms, the governing 
equations for fluids can be simplified into a wave equation 

where 𝑐0 is the speed of sound in the fluid, and 𝑝1  =  𝑐0
2𝜌1. Assuming time-harmonic fields, 

Eq. (10) reduces to a Helmholtz equation, given by  

 
It is worth noting that the harmonic vibration of the cantilever is the only necessary source for the acoustic 
perturbation. Since the equation governing the first order density 𝜌1, pressure 𝑝1 and fluid velocity field 𝑣1 is linear, 
all first order parameters will be proportional to 𝐴. Therefore, the kinetic and potential energy terms from the first-
order acoustic fields, 

will have sin2(𝜔𝑡) or cos2(𝜔𝑡) dependence as well as 𝐴2, similar to the energy terms shown in Supplementary Table 
1. Therefore, when equating the total kinetic energy and potential energy (Rayleigh Ritz Theorem) to obtain the 
resonant frequency of the system, terms with 𝐴2  effectively cancels out. In fact, we have experimentally seen that 
amplitude does not affect our node deviation signal (Supplementary Fig. 3). It is clear that since 𝑝1 is in-phase with 
the cantilever vibration (∝ cos(𝜔𝑡), Supplementary Fig. 1b), 𝜔𝑝 ∝ 𝑐𝑜𝑠2(𝜔𝑡) and will therefore contribute to the 



  

  

potential energy of the system, as expected. On the other hand, 𝑣1 is out-of-phase with the cantilever movement (∝
sin(𝜔𝑡), Supplementary Fig. 1c,d), 𝜔𝜈  ∝  𝑠𝑖𝑛2(𝜔𝑡) and will contribute to the total kinetic energy of the system. 
Next, we shift our discussion to the fluid-particle interaction, where a particle scatters the acoustic field around it, 
causing nearby fluid velocity and pressure to be 

where �⃗�𝑖𝑛  and 𝑝𝑖𝑛  are incident acoustic terms and �⃗�𝑠𝑐  and 𝑝𝑠𝑐  are scattered terms. This will cause not only the 
acoustic fields to be scattered but the particle in the acoustic field to gain kinetic energy 𝑇𝑝 and potential energy 

𝑈𝑝 related to the elastic deformation of the particle. Following the time-harmonic assumption, the gained kinetic 

energy can be obtained, as shown in Supplementary Table 1.  
 
1.4 Revised theory incorporating acoustic effects 

We incorporate all acoustic energy terms, including those resulting from fluid-particle interactions in to Eq. (3) and 
Eq. (4) in order to derive the resonant frequency change of the SMR. 

where 𝑈𝑓  and 𝑈𝑝  denotes acoustic potential energy and stored elastic energy of the particle, respectively.  For 

sufficiently small changes in the frequency (∆𝜔 ≪ 𝜔0),  

where 𝑈0  and 𝑇0 = 𝛼𝜔0
2  are the time-averaged potential and kinetic energy of the system without the particle 

immersed in the SMR (i.e., y=0), respectively. ∆𝑈(𝑦) and ∆𝑇(𝑦) refer to change in potential and kinetic energy of 
fluids and particles, respectively, as a function of the particle position, 𝑦. 
Applying the Rayleigh Ritz Theorem leads to: 

Eq. (17) generalizes the resonant frequency change of the system upon particle loading to be dependent on the total 
potential and kinetic energy of the system, unlike in Eq. (1), where frequency only depends on the particle position 
and mass. It is clear from Eq. (17) that even when a particle is located at the node with zero net out-of-plane motion, 
the disruption of the acoustic field would still result in a non-zero frequency shift. 
 
The simulation results shown in Fig. 1d,e and Supplementary Fig. 2 was computed using the Eq. (17). This was 
accomplished by first numerically solving the Helmholtz equation (Eq. (12)) to obtain three fluid parameters (i.e., 𝜌, 
𝑣, 𝑝), while varying the position of the particle along the channel. Then, we obtained the kinetic energy and potential 
energy of the system for each position (Supplementary Table 1), and subtracted the corresponding energy without 
the particle to get the term ∆𝑈(𝑦) − ∆𝑇(𝑦). In Supplementary Note 2 we will discuss the necessary details of the 
simulation as well as provide more details for computing Eq. (17). 



  

  

Supplementary Note 2. Simulation 

When the acoustic domain of interest has non-trivial geometry with complicated boundary conditions, solving the 
governing equations analytically is challenging. Therefore we utilize Finite Element Method (FEM) simulations 4 to 
solve the relevant equations provided in Supplementary Note 1. For FEM analysis, the governing equation (i.e., Wave 
equation: Eq. (10) for the time domain; Helmholtz equation: Eq. (12) for frequency domain) is to numerically solve 
for each individual ‘block’ within a mesh. In this note, we describe how the model is established and provide details 
on the post processing. 
 
2.1     Geometry 

For FEM analysis, COMSOL Multiphysics software 4.3 was used. The exact geometry of the SMR used for experiments 
in this work was reproduced in the software implementing the CAD design of SMR (Supplementary Fig. 1a and 
Supplementary Table 2). We embedded a particle in the detection regime of the cantilever (i.e., buried channel which 
is covered with thin silicon layers) and parameterized the y-position of the particle. We assumed the particle to be 
perfectly spherical, except where the effect of particle shape was tested. All dimensions used in the simulations are 
listed in Supplementary Table 2. 
 
2.2     Model Setup 

We used the 3-dimensional "Acoustic-Structure Interaction" module in the frequency domain provided by the 
software. The mathematical details of the governing equation and boundary conditions for the simulation are 
included in the manual4. 
 
There are multiple possible sources that generate acoustic standing waves, but most of them will be second or higher 
order terms in the acoustic parameters (e.g., centrifugal force acting towards the tip and node). Here we neglect 
higher order acoustic sources and focus on the first order term, which is created by the out-of-plane motion of fluid 
channel in the cantilever, as given in Eq. (2).  

where 𝑎𝑡 and 𝑎𝑏 are acceleration of the top and bottom surface, respectively. All simulations except viscous sphere 
model were performed under pressure acoustics model  fluid model  linear elastic. We used sound hard boundary 
(wall) condition for the fluid-channel boundary because of the high elastic modulus (> 1011 Pa) and acoustic 
impedance of the silicon surrounding the fluid channel. We obtained the same results by using a boundary condition 
that accounts for the silicon elastic modulus (data not shown). We assumed the entire particle (and shell region for 
Cortical Shell – Liquid Core model) to be a linearly elastic material and isotropic solid. COMSOL then solves for the 
elastic solid-acoustic interaction, which incorporates the re-radiation of the acoustic field by the vibration of the 
solid interface driven by the incident pressure field. For the cell model, we treated the inner liquid core as a fluid 
with density 𝜌 = 1.05 g/cm3 and sound velocity similar to salt water of the same density. We used the default free 
tetrahedral meshing for the entire geometries (Supplementary Table 2), except for the thin shell when performing 
simulation of the cell models, where we first meshed the outer surface with free triangular and used a sweep function 
towards the inner surface with number of elements set to 10. The mesh size of the free trianglular and free 
tetrahederal mesh was set using the general physics option extremely fine and fluid dynamics option, finer respectively. 
Using these options, the minimal edge length of a typical element was set to 0.105 μm for outer surface meshing of 
the particle and 0.285 μm for the rest of the geometry. The position of the particle or cell in the y-direction was 
parameterized with steps of 5-10 μm  along the length of the cantilever to effectively capture the shape of the 
frequency response and enable the comparison with experimental data (Fig. 1d,e). The center of mass was 
positioned in the center of the channel for the all the simulations excluding the ones when we investigated how 
SNACS is affected by the positional offset from center of the channel (Supplementary Fig. 6).   
 



  

  

2.3     Post Processing 

Once COMSOL finished solving for the acoustic parameters as well as particle kinetics and elastic deformation, we 
integrated parameters (e.g. velocity, deformation) over specific geometries to obtain each energy term (Eq. (15)) as 
a function of the particle position (Supplementary Table 1). Once all energy terms were calculated as a function of 
the particle position, we then exported the data to MATLAB. To obtain ∆𝑇(𝑦) and ∆𝑈(𝑦), we subtracted all energy 
terms when the particle is at position 𝑦 = 0, from the energy terms when the particles is at position 𝑦; 

where 𝑈𝑝,𝑠  and 𝑇𝑝,𝑠 denote the potential and kinetic energy, respectively, of the whole particle or the shell region of 

the cell model. The average deformation of the cell or particle was calculated assuming isometric expansion (i.e., 
𝑈𝑝,𝑠 = 𝐸𝐴𝛥𝑥2 2𝑥⁄ , where 𝐸 is elastic modulus, 𝐴 is the surface area of the cell or particle and 𝑥 is the length before 

deformation, 𝛥𝑥). 𝑈𝑐  and 𝑇𝑐  only apply to the cell model, where encapsulated inner core was treated as a fluid.  
 
Lastly, to directly compare simulations with experiments, we converted the energy difference (in units of Joules, Eq. 
(19)) to a frequency shift (in units of Hz, Eq. (17)). To do this, we ran 10 μm polystyrene beads in both simulations 
and experiments and calibrated the energy difference (∆𝑈(𝑦) − ∆𝑇(𝑦)) simulated when the bead is at the antinode 
(𝑦 = 𝑦𝑎𝑛) with the resonant frequency shift measured experimentally at the antinode (∆𝑓/𝑓(𝑦𝑎𝑛)). 
 
2.4 Different mechanical models for cells 

We also tested models other than the Cortical Shell – Liquid Core model, such as the Viscous Drop, the Acoustic 
Impedance Mismatch and the Bulk Elastic (Supplementary Table 3). For the Bulk Elastic model, the assumption of a 
uniform linearly elastic material was used. For Acoustic Impedance Mismatch, we assumed the cell to be a liquid 
sphere, with acoustic impedance set under the Impedance option. The Viscous Drop and Cortical Shell – Liquid Core 
model (Supplementary Fig. 5b) with the viscous core were simulated by selecting the viscous fluid model under 
pressure acoustics model while parameterizing the dynamic and bulk viscosity of the entire sphere or the fluid core of 
the Cortical Shell – Liquid Core. To simulate the effect of cytoplasmic pressure in our Cortical Shell – Liquid Core 
model (Supplementary Fig. 5c), we set the pressure under initial values to be parameterized within the range of 0-
1000 Pa. The cortical tension model (Supplementary Fig. 5d) was developed similarly to previously reported 
COMSOL model5. Briefly, we applied a constant mechanical tension in the cortex by assigning an initial stress to the 
shell domain under initial stress and strain. Using Laplace’s relationship, we assigned the initial stress in spherical 
coordinate (ρ, θ, φ; relative to the center of the liquid core) as 

 
where 𝑝 is the internal pressure, 𝑟𝑐 is the cell radius, and  𝑡𝑠 is the shell thickness.   



  

  

Supplementary Note 3. Correcting mass distribution 

3.1     Deconvolution of mass and acoustic signal 

As we showed in the previous notes, the resonant frequency shift of the SMR at any point in time due to a particle 
present in the integrated channel is a superposition of the frequency change due to the added particles mass and 
acoustic scattering created by the particle (Supplementary Fig. 2), 

Here we assume ∆𝑓𝑚𝑎𝑠𝑠  is the frequency shift caused by a point-mass particle as shown in Eq. (1), which is 
proportional to the squared amplitude dependence of the mode shape, 𝑢2(𝑦). However, a particle with a mass 
distribution along the cantilever would cause a frequency shift deviating from the squared mode shape. Therefore, 
in order to obtain the shape-insensitive acoustic term, ∆𝑓𝑎𝑐𝑜𝑢𝑠𝑡𝑖𝑐, we need to correct for the mass distribution , ∆𝑓𝑚𝑎𝑠𝑠, 
affecting ∆𝑓𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 . Here, we ignore the contribution of acoustic effects to the frequency shift and discuss only the 
contribution of the mass distribution to the resulting frequency shift. If a particle of length 2L with a linear mass 
distribution, 𝜆(𝑥), is located at the position y along the cantilever, the shift in the resonant frequency is given by 

where 𝑦𝑎𝑛is the position of the antinode and ∆𝑓𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑦𝑎𝑛) is the measured frequency shift at the antinode (i.e., 
buoyant mass). Although a point mass would create no mass-dependent frequency shift at the node (𝑦𝑛, 𝑢(𝑦𝑛)  =  0), 
a particle with a non-zero size along the length of the cantilever will create a non-zero frequency shift when it is 
centered at the node. This contribution can be calculated from Eq. (22), and thus a correction can be made provided 
the size, shape and mass of the particle is known. The list of mass distributions, 𝜆(𝑥), for some of the geometries that 
we encountered during this work is shown in Supplementary Table 4. For simplicity, we assumed the mass is 
homogeneously distributed around the geometry. As expected, compared to the single spherical particle, a doublet 
of particles will result in a larger frequency shift due to mass elongation. Although spheres have positional invariance 
making λ invariant to particle rotation, the λ for a doublet depends on its orientation relative to the cantilever 
(Supplementary Table 4). 
 
3.2     Correction for cell elongation in anaphase 

During the transition from a singlet to a doublet during anaphase, we assume that the total volume remains constant 
and that all geometries are the result of an overlap of two equally sized spheres (Supplementary Fig. 9). To 
accomplish this, we numerically solve for an individual sphere radius, 𝑟𝑡, with total elongation length, 𝐿, and volume, 
𝑉, matching the following conditions:  

where 𝑑  is the length of intersection between two identical spheres (Supplementary Table 4). With 𝑟𝑡  obtained 
above, we add the following frequency shift to the node deviation we measured to correct for the mass elongation 
effect.  



  

  

where 𝑦𝑛 is position of the node and 𝜆𝑡 and 𝜆𝑠 refer to the linear mass distribution of the overlapping spheres of 
individual radii of 𝑟𝑡and singlet of radius 𝑟𝑠, respectively (Supplementary Table 4). However, since 𝜆𝑡 depends on the 
exact orientation relative to the channel, there will be an error estimating the frequency shift, ∆𝑓𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛. For all 
data shown throughout this work, we assumed that the cells are oriented by an intermediate angle (i.e., 𝜃𝑚𝑎𝑥/2) 
during late mitosis (Supplementary Fig. 15). We further discuss the details of such orientation-dependent error in 
Supplementary Note 4.  
  



  

  

Supplementary Note 4. Orientation-dependent noise 

Orientation of a particle relative to the channel can affect mass distribution along the channel and result in a SNACS 
that is independent of the mechanical properties (Supplementary Note 3 and Supplementary Table 4). For example, 
the SNACS from a cylindrical particle flowing parallel through the channel at the node will be different from the case 
where the same particle has a perpendicular orientation (Supplementary Table 4, 1st and 2nd row, respectively). 
Thus, for non-spherical particles, the SNACS measurement contains an intrinsic noise that results from an uncertain 
orientation during detection at the node. For suspension cells, the shape is generally spherical up until late mitosis 
and so the orientation noise is negligible. This is evident by the low noise in our SNACS measurement during 
interphase (Fig. 3a,b). 
 
For cells that deviate from a spherical shape, a spurious SNACS signal could arise if the cell gradually changes its 
orientation as it flows back-and-forth through the channel. There are two approaches for determining if a signal is 
spurious.  The first applies to situations where the time range of a possible mechanical change is known (e.g. during 
mitosis).  In this case, the SNACS signal can be measured from multiple cells. The resulting signals can be aligned and 
an analysis for statistical significance can be performed (for example Fig. 3c, where mitotic cells were aligned at the 
metaphase-anaphase transition). If a cell’s orientation should gradually drift during a measurement, it will not be 
correlated across different cells. 
 
The second approach applies to situations where changes in mechanics occur stochastically. In this case, the error 
resulting from orientation noise must be quantified. A threshold can then be established for determining if the SNACS 
measurement is revealing statistically significant changes in cell mechanics. The maximum orientation error in node 
deviation (∆𝑁𝐷𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛) can be calculated provided the cell shape is known (e.g. by DIC imaging),  

where 𝛥𝑓𝑚𝑎𝑠𝑠 (𝑦𝑛) is given in Eq. (22).  If the change in SNACS is sufficiently larger than the error obtained from Eq. 
(25), the resulting signal will be associated with changes in cell mechanics. We next present three examples to 
illustrate how orientation noise is estimated.  
 
4.1     Cylindrical geometry 

For a cylindrical particle of radius r and length L, the maximal node deviation change due to orientation error given 
by Eq. (25) is 

where, 𝜆𝑐||, 𝜆𝑐⟘is mass distribution function of a cylindrical sample lying parallel and perpendicular to the channel, 

respectively. From Eq. (26), a cylindrical hydrogel with a 10 μm diameter, 8 μm height and 𝛥𝑓𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑦𝑎𝑛) = 17 𝐻𝑧, 
the resulting orientation noise is ~ 0.004 𝐻𝑧, which is equivalent to SNACS noise of ~0.006 (a.u.). 
 
4.2     Cells in late mitosis 

Here we estimate the orientation noise of a cell in late mitosis. Specifically, we use Eq. (25) to calculate the maximum 
error from orientation uncertainty as the cell elongates. Similar calculation done for the cylindrical hydrogel shown 
in Supplementary Note 4.1 will be performed. However, since the length of the elongated cell is greater than the 
channel width, the maximal rotation is now constrained. For example, overlapping spheres of total elongation length 



  

  

𝐿, and individual radius 𝑟𝑡  flowing through the channel of width 𝑤 can only rotate by an angle 𝜃 from 𝑦-axis (i.e. 
direction of a particle/fluid flow through the cantilever) (Fig. 1a and Supplementary Fig. 1a) which is given by, 

Using 𝑤 = 20 𝜇𝑚 for our cantilever and the maximal angle provided from Eq. (27), Supplementary Fig. 15a bounds 
the maximum error due to orientation uncertainty as the cell elongates. Initially the error increases as the cell 
elongates. At a critical elongation length, the error reaches a maximum because the rotation within the channel 
begins to be constrained (𝜃𝑚𝑎𝑥 < 90°).  
 
4.3 Effect of sample orientation uncertainty on measured and corrected SNACS 

In Supplementary Note 3, we described how to correct the SNACS signal for changes in mass distribution obtained 
by simultaneously measuring cell shape. Here, with the goal of showing the interplay between Supplementary Notes 
3 and 4, we show the expected SNACS signal from a hypothetical cell that elongates during mitosis. In one case, we 
allow the mechanical properties to remain constant during elongation (Supplementary Fig. 15b, top panel, left), and 
for the other case, to change in a fashion similar to what we’ve observed in L1210 cells (Supplementary Fig. 15b, top 
panel, right). As shown in previous note (Eq. (22)), elongation causes the measured SNACS signal to be decreased 
due to mass distribution changes, but also variable depending on the orientation relative to the channel. The SNACS 
decrease and increased noise are independent from the cell’s mechanical properties (Supplementary Fig. 15b, 
middle panel; gray area bounded by red and blue dashed line). In other words, SNACS measured at any given time 
point can fall along the gray region in Supplementary Fig. 15b middle panel. If we then apply the mass distribution 
correction scheme discussed in Supplementary Note 3 to the expected SNACS curves, we recover the trajectory 
where our error is determined by the upper and lower bound calculated from the orientation (Supplementary Fig. 
15b, bottom panel; gray area bounded by red and blue dashed lines). It is clear that our orientation-dependent noise 
is small enough to distinguish cellular mechanical changes observed in mitotic L1210 cells (Supplementary Fig. 15b, 
right) from the hypothetical constant case (Supplementary Fig. 15b, left).  
  



  

  

Supplementary Note 5. Swelling driven cortical expansion  

Here we present the mathematics that govern the reduction of cortical thickness when the total volume expands. 
For this calculation, we assume that the volume expansion is isometric and that the cortical actin content and density 
does not change as a result of the expansion. Therefore, when a shell of thickness 𝑡𝑠, and total radius 𝑟𝑐 (Figs. 2a and 
4d) undergoes isometric volume expansion to bigger radius 𝑟𝑐

′, the shell thickness would be reduced to 𝑡𝑠
′,  

Supplementary Table 5 lists some of the values that were calculated using Eq. (28). 
Our FEM simulation revealed that increasing volume by 14.1% and, consequently, decreasing the cortex thickness 
to radius ratio by ~10% required an additional 10% decrease in cortical elastic modulus to match with the SNACS 
change we observe in early mitosis (Fig. 4c). This could be because cortical expansion during swelling causes actin 
cortex to be detached from the surface6 or because F-actins get partially damaged or ruptured by an increase in 
intracellular pressure7.  
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