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Supplementary Material 

In the supplementary material below, we describe how we established our thresholds for occurrence data 

(i.e., represented by binary variables) and read abundance data (i.e., represented by positive continuous 

variables). We then discuss the link between the two threshold types. Finally, we describe the 16S data 

from several microbial communities that we used to characterise prevalence patterns. 

First, we present the notation and decomposition of variance and covariance as a function of OTU co-

occurrence.  

A. Notation and decomposition of variance and covariance 

We consider two OTUs whose abundances are modelled by two random variables, 𝑋𝐴 and 𝑋𝐵  (Tables 1 

a and b). Our threshold is based on presence or absence of OTU, so we created a contingency table 

whose categories are defined by variable presence or absence. 

 𝑋𝐵 = 0 𝑋𝐵 ≠ 0 Total 

𝑋𝐴 = 0 𝑁00 𝑁01 𝑁𝐴̅̅̅̅ = 𝑁 − 𝑁𝐴 

𝑋𝐴 ≠ 0 𝑁10 𝑁11 𝑁𝐴 

Total 𝑁𝐵̅̅ ̅̅ = 𝑁 −𝑁𝐵  𝑁𝐵  𝑁 

Table 1a. Contingency table of the presence/absence of two OTU read-abundance variables 𝑋𝐴 and 𝑋𝐵 where 

the entries are sample counts. 

 𝑋𝐵 = 0 𝑋𝐵 ≠ 0 Total 

𝑋𝐴 = 0 𝑃00 𝑃01 𝑃𝐴̅̅ ̅ = 1 − 𝑃𝐴 

𝑋𝐴 ≠ 0 𝑃10 𝑃11 𝑃𝐴 

Total 𝑃𝐵̅̅ ̅ = 1 − 𝑃𝐵  𝑃𝐵  1 

Table 1b. Contingency table of the presence/absence of two OTU read-abundance variables 𝑋𝐴 and 𝑋𝐵 where 

the entries are proportions. 

𝑁 is the number of microbiota samples; 𝑁00 is the number of co-absences of 𝑋𝐴 and 𝑋𝐵; 𝑁11 is the 

number of co-occurrences of 𝑋𝐴 and 𝑋𝐵; and 𝑃11 = 𝑁11 𝑁⁄  is the proportion of co-occurrences of the 

two OTUs. 𝑃𝐴 = 𝑁𝐴 𝑁⁄  and 𝑃𝐵 = 𝑁𝐵 𝑁⁄  are the marginal probabilities of 𝑋𝐴 and 𝑋𝐵 , respectively (i.e., 

individual OTU prevalence). Since the OTUs are observed at least once,  𝑃𝐴, 𝑃𝐵 ∈ [1 𝑁⁄ , 1]. 

We can calculate the mean and estimated variance of 𝑋𝐴 and 𝑋𝐵  using the non-zero values of 𝑋𝐴 or 𝑋𝐵 . 

Consequently, 𝜇𝑋𝐴 = 𝑃𝐴  𝜇𝑋𝐴| 𝑋𝐴≠0, and  𝜇𝑋𝐵 = 𝑃𝐵   𝜇𝑋𝐵| 𝑋𝐵≠0. 

The estimated variances of 𝑋𝐴 and 𝑋𝐵  can be calculated as follows: 

 𝜎𝑋𝐴
2 = 𝑉𝑎𝑟̂(𝑋𝐴) =

1

𝑁
 ∑ (𝑋𝐴 − 𝜇𝑋𝐴)

2
𝑁 = 𝑃𝐴  (𝜎𝑋𝐴| 𝑋𝐴≠0)

2
+  𝑃𝐴  𝑃𝐴̅̅ ̅  (𝜇𝑋𝐴| 𝑋𝐴≠0)

2
  

𝜎𝑋𝐵
2 = 𝑉𝑎𝑟̂(𝑋𝐵) =

1

𝑁
 ∑ (𝑋𝐵 − 𝜇𝑋𝐵)

2
𝑁 = 𝑃𝐵   (𝜎𝑋𝐵| 𝑋𝐵≠0)

2
+ 𝑃𝐵   𝑃𝐵̅̅ ̅  (𝜇𝑋𝐵| 𝑋𝐵≠0)

2
  

(1) 
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The estimated covariance of 𝑋𝐴 and 𝑋𝐵  can be decomposed based on whether or not 𝑋𝐴 and 𝑋𝐵  co-occur 

(i.e., 𝑋𝐴 and 𝑋𝐵  are non-null or not). If 𝐶𝑜𝑣̂(𝑋𝐴 , 𝑋𝐵) =  𝜇𝑋𝐴×𝑋𝐵 − 𝜇𝑋𝐴 × 𝜇𝑋𝐵 , then 

 

𝐶𝑜𝑣̂(𝑋𝐴, 𝑋𝐵) = [𝑃11 𝐶𝑜𝑣̂ (𝑋𝐴 , 𝑋𝐵)| 𝑋𝐴 ,𝑋𝐵≠0]
⏞                

"𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒𝑙𝑦 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑎𝑡𝑖𝑣𝑒" 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

 

+[ 𝑃11 (𝜇𝑋𝐴| 𝑋𝐴 ,𝑋𝐵≠0 × 𝜇𝑋𝐵| 𝑋𝐴 ,𝑋𝐵≠0) − (𝜇𝑋𝐴 × 𝜇𝑋𝐵)]⏟                                  
"𝑞𝑢𝑎𝑙𝑖𝑡𝑎𝑡𝑖𝑣𝑒" 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

 (2) 

"Exclusively quantitative" covariance 

When the data are reduced into binary variables, 𝐶𝑜𝑣̂ (𝑋𝐴, 𝑋𝐵)| 𝑋𝐴,𝑋𝐵≠0 = 0 because {𝑋𝐴| 𝑋𝐴, 𝑋𝐵 ≠ 0} 

and {𝑋𝐵| 𝑋𝐴, 𝑋𝐵 ≠ 0} are constants. Then [𝑃11 𝐶𝑜𝑣̂ (𝑋𝐴 , 𝑋𝐵)| 𝑋𝐴 ,𝑋𝐵≠0] is part of the covariance of 𝑋𝐴 

and 𝑋𝐵  only because of the quantitative aspect of data. 

"Qualitative" covariance 

The second part of the covariance [𝑃11 (𝜇𝑋𝐴| 𝑋𝐴 ,𝑋𝐵≠0 × 𝜇𝑋𝐵| 𝑋𝐴,𝑋𝐵≠0) − (𝜇𝑋𝐴 × 𝜇𝑋𝐵)] is the 

difference between the mean product for the whole population and the mean product for the co-occurring 

elements only. Consequently, it can be explained by OTU co-occurrences (qualitative in nature). 

When the data are reduced into binary variables (based on equations (1) and (2)): 

𝐶𝑜𝑣̂(𝑋𝐴 , 𝑋𝐵) = 𝑃11 (𝜇𝑋𝐴| 𝑋𝐴 ,𝑋𝐵≠0 × 𝜇𝑋𝐵| 𝑋𝐴 ,𝑋𝐵≠0) − (𝜇𝑋𝐴 × 𝜇𝑋𝐵) = 𝑃11 − 𝑃𝐴 𝑃𝐵  

𝜎𝑋𝐴
2 = 𝑃𝐴  𝜎𝑋𝐴≠0

2  +   𝑃𝐴  (1 − 𝑃𝐴)  𝜇𝑋𝐴≠0
2 = 𝑃𝐴  𝑃𝐴̅̅ ̅  and 𝜎𝑋𝐵

2 = 𝑃𝐵   𝑃𝐵̅̅ ̅. 

Therefore, the correlation of 𝑋𝐴 and 𝑋𝐵 , 𝑐𝑜𝑟(𝑋𝐴 , 𝑋𝐵) =
𝐶𝑜𝑣̂(𝑋𝐴 ,𝑋𝐵)

𝜎𝑋𝐴 𝜎𝑋𝐵  
, will depend only on 𝑃11, 𝑃𝐴, and 𝑃𝐵. 

B. Threshold method for binary data 

Our method is based on the properties of discrete statistics. As binary data are discrete data, statistical 

tests have discrete distributions, as do p-values. Moreover, the minimum observable p-value for fixed 

marginal values can be higher than the alpha level (usually set to 5%), which means the test yields 

useless results [1,2]. In other words, for two OTUs with fixed prevalence, if all the possible values of 

an association index fall within the expected confidence interval, the association is simply not testable. 

Below, we will illustrate how OTU prevalence can thus shape potential correlations. 

In this section, we detail how we developed our threshold method for binary data (i.e., OTU occurrence). 

First, we describe the association index used and show that it is bounded. Second, we present how we 

defined its testability. Third, we examine the consequences of our threshold method for network 

inference. Fourth, we present the testability limits on Fisher's exact test as a function of prevalence. 

1. Measure of associations for binary data 

The combinatorics that ensue from the hypergeometric law provide only simulated solutions for 

determining the testability of associations. In contrast, the Phi coefficient [3] can be used to establish 

equations for exploring association testability and give an analytical solution. The Phi coefficient is 

mathematically related to the common chi-square test. Since Fisher's exact test and Pearson's chi-square 
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test are asymptotically equivalent, we used the Phi coefficient as the basis for our threshold method. 

Moreover, we showed that the testability results were equivalent for both tests (see section A.7 and S1 

Fig 3). Phi is also equivalent to the Pearson correlation coefficient in situations with binary data (coded 

by 0 and 1), a property that was helpful when extending our threshold method to quantitative situations 

(see sections 3 and 4). 

Consider two random binary variables, 𝑋𝐴̃ and 𝑋𝐵̃ , which represent the presence or absence of two 

OTUs. Working from Table 1, the Phi coefficient for the association between 𝑋𝐴̃ and 𝑋𝐵̃  is calculated 

as follows: 

 𝜙 =
𝑃11  − 𝑃𝐴𝑃𝐵

√𝑃𝐴𝑃𝐴̅̅ ̅̅ 𝑃𝐵𝑃𝐵̅̅ ̅̅
  if  𝑃𝐴, 𝑃𝐵 ∈ ]0, 1[ ,  and 𝜙 = 0 if not (3) 

2. Bounds of the Phi coefficient as a function of prevalence 

Based on the Boole–Fréchet inequality for logical conjunction, for the marginal probabilities 𝑃𝐴 , 𝑃𝐵 ∈

]0, 1[, it follows that 

 𝑚𝑎𝑥(0, 𝑃𝐴 + 𝑃𝐵 − 1)  ≤  𝑃11  ≤  𝑚𝑖𝑛(𝑃𝐴 , 𝑃𝐵) (4) 

Given equations (3) and (4) and because 𝜙 is a continuous and monotonic function of 𝑃11: 

 −1 ≤  𝜙𝑚𝑖𝑛  ≤  𝜙 ≤  𝜙𝑚𝑎𝑥  ≤  +1 (5) 

where 

 
𝜙𝑚𝑖𝑛 = 𝑚𝑎𝑥 (−(

𝑃𝐴 𝑃𝐵

𝑃𝐴̅̅ ̅̅   𝑃𝐵̅̅ ̅̅ ̅
)
1/2
, − (

𝑃𝐴̅̅ ̅̅   𝑃𝐵̅̅ ̅̅ ̅

𝑃𝐴 𝑃𝐵
)
1/2

)  (5a) 

 
𝜙𝑚𝑎𝑥 = 𝑚𝑖𝑛 ((

𝑃𝐴 𝑃𝐵̅̅ ̅̅

𝑃𝐵  𝑃𝐴̅̅ ̅̅
)
1/2

, (
𝑃𝐵  𝑃𝐴̅̅ ̅̅

𝑃𝐴 𝑃𝐵̅̅ ̅̅
)
1/2

) (5b) 

[4] 

Therefore, 𝜙 is bounded and 𝜙𝑚𝑖𝑛 and 𝜙𝑚𝑎𝑥 depend exclusively on 𝑃𝐴 and 𝑃𝐵. 

3. Distribution of the Phi coefficient under the null hypothesis of independence 

Under the null hypothesis (𝐻0) that the occurrences of two OTUs, 𝑋𝐴̃ and 𝑋𝐵̃ , are independent, 𝜙 can 

be determined thanks to the Pearson's chi-squared test: 𝜙2 =  𝜒2 𝑁⁄ , where 𝑁 is the total number of 

observations and 𝜒2 is the chi-squared statistic for a 2x2 contingency table whose data follow a chi-

squared distribution and for which there is 1 degree of freedom [5]. 

Since we know the distribution of 𝜙, we can obtain the confidence interval at an alpha level of α. The 

confidence interval of a 𝜒1
2 distribution is 𝐶𝐼 1−α (𝜒1

2) = [0, 𝑏], where 𝑏 is defined by 𝑃(𝜒1
2 > 𝑏) = α 

(e.g., for α = 5%, 𝑏 ≈ 1.962 ≈ 3.84). 

The confidence interval of 𝜙 at an alpha level of α can be calculated as follows: 

 𝐶𝐼 1−α (𝜙) = [−√𝐾,√𝐾 ], where 𝐾 = 𝑏 𝑁⁄  (6) 
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4. Determining the testability of occurrence-based associations 

We now examine the testability of the Phi coefficients calculated from pairs of OTU prevalence values. 

We do so by determining if the extrema of Phi occur within the confidence interval. There are two ways 

in which we may have trouble detecting significant associations: 

A) If 𝜙𝑚𝑖𝑛 > − √𝐾, then we will not be able to detect a significant negative association. 

B) If 𝜙𝑚𝑎𝑥 < √𝐾, then we will not be able to detect a significant positive association. 

As 𝜙𝑚𝑖𝑛 and 𝜙𝑚𝑎𝑥  depend exclusively on 𝑃𝐴 and 𝑃𝐵 , we now consider the conditions under which 

𝑃𝐴 and 𝑃𝐵  adopt problematic values. 

We can split the first case (A) in two subcases because 𝜙𝑚𝑖𝑛 can have two different values depending 

on the specific values of 𝑃𝐴 and 𝑃𝐵: 

A1) If 𝑃𝐴 + 𝑃𝐵 < 1, then 𝑚𝑎𝑥(0,  𝑃𝐴 + 𝑃𝐵 − 1) = 0. Based on equations (3), (4), and (5a), 

𝜙𝑚𝑖𝑛 = −(
𝑃𝐴 𝑃𝐵
𝑃𝐴̅̅ ̅  𝑃𝐵̅̅ ̅̅

)
1/2

 

A2) If 𝑃𝐴 + 𝑃𝐵 ≥ 1, 𝑚𝑎𝑥(0,  𝑃𝐴 + 𝑃𝐵 − 1) = 𝑃𝐴 + 𝑃𝐵 − 1. Based on equations (3), (4), (5a), 

𝜙𝑚𝑖𝑛 = −(
𝑃𝐴̅̅ ̅  𝑃𝐵̅̅ ̅̅

𝑃𝐴 𝑃𝐵
)

1/2

 

We can then resolve the inequation 𝜙𝑚𝑖𝑛 > − √𝐾. 

A1) For 𝑃𝐴 + 𝑃𝐵 < 1,  𝜙𝑚𝑖𝑛 > − √𝐾     
⇔   (

𝑃𝐴 𝑃𝐵

𝑃𝐴̅̅ ̅̅   𝑃𝐵̅̅ ̅̅ ̅
)

1

2
< √𝐾    

   
⇔   

𝑃𝐴 𝑃𝐵
(1−𝑃𝐴)(1−𝑃𝐵)

< 𝐾   (all variables are positive) 

 
   
⇔   𝑃𝐵 <

1−𝑃𝐴

1+
1−𝐾

𝐾
𝑃𝐴

 
(7) 

A2) For 𝑃𝐴 + 𝑃𝐵 ≥ 1,  𝜙𝑚𝑖𝑛 > − √𝐾    
⇔   

(1−𝑃𝐴)(1−𝑃𝐵)

𝑃𝐴 𝑃𝐵
< 𝐾  

 
   
⇔   𝑃𝐵 >

−1+𝑃𝐴

−1+(1−𝐾)𝑃𝐴
  (8) 

If inequations (7) or (8) are true, a negative association cannot be detected. 

The second case (B) can be similarly split up because 𝜙𝑚𝑎𝑥 can also have two values: 

B1) If 𝑃𝐴 ≤ 𝑃𝐵 , then 𝑚𝑖𝑛(𝑃𝐴 ,  𝑃𝐵) = 𝑃𝐴. Based on equations (3), (4), and (5b),  

𝜙𝑚𝑎𝑥 = (
𝑃𝐴 𝑃𝐵̅̅ ̅

𝑃𝐵  𝑃𝐴̅̅ ̅
)

1/2

 

B2) If 𝑃𝐴 ≥ 𝑃𝐵 , then 𝑚𝑖𝑛(𝑃𝐴 ,  𝑃𝐵) = 𝑃𝐵 . Based on equations (3), (4), and (5b),  

𝜙𝑚𝑎𝑥 = (
𝑃𝐵  𝑃𝐴̅̅ ̅

𝑃𝐴 𝑃𝐵̅̅ ̅
)

1/2
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We can now solve the inequation 𝜙𝑚𝑎𝑥 < √𝐾. 

B1) If 𝑃𝐴 ≤ 𝑃𝐵 ,  𝜙𝑚𝑎𝑥 < √𝐾    
⇔ 

𝑃𝐴(1−𝑃𝐵)

𝑃𝐵(1−𝑃𝐴)
< 𝐾  

 
 
⇔𝑃𝐵 >

𝑃𝐴

𝐾+(1−𝐾)𝑃𝐴
 (9) 

 

B2) If 𝑃𝐴 ≥ 𝑃𝐵 ,  𝜙𝑚𝑎𝑥 < √𝐾 
 
⇔  

𝑃𝐵(1−𝑃𝐴)

𝑃𝐴(1−𝑃𝐵)
< 𝐾 

 
 
⇔𝑃𝐵 <

𝑃𝐴
1

𝐾
+
𝐾−1

𝐾
𝑃𝐴

  (10) 

If inequations (9) or (10) are true, a positive association cannot be detected. 

Using the four inequations (7), (8), (9), and (10), we can delimit zones within which there is full, partial, 

or no testability. The characteristics of the tests in these zones will be detailed in the introduction to the 

next section. 

For the two OTUs, 𝑃𝐴 and 𝑃𝐵  form a [1/𝑁, 1]2 square (Figure 1 below);  1/𝑁 is the smallest observable 

value. The testability zones in this square can be defined using four border functions that result from the 

inequations:  

 𝐹1(𝑥) =
1−𝑥

1+
1−𝐾

𝐾
𝑥
;   𝐹2(𝑥) =

−1+𝑥

−1+(1−𝐾)𝑥
; 𝐹3(𝑥) =

𝑥

𝐾+(1−𝐾)𝑥
;   𝐹4(𝑥) =

𝑥
1

𝐾
+
𝐾−1

𝐾
𝑥
  (11) 

 

  

Figure 1. The four border functions delimiting testability 

 

Emerging from these border functions are four graph intersections that are defined by:  

 𝐹1(𝑥) = 𝐹3(𝑥) =
1

2
 at 𝑥 =

𝐾

𝐾+1
 

 𝐹2(𝑥) = 𝐹4(𝑥) =
1

2
 at 𝑥 =

1

𝐾+1
       

𝐹2(𝑥) = 𝐹3(𝑥) =
𝐾

𝐾+1
 at 𝑥 =

1

2
 

𝐹1(𝑥) = 𝐹4(𝑥) =
1

𝐾+1
 at 𝑥 =

1

2
 

(12) 

𝑃𝐴 

𝑃𝐵  
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5. Proportion of associations in each testability zone 

The zones defined by the border functions (11) contain different proportions of associations that can be 

categorised as fully testable, partially testable, or non-testable using our threshold method. The first 

zone, 𝐴𝑏𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙 , contains associations for which both positive and negative correlations can be reliably 

tested. The second zone, 𝐴𝑢𝑛𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙, contains associations for which only positive correlations can be 

reliably tested (subzone 𝐴𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) and for which only negative correlations can be reliably tested 

(subzone 𝐴𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒). Finally, the third zone, 𝐴𝑖𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 , contains associations that cannot be reliably 

tested at all. 

The distribution of prevalence values is treated as identical for all OTUs. Therefore, 𝑃𝐴 and 𝑃𝐵  have the 

same distribution and play symmetrical roles. However, these distribution patterns are not necessarily 

uniform. We examined two types of distributions—the uniform distribution and the truncated power law 

distribution; the latter fit the prevalence patterns of OTUs in real microbiota (see section 5). 

For the uniform distribution of prevalence, the probability density function is 

 

𝑓(𝑥) = {
 
1

1 −
1
𝑁

 =  
𝑁

𝑁 − 1
      𝑖𝑓 

1

𝑁
≤ 𝑥 ≤ 1

 0                                 𝑖𝑓 𝑛𝑜𝑡            

 (13) 

For the truncated power law distribution of prevalence, the probability density function is 

 

𝑓(𝑥) = {
𝐶𝑥𝑘       𝑖𝑓 

1

𝑁
≤ 𝑥 ≤ 1

 0           𝑖𝑓 𝑛𝑜𝑡               
 (14) 

and, following normalization, we arrive at ∫ 𝑓(𝑥) 𝑑𝑥
1
1

𝑁

= 𝐶
[𝑥𝑘+1]

1 𝑁⁄  

1

𝑘+1
= 1, so 𝐶 =

𝑘+1

 1−(
1

𝑁
)
𝑘+1. 

When 𝑘 = 0, we have a uniform distribution with the interval [
1

𝑁
, 1]. 

To computationally define the different zones, analytical formulas can be used in the case of the uniform 

distribution but not in the case of the power law distribution. Consequently, in the latter situation, we 

chose to proceed by numerical integration. Since the current form of the R function integrate (in the 

stats package) does not deal well with the power law, we used a Monte Carlo approach. This consisted 

of generating random prevalence values in accordance with the observed prevalence distribution (see 

section 2.6) and counting how many fell within each of the zones. 

To simplify the zone-defining equations below, we have used the following notation: 

(𝐹1 +):  “𝑦 > 𝐹1(𝑥)”   and   (𝐹1 −):  “𝑦 < 𝐹1(𝑥)” 

and the same notation applies in the cases of 𝐹2, 𝐹3 and 𝐹4.  

∧ denotes the logical conjunctions.  

From the four inequations (7, 8, 9, 10) and the border function (11), the proportions of associations 

that fall within each zone are determined as follows: 

𝐴𝑏𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙 =∬ 𝑓(𝑥)𝑓(𝑦)
 

{(𝐹1+) ∧ (𝐹4+) ∧ (𝐹2−) ∧ (𝐹3−)}

d𝑥d𝑦 
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𝐴𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 =∬ 𝑓(𝑥)𝑓(𝑦)
 

{(𝐹3−) ∧ (𝐹1−) ∧ (𝐹4+)}

d𝑥d𝑦 +∬ 𝑓(𝑥)𝑓(𝑦)
 

{(𝐹3−) ∧ (𝐹2+) ∧ (𝐹4+)}

d𝑥d𝑦 

𝐴𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 =∬ 𝑓(𝑥)𝑓(𝑦)
 

{(𝐹1+) ∧ (𝐹3+) ∧ (𝐹2−)}

d𝑥d𝑦 +∬ 𝑓(𝑥)𝑓(𝑦)
 

{(𝐹1+) ∧ (𝐹4−) ∧ (𝐹2−)}

d𝑥d𝑦 

𝐴𝑖𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 =∬ 𝑓(𝑥)𝑓(𝑦)
 

{(𝐹3+) ∧ (𝐹1−)}

d𝑥d𝑦 +∬ 𝑓(𝑥)𝑓(𝑦)
 

{(𝐹2+) ∧ (𝐹4−)}

d𝑥d𝑦

+∬ 𝑓(𝑥)𝑓(𝑦)
 

{(𝐹2+) ∧ (𝐹3+)}

d𝑥d𝑦 +∬ 𝑓(𝑥)𝑓(𝑦)
 

{(𝐹1−) ∧ (𝐹4−)}

d𝑥d𝑦 

𝐴𝑢𝑛𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙 = 𝐴𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐴𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒  

𝐴𝑏𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙 + 𝐴𝑢𝑛𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙 + 𝐴𝑖𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 =∬𝑓(𝑥)𝑓(𝑦)
 

 

d𝑥d𝑦 = 1 

6. Defining testability zones using a Monte Carlo method 

To compute Monte Carlo integrations, it is necessary to generate random prevalence values using the 

observed distribution of prevalence. For the uniform distribution, many pseudorandom number 

generators exist. However, for the truncated power law distribution, we had to employ an inverse 

transformation method that is rooted in the following property: 

If 𝑉 follows a power law, then 𝐹(𝑉) = 𝑈 is uniformly distributed (interval of [0,1]) and 𝐹−1(𝑈) = 𝑉. 

We therefore needed to define the inverse cumulative distribution function. Let 𝐹 be the cumulative 

distribution function of the truncated power law distribution as defined in (14). 

If 𝐹(𝑥) = ∫ 𝑓(𝑡) 𝑑𝑡
𝑥
1

𝑁

= 𝐶 ∫ 𝑡𝑘  𝑑𝑡
𝑥
1

𝑁

=
𝐶

𝑘+1
(𝑥𝑘+1 − (

1

𝑁
)
𝑘+1
) =

𝑥𝑘+1−(
1

𝑁
)
𝑘+1

 1−(
1

𝑁
)
𝑘+1 , 

then 𝐹−1(𝑥) = ((1 − (
1

𝑁
)
𝑘+1
)𝑥 + (

1

𝑁
)
𝑘+1
)

1

𝑘+1

. 

We can then generate a power law distribution from a uniform distribution using the following equation: 

 

𝑉 =  ((1 − (
1

𝑁
)
𝑘+1

)𝑈 + (
1

𝑁
)
𝑘+1

)

1
𝑘+1

 (15) 

7. Testability limits on Fisher's exact test 

Co-occurrence networks are commonly reconstructed using the hypergeometric law that underlies 

Fisher's exact test [6–8]. 

From an observed 2x2 contingency table (Table 1), Fisher showed that the probability 𝑃 of obtaining 

such a set was given by the hypergeometric distribution: 
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𝑃 =
(𝑁00+𝑁01  

𝑁00
) + (𝑁10+𝑁11 

𝑁10
)

( 𝑁 
𝑁00+𝑁10

)
=
(𝑁00 +𝑁01)! (𝑁10 + 𝑁11)! (𝑁00 + 𝑁10)! (𝑁01 +𝑁11)!

𝑁00!  𝑁01!  𝑁10!  𝑁11! 𝑁!
 (16) 

where (𝑛
𝑘
) is the binomial coefficient and ! indicates the factorial. 

This equation can be written according to 𝑁𝐴, 𝑁𝐵 , 𝑁 and 𝑁11: 

 

𝑃 =
( 𝑁−𝑁𝐴
𝑁11+(𝑁−𝑁𝐴)+(𝑁−𝑁𝐵)−𝑁

) + ( 𝑁𝐴
𝑁−𝑁11−(𝑁−𝑁𝐴)

)

( 𝑁 
𝑁−𝑁𝐵

)
=
( 𝑁−𝑁𝐴
𝑁𝐵−𝑁11

) + (𝑁𝐴
𝑁11
)

(𝑁 
𝑁𝐵
)

 (17) 

Based on the Boole–Fréchet inequality for logical conjunction, for the marginal counts 𝑁𝐴 , 𝑁𝐵 ∈

]0,𝑁[, it follows that 

 𝑚𝑎𝑥(0, 𝑁𝐴 + 𝑁𝐵 −N)  ≤  𝑁11  ≤  𝑚𝑖𝑛(𝑁𝐴, 𝑁𝐵) (18) 

We have two extreme situations: 

a) Observe the minimum number of co-occurrences, 𝑁11 = 𝑚𝑖𝑛(𝑁11) = 𝑚𝑎𝑥(0,  𝑁𝐴 + 𝑁𝐵 − N) 

b) Observe the maximum number of co-occurrences, 𝑁11 = 𝑚𝑎𝑥(𝑁11) = 𝑚𝑖𝑛(𝑁𝐴 ,  𝑁𝐵) 

We can calculate the probability 𝑃 associated with these two situations a) and b). A bilateral test can 

also be performed. As in the fisher.test function of R, the p-value is computed by summing the 

probability for all table with probabilities less than or equal to that of the observed table. 

For two given OTUs with prevalence 𝑃𝐴 =
𝑁𝐴

𝑁
 and 𝑃𝐵 =

𝑁𝐵

𝑁
, we have 4 possibilities in the testability 

limits on Fisher's exact test: 

• If the p-values associated with the two configurations a) and b) are lower than the alpha level 

(5%), the two extremes situations a) and b) correspond to significant associations. We have no 

limit on the test. 

• If the p-value associated with the configuration a) is greater than the alpha level, then we will 

not be able to detect a significant negative association. 

• If the p-value associated with the configuration b) is greater than the alpha level, then we will 

not be able to detect a significant positive association. 

• If the p-values associated with the configurations a) and b) are greater than the alpha level, 

then we will not be able to detect a significant positive or negative association. 

C. Threshold method for quantitative data 

In this section, we detail how we developed our threshold method for quantitative data (i.e., OTU read 

abundance). First, we introduce our system of notation and the primary elements of our proof. Second, 

we present the situation, in which correlations are bounded by an excess of zeroes, and describe the 

minimum correlation value. Third, we show how we defined association testability. Finally, we examine 

the consequences of our threshold method for network inference. 
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1. Introduction 

In this section, 𝑋𝐴 and 𝑋𝐵  are two random variables that represent quantitative data. The Pearson 

correlation coefficient [9] is used to characterise the pairwise associations in OTU read abundance. We 

were specifically interested in understanding how the number of zeroes in the data could influence the 

correlation coefficient. 

We use same notations as in section 1. 𝑁𝐴̅̅̅̅  and 𝑁𝐵̅̅ ̅̅  represent the number of zeros associated with 𝑋𝐴 and 

𝑋𝐵 , respectively. 𝑁00 is the number of co-absences of 𝑋𝐴 and 𝑋𝐵 , and 𝑁11 is the number of co-

occurrences. 

Based on Table 1 and the Boole–Fréchet inequalities, we can deduce the following: 

 𝑚𝑎𝑥 (0; 𝑁𝐴̅̅̅̅ + 𝑁𝐵̅̅ ̅̅ − 𝑁) ≤ 𝑁00 ≤ 𝑚𝑖𝑛(𝑁𝐴̅̅̅̅ ; 𝑁𝐵̅̅ ̅̅ ) (19) 

 𝑁11 = 𝑁 −𝑁𝐴̅̅̅̅ − 𝑁𝐵̅̅ ̅̅ + 𝑁00 (20) 

 𝑁11  ≥  𝑚𝑎𝑥(𝑁 −𝑁𝐴̅̅̅̅ − 𝑁𝐵̅̅ ̅̅ ;  0) (21) 

For pairs of 𝑁𝐴̅̅̅̅  and 𝑁𝐵̅̅ ̅̅ , we distinguish two cases: 

i. 𝑵𝑨̅̅ ̅̅ + 𝑵𝑩̅̅ ̅̅ ≤ 𝑵 

The number of zeros is sufficiently low such that there are no raw restrictions on possible 

correlations. Indeed, it is simple to build two non-restricted correlations that approach infimum 

−1 and supremum +1: 

 

(
𝑋𝐴
𝑋𝐵
) = (

  0, 0, … , 0,   ⏞        
𝑁𝐴̅̅ ̅̅

𝑎, 𝑎, … , 𝑎,⏞      
𝑁11

2𝑎, 2𝑎, … ,2𝑎
2𝑎, 2𝑎,… ,2𝑎, 𝑎, 𝑎, … , 𝑎,   0, 0, … , 0  ⏟        

𝑁𝐵̅̅ ̅̅

)  where 𝑎 > 0 

In this case, the correlation coefficient is 𝑟 = −1. 

 

(
𝑋𝐴
𝑋𝐵
) = (

0,0,… ,0,     0, 0,… ,0,⏞            
𝑁𝐴̅̅ ̅̅

𝑎, 𝑎, … , 𝑎⏞      
𝑁11

0,0, … ,0,⏟    
𝑁𝐵̅̅ ̅̅

   ℎ, ℎ, … , ℎ, 𝑎, 𝑎, … , 𝑎
) where 𝑎, ℎ > 0 

The correlation tends toward the supremum, 𝑟
ℎ
 
→0
→  +1 or 𝑟

𝑎
 
→+∞
→    +1. 

 

ii. 𝑵𝑨̅̅ ̅̅ + 𝑵𝑩̅̅ ̅̅ > 𝑵 

Based on equations (19) and (21), 𝑁00 ≥ 𝑁𝐴̅̅̅̅ + 𝑁𝐵̅̅ ̅̅ − 𝑁 > 0 and 𝑁11 ≥ 0. Consequently, 𝑁11 can 

equal zero, meaning that there are enough zeros associated with 𝑋𝐴 and 𝑋𝐵  that 𝑋𝐴 and 𝑋𝐵  may 

not co-occur. In this situation, information on quantitative correlations is degraded. We can prove 

that 𝑟, the Pearson correlation coefficient, has a minimum, 𝑟𝑚𝑖𝑛, that is different from −1: 

𝑟𝑚𝑖𝑛 ≤ 𝑟 ≤ 1, 

where 𝑟𝑚𝑖𝑛 = −( 
𝑁𝐴  𝑁𝐵

𝑁𝐴̅̅ ̅̅  𝑁𝐵̅̅ ̅̅
 )
1
2⁄
> −1 
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2. Determining the lower bound of the Pearson correlation coefficient 

Given 𝑁𝐴̅̅̅̅  and 𝑁𝐵̅̅ ̅̅ , we wished to determine the minimum possible correlation between 𝑋𝐴 and 𝑋𝐵 . We 

highlight that a lower bound of the Pearson correlation exists between two positive variables and prove 

that it can be reached under certain conditions. 

For the association between 𝑋𝐴 and 𝑋𝐵 , the Pearson correlation coefficient is calculated as follows: 

𝑟 =
𝐶𝑜𝑣̂(𝑋𝐴 , 𝑋𝐵)

𝜎(𝑋𝐴) 𝜎(𝑋𝐵)
=
𝜇(𝑋𝐴𝑋𝐵) − 𝜇(𝑋𝐴) 𝜇(𝑋𝐵)

𝜎(𝑋𝐴) 𝜎(𝑋𝐵)
 

 

If 𝑋𝐴 , 𝑋𝐵 ≥ 0, then 𝜇(𝑋𝐴𝑋𝐵) ≥ 0 and 

 
𝑟 ≥  

−𝜇(𝑋𝐴) 𝜇(𝑋𝐵)

𝜎(𝑋𝐴) 𝜎(𝑋𝐵)
 

where equality holds if and only if 𝜇(𝑋1𝑋2) = 0 

(22) 

Consequently, the mean of 𝑋𝐴𝑋𝐵  is null if and only if there are no co-occurrences. In other words, 

 𝜇(𝑋𝐴𝑋𝐵) = 0 if and only if  𝑁11 = 0 (23) 

- If 𝜇(𝑋1𝑋2) = 0, then ∑𝑋1𝑋2 = 0. Each element of the sum are positive then ∑𝑋1𝑋2 = 0 imply 

that all elements are null and there are no co-occurrences (i.e., 𝑁11 = 0).  

- If there are no co-occurrences, then 𝑋1𝑋2 = 0 and 𝜇(𝑋1𝑋2) = 0. 

From equations (22) and (23), we can conclude that 

 
−
 𝜇(𝑋𝐴) 𝜇(𝑋𝐵)

𝜎(𝑋𝐴) 𝜎(𝑋𝐵)
≤ 𝑟 

where equality holds if and only if 𝑁11 = 0 

(24) 

 

Moreover, if 𝑁𝐴̅̅̅̅ + 𝑁𝐵̅̅ ̅̅ ≤ 𝑁, then, from equation (21), we know that 𝑁11 ≠ 0. Therefore, 

 𝑁11 = 0⟹ 𝑁𝐴̅̅̅̅ + 𝑁𝐵̅̅ ̅̅ > 𝑁 (25) 

 

We now want to control −
 𝜇(𝑋𝐴) 𝜇(𝑋𝐵)

𝜎(𝑋𝐴) 𝜎(𝑋𝐵)
 and find its minimum. We therefore maximise 

𝜇(𝑋𝐴)

𝜎(𝑋𝐴)
 and 

𝜇(𝑋𝐵)

𝜎(𝑋𝐵)
 

separately. 𝜇/𝜎 corresponds to the inverse coefficient of variation. 

3. Maximising the inverse coefficient of variation 

Below, we illustrate how to maximise the inverse coefficient of variation for 𝑋𝐴. We will show that 

𝜇(𝑋𝐴)

𝜎(𝑋𝐴)
 ≤ √

𝑁𝐴

𝑁𝐴̅̅ ̅̅
 . 

We can express variance using the König–Huygens formula: 

𝑉𝑎𝑟̂(𝑋𝐴) = 𝜇(𝑋𝐴
2) − 𝜇(𝑋𝐴)

2 

If 𝜇(𝑋𝐴) ≠ 0, then 
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𝑉𝑎𝑟̂(𝑋𝐴)

𝜇(𝑋𝐴)
2 =

𝜇(𝑋𝐴
2)

𝜇(𝑋𝐴)
2 − 1   and    

𝑉𝑎𝑟̂(𝑋𝐴)

𝜇(𝑋𝐴)
2 =

1

𝑁
∑ 𝑋𝐴𝑖

2𝑁
𝑖=1

(
1

𝑁
∑ 𝑋𝐴𝑖
𝑁
𝑖=1 )

2 − 1, which means 

 𝑉𝑎𝑟̂(𝑋𝐴)

𝜇(𝑋𝐴)2
= 𝑁

∑ 𝑋𝐴𝑖
2𝑁

𝑖=1

(∑ 𝑋𝐴𝑖
𝑁
𝑖=1 )

2 − 1 (26) 

 

We are now interested in 
∑ 𝑋𝐴𝑖

2𝑁
𝑖=1

(∑ 𝑋𝐴𝑖
𝑁
𝑖=1 )

2, and we will show that 
∑ 𝑋𝐴𝑖

2𝑁
𝑖=1

(∑ 𝑋𝐴𝑖
𝑁
𝑖=1 )

2 ≥
1

𝑁𝐴
. 

Let 𝑉,𝑊 be two vectors of ℝ𝑁. As per the Cauchy–Schwarz inequality, 

(∑𝑉𝑖 ×𝑊𝑖

𝑁

𝑖=1

)

2

≤∑𝑉𝑖
2

𝑁

𝑖=1

∑𝑊𝑖
2

𝑁

𝑖=1

 

where equality holds if and only if 𝑉 and 𝑊 are collinear. 

Let 𝑉 = 𝑌 be the vector of non-null elements of 𝑋𝐴 (for 𝑌, vector size is equal to 𝑁𝐴); 𝑊 = 1𝑁𝐴 , a 

constant vector of size 𝑁𝐴. In this case, the Cauchy–Schwarz inequality becomes the following: 

(∑𝑌𝑖

𝑁𝐴

𝑖=1

× 1)

2

≤∑𝑌𝑖
2

𝑁𝐴

𝑖=1

∑12

𝑁𝐴

𝑖=1

 

where equality holds if and only if 𝑌 = 𝜆 × 1𝑁𝐴 , where 𝜆 > 0 (i.e., 𝑌 is a constant vector).  

As  ∑ 𝑌𝑖 = ∑ 𝑋𝐴𝑖
𝑁
𝑖=1

𝑁𝐴
𝑖=1  and ∑ 𝑌𝑖

2 = ∑ 𝑋𝐴𝑖
2𝑁

𝑖=1
𝑁𝐴
𝑖=1 , 

(∑ 𝑋𝐴𝑖
𝑁
𝑖=1 )

2
≤ 𝑁𝐴 ∑ 𝑋𝐴𝑖

2𝑁
𝑖=1 , then 

 ∑ 𝑋𝐴𝑖
2𝑁

𝑖=1

(∑ 𝑋𝐴𝑖
𝑁
𝑖=1 )

2 ≥
1

𝑁𝐴
 

where equality holds if and only if the non-null elements of 𝑋𝐴 are constant. 

(27) 

 

Based on equations (26) and (27), we now observe that  

𝑉𝑎𝑟̂(𝑋𝐴)

𝜇(𝑋𝐴)
2 ≥

𝑁

𝑁𝐴
− 1  

 
⇔  

𝑉𝑎𝑟̂(𝑋𝐴)

𝜇(𝑋𝐴)
2 ≥

𝑁 − 𝑁𝐴
𝑁𝐴

  
 
⇔  

√𝜇(𝑋𝐴)
2

√𝑉𝑎𝑟̂(𝑋𝐴)
≤

√𝑁𝐴

√𝑁 − 𝑁𝐴
 

Finally, 

 𝜇(𝑋𝐴)

𝜎(𝑋𝐴)
≤
√𝑁𝐴

√𝑁𝐴̅̅̅̅
 

where equality holds if and only if the non-null elements of 𝑋𝐴 are constant. 

(28) 
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The maximum occurs where 
𝜇(𝑋𝐴)

𝜎(𝑋𝐴)
 is √

𝑁𝐴

𝑁𝐴̅̅ ̅̅
. 

The approach is equivalent for 𝑋𝐵 , so we can conclude that  

 𝜇(𝑋𝐵)

𝜎(𝑋𝐵)
≤
√𝑁𝐵

√𝑁𝐵̅̅ ̅̅
 

where equality holds if and only if the non-null elements of 𝑋𝐵 are constant. 

(29) 

4. Determining the minimum Pearson correlation coefficient when there are 

many zeros 

Based on equations (24), (28), and (29), 

 

−√
𝑁𝐴𝑁𝐵
𝑁𝐴̅̅̅̅  𝑁𝐵̅̅ ̅̅

 ≤  𝑟 

where equality holds if and only if 𝑁11 = 0 and the non-null elements of 𝑋𝐴 and 

𝑋𝐵  are constant. 

(30) 

It therefore stands to reason that 

 
if 𝑁𝐴̅̅̅̅ + 𝑁𝐵̅̅ ̅̅ > 𝑁, then −√

𝑁𝐴𝑁𝐵

𝑁𝐴̅̅ ̅̅  𝑁𝐵̅̅ ̅̅
> −1 (31) 

𝑁𝐴  𝑁𝐵

𝑁𝐴̅̅ ̅̅  𝑁𝐵̅̅ ̅̅
=
(𝑁−𝑁𝐴̅̅ ̅̅ )(𝑁−𝑁𝐵̅̅ ̅̅ )

𝑁𝐴̅̅ ̅̅  𝑁𝐵̅̅ ̅̅
=
𝑁(𝑁−(𝑁𝐴̅̅ ̅̅ +𝑁𝐵̅̅ ̅̅ )) + 𝑁𝐴̅̅ ̅̅  𝑁𝐵̅̅ ̅̅

𝑁𝐴̅̅ ̅̅  𝑁𝐵̅̅ ̅̅
=
𝑁(𝑁−(𝑁𝐴̅̅ ̅̅ +𝑁𝐵̅̅ ̅̅ ))

𝑁𝐴̅̅ ̅̅  𝑁𝐵̅̅ ̅̅
+ 1  

If 𝑁𝐴̅̅̅̅ + 𝑁𝐵̅̅ ̅̅ > 𝑁,  𝑁 − (𝑁𝐴̅̅̅̅ + 𝑁𝐵̅̅ ̅̅ ) < 0    and 
𝑁(𝑁−(𝑁𝐴̅̅ ̅̅ +𝑁𝐵̅̅ ̅̅ ))

𝑁𝐴̅̅ ̅̅  𝑁𝐵̅̅ ̅̅
+ 1 < 1 

Therefore, 
𝑁𝐴 𝑁𝐵

𝑁𝐴̅̅ ̅̅  𝑁𝐵̅̅ ̅̅
< 1 and −√

𝑁𝐴𝑁𝐵

𝑁𝐴̅̅ ̅̅  𝑁𝐵̅̅ ̅̅
> −1. 

Finally, based on equations (30) and (31), when 𝑁𝐴̅̅̅̅ + 𝑁𝐵̅̅ ̅̅ > 𝑁, 

 −1 < 𝑟𝑚𝑖𝑛 ≤ 𝑟 ≤ 1 

where 𝑟 can attain 𝑟𝑚𝑖𝑛 = −√
𝑁𝐴𝑁𝐵

𝑁𝐴̅̅ ̅̅  𝑁𝐵̅̅ ̅̅
  if and only if 𝑁11 = 0 and the non-null 

elements of 𝑋𝐴 and 𝑋𝐵  are constant. 

(32) 

5. Constraints on the testability of the Pearson correlation coefficient 

When 𝑋𝐴 and 𝑋𝐵  follow two uncorrelated normal distributions, 𝑟 ~
𝑡

√𝑁−2+𝑡2
, where 𝑡 is a Student’s t 

statistic with degrees of freedom 𝑁 − 2. We can then determine a confidence interval: 𝐶𝐼 1−𝛼(𝑟) =

[−√𝐾; √𝐾], where 𝐾 depends on 𝛼 and 𝑁. 
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Returning to our measures of OTU prevalence, if 𝑃𝐴 =
𝑁𝐴

𝑁
 and 𝑃𝐵 =

𝑁𝐵

𝑁
, then 𝑟𝑚𝑖𝑛 = −√

𝑁𝐴𝑁𝐵

𝑁𝐴̅̅ ̅̅  𝑁𝐵̅̅ ̅̅
=

−√
𝑃𝐴 𝑃𝐵

𝑃𝐴̅̅ ̅̅  𝑃𝐵̅̅ ̅̅
 . The constraint is the same as in the case of binary data. 

If 𝑟𝑚𝑖𝑛 falls within the confidence interval, we can conclude that negative associations cannot be 

detected. 

−√
𝑃𝐴 𝑃𝐵
𝑃𝐴̅̅ ̅ 𝑃𝐵̅̅ ̅

> −√𝐾 

  
⇔   𝑃𝐵 <

1 − 𝑃𝐴

1 +
1 − 𝐾
𝐾 𝑃𝐴

 (33) 

 

Accordingly, if inequation (33) is true, then negative associations are not testable. 

The border function that defines the testability zones in the square formed by 𝑃𝐴 × 𝑃𝐵 is as follows: 

 
𝐹1(𝑥) =

1 − 𝑥

1 +
1 − 𝐾
𝐾 𝑥

 (34) 

6. Proportion of associations in each testability zone 

Using the border function (34), we observed that two zones existed. The first zone, 𝐴𝑏𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙 , contains 

associations for which both positive and negative correlations can be reliably tested. The second zone, 

𝐴𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 , contains associations for which only positive correlations can be reliably tested. As for the 

binary data (sections 2.5 and 2.6), we explored the testability of abundance-based associations using the 

uniform distribution and the truncated power law distribution. In the latter case, we again employed a 

Monte Carlo approach. 

Based on the border function (34), the proportions of associations that fall within each zone can be 

determined as follows:  

𝐴𝑏𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙 =∬ 𝑓(𝑥)𝑓(𝑦)
 

{(𝐹1+)}

d𝑥d𝑦 

𝐴𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 =∬ 𝑓(𝑥)𝑓(𝑦)
 

{(𝐹1−)}

d𝑥d𝑦 

𝐴𝑏𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙 + 𝐴𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 =∬𝑓(𝑥)𝑓(𝑦)
 

 

d𝑥d𝑦 = 1 

(Same notation as in section 2.5) 

7. Spearman correlation invariance 

The Spearman correlation between two continuous variables 𝑋𝐴 and 𝑋𝐵  is calculated as follows: 

𝜌𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛(𝑋𝐴, 𝑋𝐵) = 𝑟𝑃𝑒𝑎𝑟𝑠𝑜𝑛(𝑟𝑔(𝑋𝐴), 𝑟𝑔(𝑋𝐵)) 
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where 𝑟𝑔(𝑋) is the function that associates the ranks of X. 

The identical values will be assigned to the average of their positions in the ascending order of the 

values, which is equivalent to averaging over all possible permutations. 

If we call 𝑁𝐴̅̅̅̅  the number of zeros in 𝑋𝐴, the 𝑁𝐴̅̅̅̅  zero values will be identical values and will be 

assigned to the rank 𝑚𝑒𝑎𝑛({1,… , 𝑁𝐴̅̅̅̅ }), {1,… , 𝑁𝐴̅̅̅̅ } being all possible rank values for these 𝑁𝐴̅̅̅̅  null 

values. 

As 𝑚𝑒𝑎𝑛({1,… ,𝑁𝐴̅̅̅̅ } =
𝑁𝐴̅̅ ̅̅  (𝑁𝐴̅̅ ̅̅ −1)

2
 , 

We are now interested by 𝑌𝐴 = 𝑟𝑔(𝑋𝐴) −
𝑁𝐴̅̅ ̅̅  (𝑁𝐴̅̅ ̅̅ −1)

2
 and 𝑌𝐵 = 𝑟𝑔(𝑋𝐵) −

𝑁𝐵̅̅ ̅̅  (𝑁𝐵̅̅ ̅̅ −1)

2
. 

If 𝑋𝐴 = 0, 𝑟𝑔(𝑋𝐴) =
𝑁𝐴̅̅ ̅̅  (𝑁𝐴̅̅ ̅̅ −1)

2
 and 𝑌𝐴 = 𝑟𝑔(𝑋𝐴) −

𝑁𝐴̅̅ ̅̅  (𝑁𝐴̅̅ ̅̅ −1)

2
= 0 

Zeros of 𝑋𝐴 are zeros of 𝑌𝐴, and the same for 𝑋𝐵  and 𝑌𝐵. 

Moreover,  

𝑟𝑃𝑒𝑎𝑟𝑠𝑜𝑛(𝑌𝐴, 𝑌𝐵) = 𝑟𝑃𝑒𝑎𝑟𝑠𝑜𝑛 (𝑟𝑔(𝑋𝐴) −
𝑁𝐴̅̅̅̅  (𝑁𝐴̅̅̅̅ − 1)

2
,  𝑟𝑔(𝑋𝐵) −

𝑁𝐵̅̅ ̅̅  (𝑁𝐵̅̅ ̅̅ − 1)

2
) 

As correlation is invariant by translation: 

𝑟𝑃𝑒𝑎𝑟𝑠𝑜𝑛(𝑌𝐴, 𝑌𝐵) = 𝑟𝑃𝑒𝑎𝑟𝑠𝑜𝑛(𝑟𝑔(𝑋𝐴),  𝑟𝑔(𝑋𝐵)) =  𝜌𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛(𝑋𝐴, 𝑋𝐵) 

 

We thus constructed two variables 𝑌𝐴 and 𝑌𝐵 which: 

• have the same null values than 𝑋𝐴 and 𝑋𝐵 . 

• have a Pearson correlation equal to the Spearman correlation of 𝑋𝐴 and 𝑋𝐵  

• are two positive continuous variables with the same limitations on their Pearson correlation 

depending on prevalence as described in the part 3.5. 

 

Thus, when we study Spearman correlation, we implicitly make a Pearson correlation with the same 

number of zeros and then the same limitations as we have previously mentioned. 

8. Data transformation 

Since the correlation is invariant by translation (see the paragraph above), if a positive transformation 

𝑡() transforms all the null values in a single value 𝑧0, it suffices to study the correlation 𝑐𝑜𝑟(𝑡(𝑋𝐴) −

𝑧0, 𝑡(𝑋𝐵) − 𝑧0) to return to the general problem. The limit on the testability of the correlation will be 

the same for this type of transformation. 

For microbial data, this works for Total Sum Scaling (TSS) and rarefying. 

The centered log ratio (clr), the cumulative sum scaling (CSS) and DESeq transformation use a 

pseudo-count that did not produce the theoretical results obtained, although the simulations show that 

the problem is still present for the clr transformations and this is also probably the case for the others. 
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Use of a pseudo count to avoid log(0) is not ideal because clustering results have been shown to be 

very sensitive to the choice of pseudo-count, due to the nonlinear nature of the log transform[10,11]. 

D. Similarity of the Phi and Pearson correlation coefficients 

In this section, we show that testability constraints tend to be similar with both occurrence and 

abundance data. We also examine the degree of correlation between the correlation coefficients 

calculated using the two data types. 

1. Testability constraints on occurrence and abundance data 

The distribution of the correlation coefficient for two normally distributed independent variables is 

𝑟 ~ 
𝑡𝑁−2

√𝑁−2+𝑡𝑁−2
2  

. 

As 𝑡𝑁−2  𝑁→+∞ 
→     𝒩(0,1) (i.e., there is distribution convergence) and 

√𝑁−2+𝑡𝑁−2
2

√𝑁
 
𝑁→+∞ 
→     1, then 

𝑟 
𝑁→+∞ 
→    

𝒩(0,1)

√𝑁
. Since the distribution of the square of the Phi coefficient is 𝜙2  ~ 

𝒳1
2

𝑁
  ~ 

𝒩(0,1)2

𝑁
 under 

the null hypothesis of independence, the Pearson correlation coefficient will asymptotically attain the 

same confidence interval as the Phi coefficient: their lower bounds converge upon √𝑏 𝑁⁄  (sections 2.3 

and 3.5). 

We now underscore that the Phi and Pearson correlation coefficients have the same lower bound when 

the two OTUs have low levels of prevalence: 𝑟𝑚𝑖𝑛 = 𝜙𝑚𝑖𝑛 = −√
𝑃𝐴 𝑃𝐵

𝑃𝐴̅̅ ̅̅  𝑃𝐵̅̅ ̅̅
 . 

When 𝑁 is large enough, the testability of positive associations will be the same for binary data and 

quantitative data. This pattern will be all the more pronounced given that, in real microbiota, OTU 

prevalence is greatly skewed to the right: positive associations represent the majority of associations to 

be tested. 

2. Correlation between Phi and Pearson coefficients 

In section 1, we showed that variance can be decomposed in a quantitative part and a qualitative part 

(equation (2)). Here, we use the results of a simulation to explore how the strength of the correlation 

between the values of the Phi coefficient and the Pearson coefficient is related to OTU prevalence. We 

are most interested in what happens when prevalence is low. 

OTU abundances 𝑋𝐴 and 𝑋𝐵  are modelled by a zero-inflated Poisson (ZIP) distribution using the 

following probability mass function: 

𝑓(𝑥) = {

𝑝0 + (1 − 𝑝0). 𝑒
−𝜆

(1 − 𝑝0).
𝜆𝑥𝑒−𝜆

𝑥!
     
   
𝑖𝑓 𝑥 = 0        

𝑖𝑓 𝑥 = 1, 2…
 

where the probability of structural zeros, 𝑝0, is the result of a Bernoulli process and 𝜆 is the mean of the 

Poisson portion of the distribution (i.e., the Poisson parameter). In the simulation, 𝑋𝐴 and 𝑋𝐵  had the 

same values for 𝑝0 and 𝜆. 
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The probability of structural zeros 𝑝0 represents the complementary probability of prevalence 𝑃, i.e. 

𝑝0 = 1 − 𝑃. As 𝑝0 increases (i.e., prevalence decreases), the correlation between the Phi coefficient and 

the Pearson coefficient increases (Figure 3A in the article). The correlation also strengthens as 𝜆 

increases. When prevalence is below 0.25, the correlation is greater than 0.75 for all values of 𝜆. 

If OTU prevalence follows a ZIP distribution, we can conclude that the values of the Phi coefficient and 

the Pearson coefficient will be correlated, especially when OTU prevalence is low. 

E. Distribution of OTU prevalence in real microbiota 

To characterise actual OTU distribution patterns, we employed data from the QIITA database 

(qiita.ucsd.edu) and the TARA Ocean Project (ocean-microbiome.embl.de) [12]. The biom files were 

processed using the R package biomformat. We deliberately chose different kinds of microbiota so as 

to represent as wide a diversity of microbial communities as possible (Table 2). We used OTU rather 

than species tables. 

The prevalence values were fitted to a truncated power law distribution as described by equation (14), 

and the power law coefficient k was estimated by maximizing the log-likelihood [13]. 

Source Samples OTUs 

Median of 

Prevalence 

Mean 

sequencing 

depth 

Estimated 

k 

Arctic freshwater systems (ID Qiita 

1883) 
3153 32347 0.004440216 47903.11 -1.567 

Gut bacteria of Peruvian rainforest 

ants (ID Qiita 10343) 
471 9819 0.004246285 34773.16 -1.981 

HMP healthy human [14] (ID Qiita 

1928) 
6000 10730 0.0006666667 4538.797 

-1.758 

Honeybees from Puerto Rico (ID 

Qiita 1064) 
387 3789 0.002583979 14974.18 -1.711 

Soil from California vineyards (ID 

Qiita 10082) 
237 13149 0.05907173 23479.96 -0.873 

Sponge (ID Qiita 1740) 1403 24447 0.00427655 42056.75 -2.018 

Tree leaves [15] (ID Qiita 396) 107 4218 0.01869159 936.7477 -1.841 

TARA Ocean Project [12] 139 24798 0.02158273 34168.53 -1.534 

Table 2. Sources of the microbiota we analysed and the associated number of samples, number of 

OTUs, and estimates of the power law coefficient k. 
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