1 Supplemental Materials

2 Supplemental Methods

3 *Study Design*

4 Twenty infant rhesus macaques (RM; 1-2 weeks old) were IV infused with either 10mg/kg anti-5 HIV Env gp120 monoclonal antibody (mAb) DH378 (n=6), 10mg/kg anti-influenza HA mAb 6 CH65 (n=6), 30mg/kg α-HA mAb CH65 (n=2), or 30mg/kg of a tri-mAb cocktail composed of 7 stoichiometric equivalents of 3 anti-HIV Env gp120 mAbs - DH377, DH378, and DH382 (n=6) -8 one hour prior to the first oral SHIV challenge. Power calculations were employed to determine that with these animal numbers, this study would have >65% power to detect a significant 9 difference in rate of virus acquisition between control mAb-treated and HIV Env-specific mAb-10 treated groups when correcting for two comparison groups of breast milk mAb-infused RMs 11 12 (p=0.025, 1 sided test). This power calculation assumed a 100% infection rate in control mAb-13 treated animals and a <30% infection rate in HIV Env-specific mAb-treated animals. All infant 14 RMs enrolled in this study were prescreened via ELISA to exclude animals demonstrating 15 preexisting immunity to the human mAbs selected for infusion. Animals were subjected to 3 oral challenges per day for 3 consecutive days consisting of 5,000 TCID₅₀ SHIV-1157ipd3N4 (NIH 16 AIDS Reagent Program) incubated in 1mL of RPMI containing 1µg/mL DH378, 1µg/mL CH65 17 18 (n=6), 3µg/mL CH65 (n=2), or 3µg/mL of the tri-mAb cocktail for 15 minutes, followed by dilution in ~10mL formula feed to simulate oral acquisition via breastfeeding. Animals were re-19 infused with their respective antibody infusions one week after the initial infusion. Blood and 20 21 saliva (via weck cell sponges) were collected before each infusion, 1 hour after each infusion, 1 22 day after each infusion, and at weeks 2, 4, 6, and 8 of the study. All animals were necropsied at 23 week 8 of the study and tissues were collected. The study endpoint was set at 8 weeks post

Page 46 of 66

24 challenge following an infusion kinetics pilot study in 2 control mAb-treated animals, LD65 and 25 LD77. Tissues were processed either fresh or after overnight shipping at 4°C to isolate mononuclear cells for sorting, or tissues were fixed in formalin for in situ hybridization. 26 27 Mononuclear cells were isolated by density gradient centrifugation with Ficoll-Paque (GE 28 Healthcare, Waukesha, WI) for lymph nodes, spleen, blood, and tonsils and with Percoll (Sigma-Aldrich) for intestinal tissues, as previously described¹. This study was unblinded and not 29 30 randomized. Of note, DH378-treated animal LI68 died due to unrelated causes (choking event) prior to the 4-week time point and CH65-treated animal LH07 necropsy sample shipment was 31 delayed resulting in delayed sample processing. 32

33

34 *Ethics Statement*

RMs were housed at the Tulane National Primate Research Center (TNPRC) in Tulane, LA in 35 36 accordance with the standards of the American Association for Accreditation of Laboratory 37 Animal Care. The protocol was approved by the TNPRC's Institutional Animal Care and Use 38 Committee under OLAW Assurance Number P0212 and additionally reviewed by Duke University's Institutional Animal Care and Use Committee under OLAW Assurance Number 39 A060-16-03. TNPRC is AAALAC accredited. This study was carried out in strict accordance 40 with the recommendations in the Guide for the Care and Use of Laboratory Animals² of the 41 42 National Institutes of Health (NIH) and the Weatherall report on *The use of non-human primates in research*³. All procedures were performed under anesthesia using ketamine hydrochloride and 43 scheduled to limit the number of times an animal was under anesthesia. All efforts were made to 44 minimize stress, improve housing conditions, and provide enrichment opportunities (e.g., social 45 housing when possible, objects to manipulate in cage, varied food supplements, foraging and 46

47 task-oriented feeding methods, interaction with caregivers and research staff). Animals were 48 euthanized by Telazol and Buprenorphine IM injection with a secondary method to include vital organ harvest in accordance with the recommendations of the panel on Euthanasia of the 49 50 American Veterinary Medical Association. Human donor PBMCs used to assess mAb and serum ADCC functionality were from a previously existing collection⁴. Briefly, blood samples from 51 52 HIV-1 seronegative donors providing written consent were collected between June 2007 and July 53 2013 at Duke University, Durham, NC according to protocols approved by the Duke University 54 Institutional Review Board. Samples were anonymized prior to processing and cryopreservation. 55 Production of infusion mAbs 56 MAbs DH377, DH378, and DH382 were obtained through antigen-specific B cell sorting and Ig 57 variable gene amplification, as previously described ⁵. Of note, the IgG1 4A backbone was used 58 59 containing alanine substitutions designed to enhance binding to Fcy-receptor IIIa (S298A, 60 E333A, K334A) and Fc-receptor neonatal (N434A). MAbs were produced through transient 61 transfection either by the manufacturer Catalent (DH378; Catalent, Somerset, NJ) or at the Duke Human Vaccine Institute (DH377, DH382, CH65), as previously described ⁶. Briefly, 62 63 appropriate heavy and light chain pairs for each mAb were transiently transfected in Expi293 64 cells using the ExpiFectamine 293 transfection reagents (ThermoFisher Scientific), according to manufacturer instructions. Transfected cultures were incubated at 37°C, 8% CO₂ for 4 days prior 65 to supernatant harvest and mAb purification with Pierce Protein A agarose beads (ThermoFisher 66 Scientific). Purified mAbs were tested via SDS-Page coomassie and western blot, and quantified 67 68 via Nanodrop. Infusion mAb endotoxin levels were measured using the Pyrogen-5000 LAL 69 Assay (Lonza), according to manufacturer instructions.

71	Prescreening for pre-existing anti-idiotype responses and MHC typing of selected infants
72	Preexisting immunity to the human mAbs selected for infusion was measured by ELISA on pre-
73	infusion serum prior to assigning the infant to the study. Plates were coated with $3\mu g/mL$ of
74	either DH377, DH378, DH382, or positive controls goat anti-monkey IgG (Rockland, Limerick,
75	PA) or goat anti-monkey IgA (Rockland, Limerick, PA). Coated plates were then blocked and
76	incubated with a serial dilution series of pre-infusion/pre-challenge infant serum. To measure
77	serum IgG and IgA binding, samples were subsequently incubated with HRP-conjugated mouse
78	anti-monkey IgG (Southern Biotech, Birmingham, AL) or mouse anti-monkey IgA (Southern
79	Biotech, Birmingham, AL), respectively. Of note, both secondary antibodies were not cross
80	reactive to human mAbs. Absorbance was detected with SureBlue Reserve substrate as described
81	above. Samples with absorbance three standard deviations above the mean absorbance of
82	negative control wells at sample dilutions greater or equal to 1:100 were considered positive and
83	ruled out for inclusion in the study.
84	MHC typing was performed subsequent to assigning an animal to the study on
85	mononuclear cells or isolated genomic DNA by the Research Services division of the Wisconsin
86	National Primate Research Center. Briefly, exon 2 of MHC class I, class I DRB, class II DPA/B,
87	and the class I DQA/B loci were amplified in a Fluidigm Access Array assay. The resultant
88	amplicons were sequenced with the Illumina MiSeq platform. Sequences were then compared to
89	a database of RM alleles such that haplotype determinations could be made for each animal.
90	

HIV-1 Neutralization in TZM-bl Cells

92 Neutralizing antibody titers were measured by the reduction in Tat-regulated Luc reporter gene expression in a TZM-bl (NIH AIDS Reagent Program) reporter cell assay, as previously 93 described ⁷. Briefly, a dose of virus containing ~150,000 relative luminescence unit (RLU) 94 95 equavalents was incubated with 3-fold serial dilutions of mAb or serum in duplicate for one hour at 37°C in 96-well flat-bottom culture plates. TZM-bl cells were added at 10⁴ cells per well in a 96 97 100-µl volume. Eight wells of TZM-bl cells alone and TZM-bl cells with virus alone were run on 98 each plate to contextualize maximum and minimum RLUs. After 48 hour incubation at 37°C, samples were incubated in Bright-Glo luciferase reagent (Promega, Madison, WI) for 2 minutes 99 at room temperature. Luminescence was measured from the resulting cell lysate in a 96-well 100 101 black solid plate on the Victor X3 Light Plate Reader. The 50% inhibitory dose (ID₅₀) titer was 102 calculated as the serum dilution that caused a 50% reduction in RLUs compared to virus-only 103 controls after subtraction of the TZM-bl-only control RLUs. Alternatively, the 50% inhibitory 104 concentration (IC₅₀) titer was calculated as the reagent concentration that caused a 50% reduction 105 in RLU relative to virus-only controls.

106

107 Tissue Mononuclear Cell Viral Coculture

108 Tissue-associated infectious virus titer was assessed through Tat-regulated Luc-F reporter gene 109 expression to quantify infection of TZM-bl reporter cells after coculture with tissue mononuclear 110 cells isolated from RMs. Isolated mononuclear cells from lymphoid and GI tissues were serially 111 diluted in a 96 well format with 10^4 TZM-bl cells/well added in coculture. This coculture was 112 incubated for 72 hours at 37°C and 5% CO₂ prior to luminescence quantification with the 113 Brightglow luminescence detection system (Promega, Madison, WI). For quantitative 114 comparison, tissues were tested with a minimum of 2 replicates to employ the Reed-Meunch

Page 50 of 66

115 method to estimate the tissue-associated infectious virus titer in units of viable mononuclear 116 cells. Tissue-associated infectious virus titer was calculated as the number of viable cells 117 required to sustain detectable infection in 50% of the replicates, with the detection threshold 118 established as 3 standard deviations above the mean luminescence output of PBMCs from 3 119 naive RMs (3,019 RLU). Of note, cell number availability was variable between samples, 120 resulting in a range of detection limits (range= 2×10^5 - 4×10^6 mononuclear cells) and number of 121 replicates (2-8 replicates) for the assay.

122

123 Plasma Viral RNA Load Quantification

Reverse transcriptase (RT) PCR was performed to determine the SHIV-1157ipd3N4 RM plasma 124 RNA load, as previously described⁸. Briefly, viral RNA was isolated from plasma viral pellets 125 using the QIAsymphony Virus/Bacteria Midi kit on the QIAsymphony SP automated sample 126 127 preparation platform (Qiagen, Hilden, Germany). A standard curve was generated from serial dilutions of an RNA transcript of the first 731bp of SIVmac239 gag. cDNA was produced from 128 129 the resulting sample and standard RNA suspensions in a reverse transcriptase reaction using 130 SuperScript III RT enzyme (Invitrogen), PCR nucleotides (Roche, Pleasanton, CA), and RNAse Out (Invitrogen) with the specific reverse primer 5'- CAC TAG GTG TCT CTG CAC TAT CTG 131 132 TTT TG -3' using an optimized version of the manufacturer's protocol. cDNA was used in quantitative real-time PCR using Gene Expression Mastermix (Applied Biosystems, Foster City, 133 CA) and target specific labeled probe 5'- /56-FAM/CTT CCT CAG TGT GTT TCA CTT TCT 134 CTT CTG CG/3BHQ 1/-3' and forward 5'- GTC TGC GTC ATC TGG TGC ATT C -3' and 135 reverse primers 5'- CAC TAG GTG TCT CTG CAC TAT CTG TTT TG -3' (Integrated DNA 136

137	Technologies, Coralville, IA). RNA copies per milliliter were determined by dividing the copy
138	number by the volume of plasma from which SHIV RNA was extracted.
139	
140	Mononuclear Cell Provirus Quantification
141	RM CD4+ T cell-associated genomic DNA (gDNA) was isolated from various GI and lymphoid
142	tissues with the QIAaMP DNA kit (Qiagen, Hilden, Germany) and quantified using the Biorad
143	QX200 droplet digital PCR System according to the manufacturer instructions (Biorad, Hercules,
144	CA). SHIV gag specific primers (SIVmac F 5'- GTC TGC GTC ATC TGG TGC ATT C-3' and
145	SIVmac R 5'- CAG TAG GTG TCT CTG CAC TAT CTG TTT TG -3') and probe [FAM]-CTT
146	CCT CAG TGT GTT TCA CTT TCT CTT CTG CG-[TAMRA] were used to amplify and
147	quantify total SHIV provirus copies. The cell count per sample was estimated using the genomic
148	reference gene TERT, which was quantified in multiplex with the gag quantification using a
149	human TERT-specific reference assay (Biorad, Hercules, CA). This gene was utilized as it was
150	found to have high homology with RMs. The SHIV proviral load in SHIV copies/million CD4+
151	T cells was calculated by dividing the SHIV DNA copy number by the TERT copy number
152	divided by 2 multiplied by 10^6 cells.
153	Some of the ddPCR results were validated through comparison to TagMan Real-Time

ıg q. qPCR, as previously described ⁹. Standard curves from serial dilutions starting at 1 X 10⁸ 154 copies/ml of SHIV gag plasmid and from the genomic reference gene albumin were used to 155 relate cycle threshold (Ct) values to gene copy numbers. All reactions were performed on the 156 StepOnePlus Real-Time PCR System (ThermoFisher Scientific). 157

158

Saliva Weck-Cel sample collection and extraction 159

160 RM saliva was collected with Weck-Cel ophthalmic sponges (Beaver-Visitec, Waltham, MA), as previously described ¹⁰. The Weck-Cel sponges were then transferred to Spin-X (Corning Life 161 Sciences, Corning, NY) centrifuge tubes without filters and incubated twice with 300 µl of an 162 163 extraction buffer per sample (PBS containing 0.25% BSA and 1X protease inhibitor cocktail 164 (Sigma)). Samples were incubated for five minutes and ten minutes in the first and second 165 incubations, respectively. After each incubation, antibodies were extracted from the Weck-Cel 166 sponges by centrifugation and filtered on Spin-X centrifuge tubes with 0.22µm filters. The 167 volume of sample extract was determined by the mass of the sample tubes compared to the average mass of extraction tubes from blank Weck-Cel sponges that underwent mock extractions 168 169 with an assumed density of saliva of 1kg/L. 170 171 Measurement of virus-specific IgG levels in plasma and saliva Enzyme-linked immunosorbent assays (ELISA) were performed as previously described ¹¹. 172 Briefly, ELISA plates (384 wells; Corning Life Sciences, Corning, NY) were coated overnight at 173 174 4°C or for one hour at 20°C with 30 µg/well gp140 1086c, MN.gp41, Bio-V3.C, or 175 Hemagglutinin (HA Solomon Islands; Protein Sciences Corporation, Meriden, CT) in 0.1 M 176 sodium bicarbonate. Plates were blocked with Superblock (PBS containing 4% whey protein, 177 15% normal goat serum, and 0.5% Tween 20). RM plasma or saliva Weck-Cel extracts were 178 diluted in Superblock and incubated on the plate for one hour at 20°C. Plasma or saliva IgG was 179 bound with 10µl/well horseradish peroxidase (HRP)-conjugated goat anti-human IgG (Jackson 180 ImmunoResearch, West Grove, PA). Binding was quantified by incubation with room 181 temperature SureBlue Reserve Microwell Substrate (VWR, Radnor, PA) followed by addition of TMB (3,3',5,5'-tetramethylbenzidine) Stop Solution (VWR, Radnor, PA). Absorbance of the 182

wells was read at 450 nm using a Spectramax Plus spectrophotometer (Molecular Devices, 183 Sunnyvale, CA) immediately after addition of the stop solution. Antibody concentrations in 184 serum and saliva were identified using purified monoclonal antibody 4-parameter standard 185 186 curves of DH378, CH65, 7B2 (anti-gp41 IgG1 mAb), or the tri-antibody cocktail ranging from 0 187 to 300ng/mL with 3-fold dilutions. To quantify A32 blocking, plates coated with 1086c gp120 were blocked and incubated 188 189 with sample as described above. Plates were then incubated with 200-ng/ml biotinylated A32 190 mAb for one hour. Inhibition of biotin-A32 binding was detected with streptavidin-HRP at 1:30,000, followed by incubation with SureBlue Reserve substrate and subsequent application of 191 192 TMB Stop Solution. Absorbance of the wells was read at 450 nm using a Spectramax Plus 193 spectrophotometer immediately after addition of the stop solution. The concentration of A32-194 blocking antibodies in serum was determined using a 4-parameter standard curve of the tri-195 antibody cocktail ranging from 0 to 60 µg/ml with 3-fold dilutions.

196

197 Antibody Dependent Cellular-Cytotoxicity

198 ADCC activity of the purified mAbs and peripheral serum samples was determined by our luciferase-based cell killing assay as previously described ^{12, 13}. Briefly, CEM.NKR_{CCR5} target 199 200 cells (NIH AIDS Reagent Program) were infected with SHIV1157-ipd3N4-IMC encoding a *Renilla* luciferase reporter gene ¹⁴. PBMC from a healthy HIV-seronegative donor with the 201 202 heterozygous 158F/V and 131H/R genotypes for Fcy-receptor IIIa and Fcy-receptor IIa, respectively, were used as a source of effector cells. PBMC were added to SHIV-infected target 203 204 cells in wells of a 96-well plate at a ratio of 30:1. DH382 and CH65 were included as positive 205 and negative controls, respectively. Assay plates were incubated with serial dilutions of RM

206 serum for 6h at 37°C and 5% CO₂. ADCC activity (percent specific killing) was calculated from 207 the change in Relative Light Units (RLU) (ViviRen luciferase assay; Promega, Madison, WI) 208 resulting from the loss of intact target cells in wells containing effector cells, target cells, and 209 serum or mAb samples compared to amounts in control wells containing target cells and effector 210 cells alone. ADCC activity is reported as either the maximum percent killing observed for each 211 sample or the ADCC endpoint titer, which is defined as the last dilution of serum that intersects 212 the positive cutoff (20% specific killing) after subtraction of the average non-specific 213 background activity observed for plasma collected prior to infusion of mAb from all available 214 animals (n=15).

215

216 *Flow Cytometry*

217 RM PBMCs or tissue mononuclear cells were stained with a panel of fluorochrome-conjugated 218 antibodies containing CD3 fluorescein isothiocyanate (FITC), CD28 phycoerythrin (PE), CD45 peridinin chlorophyll protein (PerCP), CD8 V500, CD95 PE-Cy7, CD4 allophycocyanin (APC), 219 220 CD20 APC-H7, and CCR7 Brilliant Violet 421 (BV421) (all from BD Biosciences, San Jose, 221 CA). Yellow Vital dye was added to the panel as a live/dead cell discriminator for some samples. 222 PBMCs from the week 2 timepoint were stained with a modified panel with Agua Vital Dye and 223 CD8-APC-R700 (BD Biosciences, San Jose, CA) replacing Yellow Vital Dye and CD8 V500, 224 respectively. Additionally, the modified panel added CD69 BV605 (BD Biosciences, San Jose, CA), CD25 BV711 (Biolegend, San Diego, CA), and HLA-DR PE-CF594 (Texas Red; BD 225 Biosciences, San Jose, CA). After 30 minutes of antibody incubation at 4 °C, cells were washed 226 227 in PBS and incubated with vital dye for 30 minutes at 4°C. Cells for phenotyping were then fixed 228 with 2% formaldehyde solution. Stained cells were acquired on an LSRII flow cytometer (BD

229	Biosciences, San Jose, CA). Unfixed cells for sorting were resuspended in PBS with 2% FBS.
230	CD4+ and CD8+ cells were bulk sorted and data was acquired on a FACS Aria II cytometer (BD
231	Biosciences, San Jose, CA). CD4+ and CD8+ T cells were positively selected from isolated
232	tissue mononuclear cells by sequential selection of lymphocytes, FSC and SSC singlets, viable
233	cells, CD45+ leukocytes, CD3+ T cells, and CD4+ versus CD8+ T cells. Central memory,
234	effector memory, and naïve CD4+ and CD8+ T cell populations were characterized as
235	CD28+/CD95+, CD28-/CD95+, and CD28+/CD95-, respectively. Transitional memory T cells
236	were identified as CD28+/CCR7 Analysis of all acquired data was performed using FlowJo
237	software (TreeStar, Ashland, OR).
238	
239	In Situ Hybridization
240	In situ hybridization for the detection and quantification of SHIV gag RNA was performed using
241	the Affymetrix protocol according to manufacturer instruction (Affymetrix, Santa Clara, CA).
242	Briefly, fresh dissected RM tissue samples were fixed in Zinc buffered formalin (Anatech Ltd,
243	Battle Creek, MI) at room temperature for 24-48 hours. Tissue specimens were then paraffin-
244	embedded, sectioned at $5\mu m$, and mounted on positively-charged glass slides. Slide-mounted
245	tissue sections were dried at room temperature overnight and then incubated at 60°C for 1 hour
246	to immobilize tissue sections. Slides were deparaffinized in xylene and washed twice in 100%
247	ethanol. The sections then underwent the recommended heat induced epitope retrieval and were
248	digested with 1:100 Protease QF solution (Affymetrix, Santa Clara, CA), followed by
249	hybridization with SHIV gag-specific probe, JN560961.1 Simian-Human Immunodeficiency
250	Virus clone SHIV_AD8 (Affymetrix, Santa Clara, CA). SHIV gag-specific signal was amplified
251	in subsequent hybridizations with 1:100 PreAmp1 QF and 1:100 Amp1QF (Affymetrix, Santa

252 Clara, CA). Following these hybridizations, the targeted virus was labeled with Fast Red 253 chromogen (Affymetrix, Santa Clara, CA). After 3 washes in PBS, slides were blocked in a 254 solution of PBS with 0.02% fish skin gelatin (Sigma) and 10% normal goat serum for 40 255 minutes. Rabbit anti-human CD3 primary antibody (Dako, Glostrup Municipality, Denmark) was 256 diluted 1:100 and applied to slides for 60 minutes at room temperature. Slides were washed three 257 times with phosphate buffered saline containing 0.02% fish skin gelatin and 0.01% TritonX100 258 (Fisher). The secondary antibody, Alexa Fluor 488-conjugated goat anti-rabbit IgG, was applied 259 to slides for 40 minutes. Following a series of washes, Topro3 DAPI nuclear stain (Invitrogen) was added to each slide. All slides were imaged with a Leica TCS SP8 confocal microscope. 260 261 Average numbers of CD3+ cells and SHIV gag RNA+ cells were obtained from 10 0.5-0.75 mm 262 fields of each stained tissue. The number of SHIV RNA producing cells was reported as the 263 number of SHIV gag RNA+ cells per 1,000 CD3+ T cells.

264

265 Transmitted/Founder Analysis

266 Transmitted/Founder (T/F) viral sequences were obtained by single genome amplification (SGA) with subsequent direct amplicon sequencing, as previously described ¹⁵. Briefly, viral RNA was 267 268 isolated from plasma 2 weeks post infection from each animal by the QiaAmp viral RNA mini 269 kit (Qiagen, Hilden, Germany). cDNA was generated using SuperScript III reverse transcriptase 270 mix (Invitrogen) and antisense primer SHIVEnvR3-out 5' -CTA ATT CCT GGT CCT GAG 271 GTG TAA TCC TG -3'located in the nef reading frame (nt 9250-9278 SHIV1157ipd3N4). The 272 resulting cDNA suspension was diluted and PCR amplified in Platinum Taq DNA polymerase 273 High Fidelity (Invitrogen) such that 30% of reactions were positive to maximize the likelihood of 274 single genome amplification. A first round of PCR amplification was conducted using

275 SHIVEnvR3-in and SHIVEnvF4-out 5'- TCA TAT CTA TAA TCG TCA CGG AGA CAC TC -276 3' (nt 5768-5796 in SHIV1157ipd3N4) as primers. A second round of PCR amplification was 277 conducted using 2µl of first round PCR product as template and SHIVEnvF2-in 5'- GTG TTG 278 CTT TCA TTG CCA AGT TTG T -3' (nt 6040-6064) and SHIVEnvR2-in 5'-TGG TAT GAT GCC TTC TTC CTT TTC T-3' (nt 9219-9243) as primers. Amplification conditions for round 1 279 280 and round 2 PCR were 1 cycle of 94°C for 2 minutes, 35 cycles of 94°C for 15 seconds, 55°C for 281 30 seconds, and 68°C for 4 minutes, followed by 1 cycle of 68°C for 10 minutes. Round 2 PCR 282 amplicons were visualized by agarose gel electrophoresis and directly sequenced using an ABI3730xl genetic analyzer (Applied Biosystems, Foster City, CA). Full sequences were 283 284 constructed from overlapping sequences from each amplicon in Sequencher (Gene Codes, Inc., 285 Ann Arbor, MI). Sequences with two or more double peaks were discarded, as this indicates 286 amplification from multiple templates. Sequences with one double peak were retained with the 287 double peak attributed to Taq polymerase error. Ambiguities in these sequences were read as the 288 consensus sequence. Sequence alignments and phylogenetic trees were constructed using 289 clustalW and Highlighter plots were created using the tool at http://www.lanl.gov.

290 To identify and enumerate T/F variants, the following conditions were applied. Clusters 291 of related sequences were visually analyzed using phylogenetic trees (Figtree v1.4) and 292 sequences containing ≤ 2 mutations were considered a single variant. Variants containing ≥ 2 293 mutations were considered as progeny of distinct T/F genomes. Potential G-A hymermutations 294 caused by APOBEC 3G/3F were identified using Hypermut algorithm 2.0 and were reverted for 295 analysis if there were ≤ 2 present. Sequences that had >3 potential APOBEC 3G/3F mutations were not considered for T/F analysis (Hypermut, http://www.hiv.lanl.gov)¹⁶. Sequence clusters 296 297 of ≥ 2 sequences with ≥ 2 shared mutations were considered as distinct T/F variants.

299 *Provirus env cloning and pseudovirus preparation*

300 Genomic DNA (gDNA) was isolated from CD4+ T cells to study proviral env populations from 301 animals negative for plasma viral load by Qiagen Allprep DNA/RNA mini kit (Qiagen, Hilden, 302 Germany). SHIV env amplification through bulk nested PCR was done using this gDNA as 303 template, as described above. Bulk PCR products of envelope gene from animals LG19 and LH73 were cloned in pcDNA3.1/V5-His-Topo (Invitrogen) using shotgun cloning methods. To 304 305 generate pseudoviruses capable of one round of infection, plasmids containing SHIV envelopes were cotransfected with a second plasmid containing a subtype B env deficient HIV genome 306 $(SG3\Delta env)$ in 293T cells (Invitrogen), as previously described ⁷. The infectivity of pseudotyped 307 308 viruses was screened by single round infection of TZM-bl cells followed by detection of Tat-309 regulated luminescence with the Bright-Glo luciferase reagent (Promega, Madison, WI), as 310 described above. Infectivity was reported as relative luminescence units (RLUs) and compared 311 to that of a mock infection of TZM-bl cells (~500 RLU). 312

313 Statistical Analysis

Statistical tests were performed with SAS v9.4 (SAS Institute, Cary NC). Comparisons of viral
load, proviral load (copies/million cells), and the number of T/F variants in infants from each
mAb treatment group were performed using the exact Wilcoxon test. The proviral load (binary
designation), and the number of infants with detectable SHIV in each mAb treatment group were
compared with Fisher's exact test. False discovery rate (FDR) p-value correction was used to
correct for multiple comparisons. A p-value of <0.05 (two-tailed) was considered as significant
for all analyses.

321			
322	Supplemental References		
323	1.	Amos JD, Wilks AB, Fouda GG, Smith SD, Colvin L, Mahlokozera T et al. Lack of B	
324		cell dysfunction is associated with functional, gp120-dominant antibody responses in	
325		breast milk of simian immunodeficiency virus-infected African green monkeys. Journal	
326		of virology 2013; 87 (20): 11121-11134.	
327			
328	2.	Resources IoLA. Guide for the care and use of laboratory animals. National Academy	
329		Press: Washington, DC, 1996.	
330			
331	3.	Weatheall D. The use of non-human primates in research; 2006.	
332			
333	4.	Sambor A, Garcia A, Berrong M, Pickeral J, Brown S, Rountree W et al. Establishment	
334		and maintenance of a PBMC repository for functional cellular studies in support of	
335		clinical vaccine trials. J Immunol Methods 2014; 409: 107-116.	
336			
337	5.	Sacha CR, Vandergrift N, Jeffries TL, Jr., McGuire E, Fouda GG, Liebl B et al.	
338		Restricted isotype, distinct variable gene usage, and high rate of gp120 specificity of	
339		HIV-1 envelope-specific B cells in colostrum compared with those in blood of HIV-1-	
340		infected, lactating African women. Mucosal Immunol 2015; 8(2): 316-326.	
341			

342	6.	Bonsignori M, Kreider EF, Fera D, Meyerhoff RR, Bradley T, Wiehe K et al. Staged
343		induction of HIV-1 glycan-dependent broadly neutralizing antibodies. Sci Transl Med
344		2017; 9 (381).
345		
346	7.	Li M, Gao F, Mascola JR, Stamatatos L, Polonis VR, Koutsoukos M et al. Human
347		immunodeficiency virus type 1 env clones from acute and early subtype B infections for
348		standardized assessments of vaccine-elicited neutralizing antibodies. Journal of virology
349		2005; 79 (16): 10108-10125.
350		
351	8.	Wilks AB, Perry JR, Ehlinger EP, Zahn RC, White R, Gauduin MC et al. High cell-free
352		virus load and robust autologous humoral immune responses in breast milk of simian
353		immunodeficiency virus-infected african green monkeys. Journal of virology 2011;
354		85 (18): 9517-9526.
355		
356	9.	Desire N, Dehee A, Schneider V, Jacomet C, Goujon C, Girard PM et al. Quantification
357		of human immunodeficiency virus type 1 proviral load by a TaqMan real-time PCR
358		assay. J Clin Microbiol 2001; 39 (4): 1303-1310.
359		
360	10.	Fouda GG, Eudailey J, Kunz EL, Amos JD, Liebl BE, Himes J et al. Systemic
361		administration of an HIV-1 broadly neutralizing dimeric IgA yields mucosal secretory
362		IgA and virus neutralization. Mucosal Immunol 2017; 10(1): 228-237.
363		

364	11.	Jeffries TL, Jr., Sacha CR, Pollara J, Himes J, Jaeger FH, Dennison SM et al. The
365		function and affinity maturation of HIV-1 gp120-specific monoclonal antibodies derived
366		from colostral B cells. Mucosal Immunol 2016; 9(2): 414-427.
367		
368	12.	Permar SR, Fong Y, Vandergrift N, Fouda GG, Gilbert P, Parks R et al. Maternal HIV-1
369		envelope-specific antibody responses and reduced risk of perinatal transmission. The
370		Journal of clinical investigation 2015; 125 (7): 2702-2706.
371		
372	13.	Pollara J, McGuire E, Fouda GG, Rountree W, Eudailey J, Overman RG et al.
373		Association of HIV-1 Envelope-Specific Breast Milk IgA Responses with Reduced Risk
374		of Postnatal Mother-to-Child Transmission of HIV-1. Journal of virology 2015; 89(19):
375		9952-9961.
376		
377	14.	Edmonds TG, Ding H, Yuan X, Wei Q, Smith KS, Conway JA et al. Replication
378		competent molecular clones of HIV-1 expressing Renilla luciferase facilitate the analysis
379		of antibody inhibition in PBMC. <i>Virology</i> 2010; 408 (1): 1-13.
380		
381	15.	Keele BF, Li H, Learn GH, Hraber P, Giorgi EE, Grayson T et al. Low-dose rectal
382		inoculation of rhesus macaques by SIVsmE660 or SIVmac251 recapitulates human
383		mucosal infection by HIV-1. The Journal of experimental medicine 2009; 206(5): 1117-
384		1134.
385		

- Rose PP, Korber BT. Detecting hypermutations in viral sequences with an emphasis on G
 --> A hypermutation. *Bioinformatics* 2000; 16(4): 400-401.
- 388

389 Supplemental Figures

391 Figure S1. Decay of passively infused mAbs in serum of tri-mAb cocktail-treated infant

RMs. Concentrations of infused mAbs in serum from pre infusion to 8 weeks post infusion are

depicted for tri-mAb cocktail-treated animals. A) 1086C. gp140, B) 1086C. V3 peptide, and C)

A32-blocking ELISAs were employed to estimate the relative concentrations of DH377 and

395 DH382 within the tri-mAb cocktail-treated animals over the course of the study. Black arrows

indicate systemic mAb infusions at days 0 and 7. ND indicates not detectable.

Figure S2. Tissue-associated infectious SHIV levels measured through tissue mononuclear 399 400 cell coculture with TZM-bl reporter cells. Mononuclear cells isolated from tissues 8 weeks after oral SHIV-1157ipd3N4-challenge of control mAb-, DH378 mAb-, and tri-mAb-treated 401 infant RMs were serially diluted and cocultured with TZM-bl reporter cells for 72hrs, followed 402 by luminescent detection of tissue-associated SHIV infectivity in relative luminscence units 403 404 (RLU). The RLU limit of detection for positive tissue-associated SHIV infection (dashed line) 405 was defined as 3 standard deviations above the mean maximum RLUs elicited from PBMCs of unchallenged control RMs (n=3) in the coculture assay. 406

409 Figure S3. CD4+ T cell proportions in tissues of mAb-treated, SHIV-1157ipd3N4

410 challenged infant RMs. A) Proportion of CD4+ T cells of total T cells and B) total CD45+

- 411 mononuclear cells in various lymphoid and GI tissues of mAb-treated and orally SHIV-
- 412 challenged infant RMs at necropsy (8 weeks post infusion). Red, blue, and green symbols
- 413 indicate control mAb-, DH378-mAb, and tri-mAb-treated animals, respectively. Squares
- 414 indicate non-viremic animals, while circles indicate viremic animals.

417 Figure S4. Representative phylogenetic trees of SHIV *env* variants isolated from passively

418 mAb-infused, SHIV-1157ipd3N4- challenged infant RMs. Standard SGA techniques were

- 419 used to isolate the SHIV envelope gene from plasma of A) control mAb-treated, B) DH378
- 420 mAb-treated, and C) tri-mAb-treated infant RMs, and amplicons were sequenced. Clustalw and
- 421 the Kimura 2 Parameter (K2P) method were used to align amplicons and construct neighbor
- 422 joining phylogenetic trees rooted at the SHIV-1157ipd3N4 envelope gene (Acc. No. DQ779174).
- 423 Distinct variant clusters (V; indicated by bold lines) within each animal were defined as having
- 424 ≥ 2 unique mutations that were observed in ≥ 2 amplicons.

Figure S5. Phylogenetic tree analysis of SHIV env isolated from passively breastmilk mAb-427 428 infused infant RMs 2 weeks after oral SHIV challenge. Standard SGA techniques were used 429 to isolate SHIV env genes from each animal 2 weeks following oral SHIV challenge and amplicons were sequenced. Clustalw and Kimura 2 Parameter (K2P) method were used to align 430 431 amplicons and construct a neighbor joining phylogenetic tree rooted at the SHIV-1157ipd3N4 stock env. Amplicons from control mAb-treated, DH378 mAb-treated and tri-mAb-treated 432 433 animals are colored red, blue, and green, respectively. The scale bar represents 0.0008 434 nucleotide mutations per site. The black arrow indicates the SHIV-1157ipd3N4 challenge env sequence. SHIV proviral env sequences isolated from CD4+ T cells in LH19 and LG73 435 submandibular LNs at 8 weeks post infection were included in the tree and are indicated by *. 436 437