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1 Examples of non-linear relationships

Figure 1 shows the scatter plot of two variables with a simple non-linear (here quadratic)
relationship for varying numbers of samples.
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Figure 1: Scatter plots of a non-linear relationship with different number of
samples.

In the case of high sample size, we can recognize the relationship visually and build a
specific model. In the case of low sample size however, and in the presence of noise, visual
signs can be misleading, and one might even think that there is no relationship between
the variables as the correction coefficient (cor) oscillates around zero. Distance correlation
(dcor) on the other hand captures the relationship at all sample sizes in the plot. The
coefficient is sensitive to sample size and varies more but it does not go to 0.
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Figure 2 shows the scatter plot of two genes in DREAM4 (10 nodes).
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Figure 2: Scatter plot of a (non-linear) relationship between two genes in
DREAM4 data.

This plot shows non-linear data with small sample size and high noise, quite a typical
case in biology. The relationship here would be really hard to model visually and it is
preferable to use a generic method than can handle all forms of dependencies.
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2 Functions used to produce non-linear relationships

Each variable corresponds to a node, and there are 11 variables (A...K). The following
functions were used to simulate the non-linear data:

A = U(−2, 2)

B = U(−2, 2)

C = 5 ∗A2 − 3 + ε

D = 3 ∗A3 − 5 ∗A+ 5 + ε

E = (2 ∗B + 0.5)2 − 4 + ε

F = 2 ∗ log(|C − 6|) + 1 + ε

G = 0.2 ∗ (C − 6)2 + 0.4 ∗ |F |(1/2) − 14 + ε

H = 0.4 ∗ (D/2)2 − 0.3 ∗ (E/5)3 − 1.5 ∗ E − 10 + ε

I = 0.4 ∗ (E − 5)2 − 0.5 ∗ (E − 5)− 20 + ε

J = 0.2 ∗ (H/10)4 + 1.3 ∗ (H/10)3 + 0.4 ∗ (H/10)2 − 5 + ε

K = 0.6 ∗ (I/5)2 − 0.8 ∗B3 − 3 + ε

4



Figure 3 shows typical non-linear data used in the experiments.
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Figure 3: Scatter plots of one realization of data simulation from the network
H in Main Document Figure 1 (highlighted cells correspond to real edges).
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3 Simulation of Gaussian data

To simulate Gaussian data, a random directed acyclic graph G is generated using the
function randomDAG from the R package pcalg [1, 2], with a connection probability of
0.2. Random edges are added when necessary to make sure every node is connected to at
least one other node. An undirected graph is then created by making G symmetric using
G = G+GT . A covariance matrix is generated from the skeleton of G using the function
qpG2Sigma from the R package qpgraph [3, 4, 5], with rho=0.5. This covariance matrix is
then used to simulate multivariate Gaussian data with arbitrary means using the function
rmvnorm from the R package mvtnorm [6, 7].
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4 Evaluation methodology

In network reconstruction, only a small fraction of the possible edges among nodes is
expected to be real. In such unbalanced situations, it has been shown that the precision-
recall (PR) curve is very informative in order to compare method performances [8].

Precision-recall (PR) curves are very informative when it comes to network recon-
struction tasks, because they show the sorting power of the algorithm. Indeed, by plotting
the precision as a function of the recall, we can see how often the edges the algorithm
is most confident about are true edges. In contrast, the well-known receiver-operating-
characteristic (ROC) curve shows the separation power of an algorithm. Indeed, by plot-
ting the recall as a function of the false positive rate, we can see how many edges we can
retrieve in general.

ROC curves typically display a task-independent behavior for a random binary classi-
fier. The expected ROC curve is a straight line from [0, 0] to [1, 1], and its area under the
curve (AUC) is 0.5.

But, unlike ROC curves, expected PR curves are task-dependent. The expected PR
curve is a horizontal line from [0, p] to [1, p] and the AUC is p, where p is the proportion
of positives (i.e. edges) in the network. If a network has 10 nodes, and we are interested

in undirected edges, there are
10× 9

2
= 45 candidate edges. If this network has 9 actual

edges, then p =
9

45
= 0.2. Equally, if the expected AUPRC is 0.4 and the network has 20

nodes, the number of actual edges in the network is 0.4× 20× 19

2
= 38.

In this study, we only consider undirected edges, i.e. A → B and B → A are treated
equally. All methods return a score for each (undirected) candidate edge. All candidate
edges are sorted in ascending order of the absolute value of their scores given by the
method of interest. PR and ROC curves are then built by growing the network from the
top scoring edge to the bottom one and computing the false positive rate, the true positive
rate (or recall) and the precision at each stage. When replicates are available, these curves
are averaged by averaging the false positive rates, recalls and precisions of every stage.

Note that in this study, all methods are assessed equivalently. No parameters are
tuned, and if parameters are required (for example in ARACNE [9], they are set to their
default value. The PR and ROC curves are built using a moving threshold on the obtained
scores, not by changing the parameters of the methods and obtaining new scores.
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5 Competitor methods

In this study, we compare the performance of DPM and reg-DPM with nine other methods:

• Pearson correlation (cor).

• partial correlation (pcor), computed using the R package corpcor [10].

• regularized partial correlation following Schäfer et al. [10] (reg-pcor), computed
using the R package corpcor [10].

• network deconvolution [11] with the correlation matrix as input (nd), using our own
R implementation copied from the available python code.

• mutual information (mi), using the R package minet [12].All runs use equal frequency
discretization and the Miller-Madow estimator. pmi uses the available Matlab code.

• part mutual information [13] (pmi), using the available Matlab code.

• the well-established network reconstruction method ARACNE [9] (arac), using the
R package minet [12]. All runs use equal frequency discretization and the Miller-
Madow estimator.

• distance correlation (dcor), using the provided R package energy [14].

• Székely et al.’s version of partial distance correlation [15] (pdcor), using source code
provided by the authors.
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6 Performance comparison on Gaussian data

Figure 4 shows the PR curves corresponding to Main Document Figure 2a. The expected
PR curve on this task is a horizontal line at precision=0.27.
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Figure 4: Performance on simulated Gaussian data. The plots show the PR curves
(averaged over 100 replicates with 100 samples per replicate) of all selected methods for the
reconstruction of Gaussian networks. The expected PR curve on this task is a horizontal
line at precision=0.27.
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Figure 5 shows the 50 nodes counterpart of Main Document Figure 2a and Figure
4 above. Error bars show one standard deviation. The expected AUPRC on this task
(averaged over the 100 simulated networks) is 0.27 for 10 nodes, 0.2 for 50 nodes.
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(a) Average PR curves. The expected PR curve
on this task is a horizontal line at precision=0.2.
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(b) Average AUPRCs. The expected AUPRC
on this task is 0.2.

Figure 5: Performance on simulated Gaussian data with 50 nodes networks.
The plots show the AUPRCs (averaged over 100 replicates with 100 samples per replicate)
of all selected methods for the reconstruction of Gaussian networks. Error bars show one
standard deviation. Overall, nd, DPM, and reg-DPM perform best.

Mutual information based methods (mi and arac) perform worst on this task, probably
because of the discretization step. pmi is solved analytically and does not suffer. nd, DPM,
and reg-DPM (overlapping) perform best for both network sizes, together with pcor, reg-
pcor and pmi for the 10 nodes networks, and with pdcor for 50 nodes networks. Note that
nd performs slightly better then DPM on the 50 nodes networks, however this difference
decreases as the number of samples increases (see Figure 7 for the same figure with 200
samples). pcor and pmi do surprisingly badly on the 50 nodes networks, probably due
to the relatively small amount of samples. Indeed, when using 200 samples, pcor, reg-
pcor and pmi get closer. In line with this assumption, Figure 5 shows that regularization
improves pcor for the 50 nodes networks, though not enough to match DPM. For DPM
both the standard and regularized versions work well, which suggests that DPM requires
fewer samples than pcor, probably due to the quadratic inflation of the number of samples
in the D-centered vectors. As could be expected, cor and dcor go hand-in-hand for both
network sizes. Regarding ROC curves and AUROCCs (see Figure 6), all methods are
roughly comparable except those based on mutual information which never perform as
well.
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Figure 6 shows the ROC counterpart of Main Document Figure 2a and Figure 5 above.
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(a) Average ROC curves, 10 nodes networks.
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(b) Average ROC curves, 50 nodes networks.
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Figure 6: ROC-based performance on simulated Gaussian data. The plots show
the performance (averaged over 100 replicates with 100 samples per replicate) of all selected
methods for the reconstruction of Gaussian networks.
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We run the same set of experiments as in Main Document Figure 2a but with 200
samples. Results are shown in Figure 7 and provide a similar message. The expected
PR curve on this task (averaged over the 100 simulated networks) is a horizontal line at
precision=0.28 for 10 nodes, at precision=0.2 for 50 nodes.
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(a) Average PR curves, 10 nodes networks. The
expected PR curve on this task is a horizontal
line at precision=0.28.
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(b) Average PR curves, 50 nodes networks. The
expected PR curve on this task is a horizontal
line at precision=0.2.
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Figure 7: Performance on simulated Gaussian data with 200 samples. The plots
show the performance (averaged over 100 replicates with 200 samples per replicate) of all
selected methods for the reconstruction of Gaussian networks.

12



7 Performance comparison on non-linear data

Figure 8 shows the PR curves corresponding to Main Document Figure 2b. The expected
PR curve on this task is a horizontal line at precision=0.2.
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Figure 8: Performance on simulated non-linear data. The plots show the PR curves
(averaged over 100 replicates with 100 samples per replicate) of all selected methods for
the reconstruction of the network H in Main Document Figure 1. The expected PR curve
on this task is a horizontal line at precision=0.2. mi, arac, DPM, and reg-DPM perform
best.

pcor and pmi, which are geared towards Gaussian data and require a larger number of
samples, perform worst on this task. DPM, reg-DPM (overlapping), and arguably mi and
arac, perform best, followed by pdcor. Note that arac seems to drop down very quickly in
precision. This is due to the candidate edges deemed absent by arac receiving the same
score 0 and therefore being ranked randomly. Here, adding samples as done in Figure 10
helps neither pcor nor reg-pcor, due to the nature of the data. Again, while regulariza-
tion dramatically improves the performance of pcor, there is no visible difference between
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DPM and reg-DPM. Regarding ROC curves and AUROCCs (see Figure 9), DPM, reg-
DPM, pdcor, dcor and mi perform best.

Figure 9 shows the ROC counterpart of Main Document Figure 2b and Figure 8 above.
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Figure 9: ROC-based performance on simulated non-linear data. The plots show
the performance (averaged over 100 replicates with 100 samples per replicate) of all selected
methods for the reconstruction of the network H in Main Document Figure 1.
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We run the same set of experiments as in Main Document Figure 2b but with 200
samples. Results are shown in Figure 10 and provide a similar message, unless discussed in
Main Document. The expected PR curve on this task is a horizontal line at precision=0.2
and the expected AUPRC is 0.2.
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(a) Average PR curves. The expected PR curve
on this task is a horizontal line at precision=0.2.
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(b) Average AUPRCs with error bars showing
one standard deviation. The expected AUPRC
on this task is 0.2.
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(c) Average ROC curves.
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Figure 10: Performance on simulated non-linear data with 200 samples. The
plots show the performance (averaged over 100 replicates with 200 samples per replicate)
of all selected methods for the reconstruction of the network H in Main Document Figure
1.
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8 DREAM3 results using different data

Figure 11 shows the AUPRCs obtained on DREAM3 using various subsets of data for the
10 nodes networks. Wild-type is always included. The expected AUPRCs on these tasks
are 0.22 for Yeast1, 0.56 for Yeast2, 0.49 for Yeast3, 0.24 for Ecoli1 and 0.33 for Ecoli2.
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(a) Heterozygous data.
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(b) All (null-mutants and heterozygous) data.

Figure 11: AUPRCs on DREAM3 challenge using various subsets of data for
the 10 nodes network. Wild-type is always included and therefore not mentioned in
sub-captions. The expected AUPRCs on these tasks are 0.22 for Yeast1, 0.56 for Yeast2,
0.49 for Yeast3, 0.24 for Ecoli1 and 0.33 for Ecoli2.
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Figure 12 shows the AUPRCs obtained on DREAM3 using various subsets of data
for the 50 nodes and 100 nodes networks. Wild-type is always included. The expected
AUPRCs on these tasks for 50 nodes networks are 0.06 for Yeast1, 0.13 for Yeast2, 0.14
for Yeast3, 0.05 for Ecoli1 and 0.07 for Ecoli2, and for 100 nodes networks 0.03 for Yeast1,
0.08 for Yeast2, 0.11 for Yeast3, 0.03 for Ecoli1 and 0.02 for Ecoli2.
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(a) 50 nodes networks, heterozygous data.
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(b) 50 nodes networks, all (null-mutant and het-
erozygous) data.
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(c) 100 nodes networks, heterozygous data.
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heterozygous) data.

Figure 12: AUPRCs on DREAM3 challenge using various subsets of data for
the larger networks. Wild-type is always included and therefore not mentioned in sub-
captions. (a, b): 50 nodes networks. The expected AUPRCs on these tasks are 0.06
for Yeast1, 0.13 for Yeast2, 0.14 for Yeast3, 0.05 for Ecoli1 and 0.07 for Ecoli2. (c, d):
100 nodes networks. The expected AUPRCs on these tasks 0.03 for Yeast1, 0.08 for
Yeast2, 0.11 for Yeast3, 0.03 for Ecoli1 and 0.02 for Ecoli2.
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9 DREAM4 results using different data

Figure 13 shows the AUPRCs obtained on DREAM4 using various subsets of data for the
10 nodes network. Wild-type is always included. The expected AUPRCs on these tasks
are 0.29 for organism 1, 0.27 for organism 2, 0.33 for organism 3, 0.29 for organism 4 and
0.27 for organism 5.
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(b) Multifactorial data.
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(c) Knockout and knockdown data.
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Figure 13: AUPRCs on DREAM4 challenge using various subsets of data for
the 10 nodes networks. Wild-type is always included and therefore not mentioned in
sub-captions. The expected AUPRCs on these tasks are 0.29 for organism 1, 0.27 for
organism 2, 0.33 for organism 3, 0.29 for organism 4 and 0.27 for organism 5.
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Figure 14 shows the AUPRCs obtained on DREAM4 using various subsets of data for
the 100 nodes network. Wild-type is always included. The expected AUPRCs on these
tasks are 0.03 for organism 1, 0.05 for organism 2, 0.04 for organism 3, 0.04 for organism
4 and 0.04 for organism 5.
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(b) Multifactorial data.
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Figure 14: AUPRCs on DREAM4 challenge using various subsets of data for
the 100 nodes networks. Wild-type is always included and therefore not mentioned
in sub-captions. The expected AUPRCs on these tasks are 0.03 for organism 1, 0.05 for
organism 2, 0.04 for organism 3, 0.04 for organism 4 and 0.04 for organism 5.
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10 DREAM5 results

Figure 15 shows the AUROCCs obtained on DREAM5 data. Performance is reported
only on edges between regulators and transcription factors (noted TFs in captions). The
simulated data has 1643 nodes (including 195 transcription factors) and 805 samples. The
E. coli data has 4511 nodes (including 334 transcription factors) and 805 samples. The S.
cerevisiae data has 5959 nodes (including 333 transcription factors) and 536 samples.
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Figure 15: AUROCCs on DREAM5 challenge data. The simulated data has 1643
nodes (including 195 TFs), and 805 samples. The E. coli data has 4511 nodes (including
334 TFs) and 805 samples. The S. cerevisiae data has 5950 nodes (including 333 TFs)
and 536 samples.

20



11 Setting a threshold

PR and ROC curves are useful to compare methods in the presence of a gold standard,
but provide little guidance when the method is applied to a novel dataset. In the classical
setting of Gaussian data, statistical tests can be applied with multiple testing correction.
However, for many other measures including our DPM and reg-DPM, no statistical tests
are available (yet). In principle, permutation tests can be applied [14, 15] but these can
quickly become computationally prohibitive.

Recall that our method gives a score to all candidate edges. A scalable heuristic is
to split the scores in the DPM matrix using k-means with k = 2 or a Gaussian mixture
with k = 2 and unequal variances. The respective candidate edges can then be assigned
to one of the two groups, one representing absent edges, the other present edges. In spite
of its simplicity, this heuristic works reasonnably well, both on linear and non-linear data.
We tested this for various number of samples: each particular number of samples yields a
different score matrix and a different threshold. For statistical tests, we use a significance
level α = 0.05. We use the obtained threshold to reconstruct the network and compute
the corresponding precision, recall and F1-score. The F1-score is a (balanced) trade-off
between precision and recall and is therefore of particular interest. All results reported
are averaged over 20 replicates.

Figure 16 shows for 10 nodes Gaussian networks and for varying numbers of samples
the performance of thresholds resulting from various tests chosen according to the method.
The black curves (best) show what could be achieved if we knew where to set the correct
threshold to optimise this particular score. Unlike other thresholds, the ”best” threshold
is computed for each score independently. The best curves trivially reach 1 for both
precision and recall, but not the F1-score. All subsequent plots are organised according
to the following:

• The first row shows thresholds for DPM resulting from k-means (kmeans) and from
a Gaussian Mixture Model (GMM).

• The middle row shows thresholds for pcor resulting from k-means (kmeans) and from
the standard test based on Fisher transformation using α = 0.05 (Fisher).

• The third row shows thresholds for pdcor resulting from k-means (kmeans) and from
the test provided with pdcor using 499 permutations and α = 0.05 (pdcor.test).

Both GMM and k-means perform relatively well for DPM, with a preference for GMM if
precision and recall are of equal importance (F1-score), for k-means if precision is more
important. Note that in general, precision is more important for network reconstruction.
For pcor and pdcor, k-means performs just as well or better than their respective tests,
again with a preference for k-means if precision is more important.
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Figure 16: Threshold selection using clustering on 10 nodes Gaussian networks.
The plots show for various scores the performance achieved (averaged over 20 replicates)
using a particular threshold selection method. best refers to the top performance achiev-
able, which is of course 1 for both precision and recall, but not for F1 which combines
precision and recall. kmeans refers to the results given by the threshold computed from
2-means, GMM to the results given by the threshold computed from a bimodal Gaussian
mixture with unequal variances, pdcor.test to the test supplied for pdcor with α = 0.05
and 199 replicates, and Fisher to the standard partial correlation test based on the Fisher
transformation with α = 0.05.
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Figure 17 shows the same plots as Figure 16, also on linear data, but for 50 nodes
networks. For DPM, both GMM and k-means perform relatively well, with a preference
for k-means, especially if precision is favoured. For pdcor and pcor, k-means behaves
very well. In contrast, the statistical test for pdcor fails once the number of samples has
reached the number of nodes, while k-means performs at any sample size, particularly
when it comes to precision.
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Figure 17: Threshold selection using clustering on 50 nodes Gaussian networks.
The plots show for various scores the performance achieved (averaged over 20 replicates)
using a particular threshold selection method. best refers to the top performance achiev-
able, which is of course 1 for both precision and recall, but not for F1 which combines
precision and recall. kmeans refers to the results given by the threshold computed from
2-means, GMM to the results given by the threshold computed from a bimodal Gaussian
mixture with unequal variances, pdcor.test to the test supplied for pdcor with α = 0.05
and 199 replicates, and Fisher to the standard partial correlation test based on the Fisher
transformation with α = 0.05.
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Figure 18 shows the same plots as Figure 16 but on non-linear data generated using
the network H in Main Document Figure 1. There again k-means behaves well for DPM.

0 100 200 300 400 500

0.
0

0.
4

0.
8

DPM, precision

number of samples

pr
ec

is
io

n

best
kmeans
GMM

0 100 200 300 400 500

0.
0

0.
4

0.
8

DPM, recall

number of samples
re

ca
ll

best
kmeans
GMM

0 100 200 300 400 500

0.
0

0.
4

0.
8

DPM, F1

number of samples

F
1

best
kmeans
GMM

0 100 200 300 400 500

0.
0

0.
4

0.
8

pdcor, precision

number of samples

pr
ec

is
io

n

best
kmeans
pdcor.test

0 100 200 300 400 500

0.
0

0.
4

0.
8

pdcor, recall

number of samples

re
ca

ll

best
kmeans
pdcor.test

0 100 200 300 400 500

0.
0

0.
4

0.
8

pdcor, F1

number of samples
F

1

best
kmeans
pdcor.test

0 100 200 300 400 500

0.
0

0.
4

0.
8

pcor, precision

number of samples

pr
ec

is
io

n

best
kmeans
Fisher

0 100 200 300 400 500

0.
0

0.
4

0.
8

pcor, recall

number of samples

re
ca

ll

best
kmeans
Fisher

0 100 200 300 400 500

0.
0

0.
4

0.
8

pcor, F1

number of samples

F
1

best
kmeans
Fisher

Figure 18: Threshold selection using clustering on non-linear data simulated
using the network H in Main Document Figure 1. The plots show for various
scores the performance achieved (averaged over 20 replicates) using a particular threshold
selection method. best refers to the top performance achievable, which is of course 1 for
both precision and recall, but not for F1 which combines precision and recall. kmeans
refers to the results given by the threshold computed from 2-means, GMM to the results
given by the threshold computed from a bimodal Gaussian mixture with unequal variances,
pdcor.test to the test supplied for pdcor with α = 0.05 and 199 replicates, and Fisher to
the standard partial correlation test based on the Fisher transformation with α = 0.05.
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12 Detection of direct edges

Many graph reconstruction methods are based on standard partial correlation or covari-
ance matrix inversion in order to focus on direct edges. pdcor, DPM and reg-DPM provide
possible extensions to non-linear data and should therefore be able to distinguish direct
edges from indirect ones. In this his section, we verify that real edges get a higher score
indeed than indirect ones. We repeat the simulations for Gaussian and non-linear data
described in their respective subsections, however here performance is computed using as
positives the edges in the ground truth network (direct edges) and as negatives the pairs
of nodes that are not connected but that are still marginally dependent in the ground
truth network (indirect edges). Note that the positive set of edges has not changed, only
the negative one.

To identify the indirect edges, we use the marginal d-separation criterion by applying
to the ground truth DAG the function dsep from the R package pcalg [1, 2]. Two nodes
X and Y are marginally d-separated (and therefore marginally independent) if and only if
all paths between X and Y contain a collider [16].For our experiments, all pairs of nodes
that do not satisfy the d-separation criterion and that are not directly connected form
indirect edges.

Figure 19 shows the average AUPRCs of all selected methods for distinguishing direct
from indirect edges in larger networks for linear data. The expected AUPRCs on these
tasks (averaged over the 100 simulated networks) are 0.21 for 50 nodes networks and 0.2
for 100 nodes networks.
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(b) 50 nodes networks, 200 samples.
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(c) 100 nodes networks, 100 samples.
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(d) 100 nodes networks, 200 samples.

Figure 19: Performance on direct vs indirect edges on Gaussian data for larger
networks. The plots show the AUPRCs (averaged over 100 replicates) of all selected
methods for distinguishing direct from indirect edges in Gaussian networks. Note that
networks are fully reconstructed, i.e. all edges are given a score, but the performance is
computed exclusively on edges that are direct or edges whose nodes are not d-separated.
(a, b): 50 nodes samples. The expected AUPRC on this task is 0.21. (c, d): 100
nodes samples. The expected AUPRC on this task is 0.2.
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Figure 20 shows the AUPRCs of all selected methods for distinguishing direct from
indirect edges in larger networks for DREAM3 data.
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(a) 50 nodes networks. The expected AUPRC on
these tasks are 0.09 for Yeast1, 0.18 for Yeast2,
0.15 for Yeast3, 0.11 for Ecoli1 and 0.13 for
Ecoli2.
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(b) 100 nodes networks. The expected AUPRCs
on these tasks are 0.079 for Yeast1, 0.084 for
Yeast2, 0.124 for Yeast3, 0.108 for Ecoli1 and
0.11 for Ecoli2.

Figure 20: Performance on direct vs indirect edges on DREAM3 (wild-type
and null-mutant) data for larger networks. The plots show the AUPRCs of all
selected methods for distinguishing direct from indirect edges in the network in DREAM3
networks. Note that networks are fully reconstructed, i.e. all edges are given a score, but
the performance is computed exclusively on edges that are direct or edges whose nodes
are not d-separated.
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13 Effect of sample size

Figure 21 shows the ROC counterpart of Main Document Figure 5.

d
d

d
d

d d d d
d

d
d

d d d d d d d

● ●
●

●
●

●

●
●

●

●

●

● ●
●

● ● ● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3 4 5 6 7 8 9 10 15 25 50 10
0

15
0

25
0

50
0

10
00

25
00

50
00

●

●

cor

pcor

reg−pcor

nd

mi

pmi

arac

dcor

pdcor

DPM

reg−DPM

Gaussian data, 10 nodes

number of samples

A
U

R
O

C
C

(a) Gaussian data.

d
d d d d d d d

d
d

d
d d d d d d d

●

●

●

●

●

●
●

●

●

●

●
● ● ● ● ● ● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3 4 5 6 7 8 9 10 15 25 50 10
0

15
0

25
0

50
0

10
00

25
00

50
00

●

●

cor

pcor

reg−pcor

nd

mi

pmi

arac

dcor

pdcor

DPM

reg−DPM

non−linear data, 11 nodes

number of samples
A

U
R

O
C

C

(b) Non-linear data simulated using the network
H in Main Document Figure 1.

Figure 21: ROC-based effect of sample size on performance. The plots show the
evolution of the AUROCCs (averaged over 100 replicates) as sample size increases.
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14 Effect of noise

We repeat the simulations for Gaussian and non-linear data described in Main Document
Sections ”Performance comparison on Gaussian data” and ”Performance comparison on
non-linear data”, and vary the variance of the univariate Gaussian noise that is added to
the data drawn from the networks.

Figure 22 shows the evolution of the AUPRCs (averaged over 100 replicates with 150
samples per replicate) for all selected methods as noise increases. The expected AUPRCs
on these tasks are 0.27 for Gaussian data (averaged over the 100 simulated networks) and
0.2 for non-linear data.

For Gaussian data (Figure 22a), DPM, reg-DPM, pcor, reg-pcor and nd perform best.
All methods consistently get worse as noise increases until they almost reach the expected
average AUPRC (0.27). Note that all methods start from various heights but all follow
each other down, i.e. seem equally sensitive to noise.

For non-linear data (Figure 22b), mi is best for very small amounts of noise (here up
to σ = 0.5). DPM and reg-DPM take over for small amounts of noise (up to σ = 4), and
finally arac for large amounts of noise. Note that, below arac and mi, DPM and reg-DPM
are above all other methods for large amounts of noise. Again, all curves go down around
the same amount of noise, here σ = 4, and seem to follow each other down except for arac
which decreases more slowly and for pmi which decreases more quickly. pcor, reg-pcor and
pmi improve before they get worse, perhaps because relationships can appear more linear
with the right amount of noise. When increasing the number of samples to 500 (Figure
23b), DPM and reg-DPM consistently perform better than mi but stay below arac for
large amounts of noise. Note that, even with large amounts of noise, all methods seem to
stabilise above random performance (0.2) except for pmi. ROC performance is reported
in Figures 22c and 22d, and show similar trends. Results using 500 samples can be found
in Figure 23 and show a similar hierarchy.

In conclusion, DPM and reg-DPM are methods of choice for small amounts of noise,
but do not perform as well as arac for large amounts of noise on non-linear data. However
mi and arac do not perform well on Gaussian data, while DPM and reg-DPM are reliable
on both types of data.
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(a) Evolution of AUPRCs, Gaussian data. The
expected AUPRC on this task is 0.27.
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ulated using the network H in Main Document
Figure 1. The expected AUPRC curve on this
task is 0.2.
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(d) Evolution of AUROCCs, non-linear data
simulated using the network H in Main Docu-
ment Figure 1.

Figure 22: Effect of noise on performance with 150 samples. The plot shows
the evolution of the average performance as noise increases over 100 replicates with 150
samples per replicate. Each replicate contains additive Gaussian noise ε N(0, σ2).
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We have run the same set of experiments as in Figure 22 but with 500 samples. Results
are shown in Figure 23 and provide a similar message, unless discussed in Main Document.
The expected AUPRC on this task is 0.29 for Gaussian data and 0.2 for non-linear data.
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(b) Evolution of AUPRCs, non-linear data sim-
ulated using the network H in Main Document
Figure 1. The expected AUPRC curve on this
task is 0.2.
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(d) Evolution of AUROCCs, non-linear data
simulated using the network H in Figure 1 in
Main Document.

Figure 23: Effect of noise on performance with 500 samples. The plot shows
the evolution of the average performance as noise increases over 100 replicates with 500
samples per replicate. Each replicate contains additive Gaussian noise ε N(0, σ2).
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15 Differences between DPM and pdcor

The experiments presented in Main Document show that, though similar in essence, pdcor
and DPM produce different results. To understand better where the difference may come
from, we deconstruct our method and compare each stage with pdcor using Spearman
correlation between the respective scores. The intermediate stages are:

• merged, U-centered: DPM with distance covariance as defined in [15] and all control
variables merged as in [15], this should be equivalent to pdcor.

• merged, U-centered+diag: DPM with distance covariance as defined in [15] but
also taking the diagonal of distance matrices into account, and all control variables
merged as in [15].

• merged, D-centered: DPM with distance covariance as defined in [14] and all control
variables merged as in [15].

• split, U-centered: DPM with distance covariance as defined in [15] and control vari-
ables separated.

• split, U-centered+diag: DPM with distance covariance as defined in [15] but also
taking the diagonal of distance matrices into account, and control variables sepa-
rated.

Reminder: D-centered vs U-centered. Let us assume we are computing the
sample distance correlation for two random variables X and Y with n given samples
Xi, Yi, i = 1, ..., n. The entries of the distance matrices A0 and B0 are obtained using
a0ij = ‖Xi −Xj‖2 and b0ij = ‖Yi − Yj‖2.

• D-centered [14]. The D-centered distance matrices A and B are obtained from A0

and B0 using aij = a0ij −
1

n

n∑
k=1

a0ik −
1

n

n∑
k=1

a0kj +
1

n2

n∑
k,l=1

a0kl. The sample distance

covariance is then defined as the square root of dcov2 (X,Y ) =
1

n2

n∑
i,j=1

aijbij .

• U-centered [15]. The U-centered distance matrices Ã and B̃ are obtained from

A0 and B0 using ãij = a0ij −
1

n− 2

n∑
k=1

a0ik −
1

n− 2

n∑
k=1

a0kj +
1

(n− 1)(n− 2)

n∑
i,j=1

a0ij .

The sample distance covariance is then defined as the square root of dcov2 (X,Y ) =
1

n(n− 3)

∑
i 6=j

ãij b̃ij . Note the missing diagonal.
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Figure 24 shows the Spearman correlation coefficients between the results of pdcor and
various stages of DPM, for linear and non-linear with low sample size (left), for linear and
non-linear data with high sample size (center) and for DREAM data (right).

(a) 200 samples, Gaussian data, 10 
nodes networks.  

(c) DREAM3 (Ecoli1) wild-type and 
null-mutant data, 10 nodes 
networks, 11 samples.

 (d) 200 samples, non-linear data.     (e) 10 samples, non-linear data.
 

(b) 10 samples, Gaussian data, 10 
nodes networks.

(f) DREAM4 (1) wild-type and knockout 
data, 10 nodes networks, 11 samples.
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Figure 24: From pdcor to DPM. The plots show the average Spearman correlation co-
efficients between the results of pdcor and various stages of DPM. (a, d): high sample
size data. Results averaged over 100 replicates with 200 samples per replicate. Merging
control variables together when computing the distance matrices makes the most differ-
ence. (b, e): low sample size data. Results averaged over 100 replicates with 10
samples per replicate. The normalization has a strong impact too. (c, f): DREAM
data. The use of the diagonal in the distance matrices has a strong impact.

Coefficients are high, which is to be expected, except for DREAM data where results tend
to vary more across methods because of the low number of samples. Note that in these
cases, DPM and reg-DPM do generally better than pdcor. As anticipated, pdcor and
”DPM merged, U centered” have a full correlation. All other variations differ. Interest-
ingly, these differences depend on the situation.

When sample size is large (left), merging control variables together when computing
the distance matrices makes the most difference. The variations can practically be orga-
nized between ”merged” and ”split” methods. When sample size is low however (center),
both the merging and the use of the diagonal make a clear difference. DREAM data (right)
is interesting, as it seems that the use of the diagonal in the distance matrices when com-
puting the dot products makes the largest difference. The variations can practically be
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organized between ”use diagonal” and ”do not use diagonal” methods. Perhaps because
the signal in the off-diagonal elements in DREAM data is very weak. The effect is less
prominent in DREAM4 data.

We investigated in greater depth the unbiased centering. Let us call uDPM the ”split,
U-centered” variant, i.e. DPM with U-centered vectors (excluding the diagonal) instead
of D-centered vectors. Figure 25 shows a comparison of uDPM and DPM for different
types of settings. uDPM performs worse than DPM on low sample sizes and about the
same on large sample sizes (see figures below). In fact, at high sample size, there is barely
any difference between the two, as expected from the theory, and as already observed in
Figure 24.
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(b) Gaussian data, 10 nodes
networks, 100 samples.
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(c) Gaussian data, 10 nodes
networks, 200 samples.
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(d) Gaussian data, 50 nodes
networks, 10 samples.

A
U

P
R

C

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

co
r

pc
or

re
g−

pc
or

dc
or

pd
co

r

uD
PM

DPM

re
g−

DPM

Gaussian data, 50 nodes, 100 samples

(e) Gaussian data, 50 nodes
networks, 100 samples.
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(f) Gaussian data, 50 nodes
networks, 200 samples.
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(g) Non-linear data, 10 sam-
ples.
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(h) Non-linear data, 100 sam-
ples.
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Figure 25: Average AUPRCs on simulated data. The plots show the AUPRCs
(averaged over 100 replicates) of a few selected methods for the reconstruction of Gaussian
networks for the first two rows, and of the network H in Main Document Figure 1 for the
last row.
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Figure 26 shows a comparison of uDPM and DPM as sample size varies.
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H in Main Document Figure 1.

Figure 26: Effect of sample size on performance. The plots show the evolution of
the AUPRCs (averaged over 100 replicates) as sample size increases.
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16 Bias in DPM

We generate 2 kinds of networks with 3 variables: one kind with no connections, the
other with two edges, i.e. two direct associations, and a transitive association (the missing
edge). Figure 27 shows (for dcor, udcor, pdcor and DPM) the distributions of scores for
non-edges in the left column, for transitive associations in the middle column, and for
direct associations in the right column. All experiments are based on 10 replicates, and
the various rows show results for various sample sizes. Ideally, scores should be around 0
in both the left and middle columns.
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Figure 27: Distribution of scores for pdcor and DPM on 3-nodes Gaussian
networks for different edge types and sample sizes. The set of scores is obtained by
concatenating 10 realisations of the networks. Top to bottom: increasing sample size.
Left: no association (3-nodes network with no edges). Middle: transitive or indirect
associations. Right: direct associations.

For all methods, the bias reduces as the number of samples grows, with a bias close to
0 for udcor and pdcor. While the bias in dcor is rather large, note that the bias in DPM
is much smaller, i.e. it does not inherit the bias of dcor.
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Interestingly, the mode bias of DPM does not change much between non-edges and
transitive associations, which suggests that transitive associations are indeed recognised
as non-edges. In contrast, the mode score of pdcor for transitive associations is notably
higher than for non-edges, to the level of DPM’s bias, which indicates that pdcor strug-
gles more to discard transitive associations. This is consistent with our results in Main
Document Figure 4.

It is worth noting that, for such 3-nodes networks, the conditioning is only on one input
variable for both pdcor and DPM, so the difference between the two methods reduces to
producing the double-centered vectors with udcor (for pdcor) or dcor (for DPM). In Fig-
ures 27(h,i,k,l), the dcores distributions for pdcor and DPM overlap, indicating that when
enough samples are provided, using dcor or ucor makes very little numerical difference to
the scores assigned to associations and to indirect associations.

Figure 28 shows the distributions of scores for dcor and udcor (left column) and for
pdcor and DPM (right column) for 10-nodes Gaussian networks (top) and our non-linear
network (bottom), based on 30 samples and 10 replicates. The distributions are split
between edges (solid lines) and non-edges, which include indirect associations (dashed
lines). While dcor shows a clear bias, the bias of DPM is much lower, and the distribution
of DPM scores is comparable to pdcor.
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(a) 10-nodes Gaussian networks, dcor and udcor.
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(b) 10-nodes Gaussian networks, pdcor and
DPM.
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(c) Non-linear network H in Main Document
Figure 1, dcor and udcor.
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(d) Non-linear network H in Main Document
Figure 1, pdcor and DPM.

Figure 28: Distribution of scores for different edge types. The set of scores is obtained
by concatenating 10 realisations of the network of 30 samples. Top: 10-nodes Gaussian
networks. Bottom: non-linear network H in Main Document Figure 1. Left: dcor and
udcor. Right: pdcor and DPM.
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17 Runtime

Let d be the number of variables and n the number of samples. The algorithm consists of
3 phases.

• Computing the D-centered matrices takes O(d× n2) operations.

• Computing the distance covariance matrix takes O(n× d2) steps.

• Computing the matrix inversion is of complexity O(d3).

Thus the overall complexity is O(n2 × d+ d3).

Figures 29 and 30 show the running times of several algorithms as sample size, respec-
tively network size, increases. DPM is not the fastest, but it is reasonnable, and it is much
faster than pdcor.

If speed is an issue, D-centered matrices can now be computed in O(d × n log n) [17]
and the partial correlation matrix in O(n × d2) [18]. In general, in bioinformatics, n is
rarely much larger than d and the dominant operation will be the computation of the
partial correlation matrix, so we can do what partial correlation does, and the authors
of FastGGM claim they can deal with 10.000 dimensions in about 20 hours, therefore we
think that DPM is usable in practice.
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Figure 29: Running times of various algorithms for 50 nodes networks as sample
size increases. These running times are averaged over 10 replicates. All algorithms were
run on one CPU only.
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Figure 30: Running times of various algorithms for 50 samples as network size
increases. These running times are averaged over 10 replicates. All algorithms were run
on one CPU only.
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