
Supplementary Information for

Recoil-induced ultrafast molecular rotation probed by dynamical rotational Doppler effect

Denis Céolin, Ji-Cai Liu, Vinícius Vaz da Cruz, Hans Ågren, Loïc Journel, Renaud Guillemin, Tatiana Marchenko,
Rajesh K. Kushawaha, Maria Novella Piancastelli, Ralph Püttner, Marc Simon, and Faris Gel’mukhanov

Corresponding authors:
Denis Céolin
E-mail: denis.ceolin@synchrotron-soleil.fr
Ji-Cai Liu
E-mail: jicailiu@ncepu.edu.cn
Ralph Püttner
E-mail: puettner@zedat.fu-berlin.de

This PDF file includes:

Supplementary text
Fig. S1
Table S1
References for SI reference citations

Denis Céolin, Ji-Cai Liu, Vinícius Vaz da Cruz, Hans Ågren, Loïc Journel, Renaud Guillemin, Tatiana Marchenko,
Rajesh K. Kushawaha, Maria Novella Piancastelli, Ralph Püttner, Marc Simon, and Faris Gel’mukhanov

1 of 8

www.pnas.org/cgi/doi/10.1073/pnas.1807812116



Supporting Information Text

1. Semiclassical theory of the dynamical rotational Doppler effect

Here we outline the theory of the Auger decay using a classical picture of molecular rotation. The studied Auger process
consists of two steps. In the first step the incoming X-ray photon is absorbed by the CO molecule at the instant t = 0, and the
C 1s electron is ejected with the momentum k. This is described with the continuum state ψk(r) and the molecular core-ionized
state |c〉. Due to the recoil momentum k′ = −k transferred to the molecule, it starts to rotate with the permanent angular
velocity

wk = α

I
[R(0)× k′] = α

I
[k×R(0)] = const. [1]

Here I = µR2 is the moment of inertia and µ = mCmO/M the reduced mass. The radius vector of the carbon atom with respect
to the center of gravity at t = 0 is RC(0) = αR(0) with α = mO/M . Due to this recoil-induced rotation, the internuclear
radius vector changes orientation and evolves into R(t) at the instant t of the second step, namely the Auger decay. The
wave function of the final state |Ψf 〉 can be written as the product of the wave function of the dication, |f〉, and of the Auger
electron with momentum p, ψp(r), namely as

|Ψf 〉 = |f〉ψp(r) ≈ |f〉ψp(rC)eıαp·R(t). [2]

To obtain the right part of eq. 2 we used the fact that the main contribution to the Auger transition element Ap defined in eq. 4
originates from the region close to the carbon nucleus so that ψp(r) ≈ ψp(rC) exp[ıαp ·R(t)] with rC = r−RC , see Ref (1).

The amplitude of the Auger process is given by the product of the amplitudes of core-ionization (e · k̂)F and Auger decay
Ap (1)

(e · k̂)FAp, F = −ı
∞∫

0

eıαp·R(t)eı(∆E+Dtr+ıΓ)tdt [3]

with ∆E = EA −Eres being the difference between the Auger energy EA and the resonance energy Eres of the C 1s−1 → d1Σ+

Auger transition, Dtr = k · p/M being the translational Doppler effect, Γ the core-hole lifetime, e is the polarization direction
of the synchrotron light and k̂(t) = k/k the unit vector of the momentum of the photoelectron; note that throughout this
work the hat indicates unit vectors. The amplitude of the Auger transition |c〉 → |f〉ψp is a function of the angle between the
momentum p and the molecular axis which has the following general expansion (2, 3):

Ap = 〈fψp|
1
r12
|c〉 =

∑
l

alPl(p̂ · R̂(t)) [4]

= a0 + a1(p̂ · R̂(t)) + a2P2(p̂ · R̂(t)) + a3P3(p̂ · R̂(t)) + · · ·

The main physics of the studied effect is accounted by the first two terms in this expansion:

Ap ≈ a0

(
1 + a1

a0
(p̂ · R̂(t)

)
= 1 + η

2 (p̂ · ˆR(t)) [5]

with a1/a0 = η/2 (below we skip the constant prefactor assuming a0 = 1). This equation models in average (see eq. 9 of the
main text) the role of the polar anisotropy of Ap in the dynamical rotational Doppler effect studied here. The parameter
η describes the polar asymmetry of the Auger angular distribution. We have found this parameter from the fitting of the
theoretical spectral profile to the experimental one shown in Fig. 2 of the main text. The use of the approximation (eq. 5)
instead of the strict expression (eq. 4) (see Ref. 27 and 28 in the main text) is the main reason of some disagreement between
the theory and the experiment. In spite of this, the new physics we report is sufficiently described by this relatively simple
model. Obviously the amplitude has to be integrated over all time delays t between the instant of the photoionization process
and the Auger decay. To eliminate R(t) in F we first need to solve the equation of the rotational motion

Ṙ(t) = wk ×R(t), [6]

R(t) = R(0) +
t∫

0

[wk ×R(t1)]dt1.

With the identity a · [b× c] = b · [c× a] we obtain αp · [wk ×R(t)] = wk · jp(t) where

jp(t) = α[R(t)× p] [7]

is the recoil angular momentum due to the ejection of the Auger electron. Using eqs. 6 and 7 we can write

αp ·R(t) = αp ·R(0) +
t∫

0

αp · [wk ×R(t1)]dt1 [8]

= αp ·R(0) +
t∫

0

Drot(t1)dt1
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where
Drot(t) = wk · jp(t) [9]

is the rotational Doppler shift (1, 4–6) at the instant of ejection of the Auger electron. With eq. 8 we can finally rewrite F as

F = −ıeıαp·R(0)

∞∫
0

e

ı

t∫
0

Drot(t1)dt1

eı(∆E+Dtr+ıΓ)tdt. [10]

For simplicity this equation is used in the following as well as in the main text without the constant prefactor ıeıαp·R(0).
To proceed further, we shall solve eq. 6 and obtain

R̂(t) = R(t)/R = R̂(0) cos(wkt) + R̂⊥ sin(wkt) ≈ R̂(0) + R̂⊥wkt, [11]

where the unit vector R̂⊥ = (ŵk × R̂(0)) is orthogonal to R̂(0), i.e. the molecular axis rotates in full agreement with the
expectations with the constant angular velocity given in eq. 1. Throughout this work we use the linear over time approximation
for R̂(t), because the molecule has no time to perform a full rotation during the effective time of the process. This can be seen
by the fact that even for the highest photon energy used in this work (ω = 12 keV) we obtain

wkτ ≤ 0.2� 1, [12]

where τ = 7.5 fs is the lifetime of the C 1s core-ionized state so that it represents the typical timescale for the instant t of the
Auger decay. The solution given by eq. 11 results in the following expression for the rotational Doppler shift:

Drot(t) = wk · jp(t) ≈ Drot,0 − ρ
(
R̂(0)× k̂

)2 (p̂ · R̂(0))t, [13]

ρ = α3R3k2p

I2 .

Here Drot,0 describes the rotational Doppler shift at the instant t = 0. The parameter ρ is proportional to k2 and, therefore, to
the kinetic energy of the photoelectron and it defines the magnitude of the asymmetric contribution σint(E) to the total cross
section σ(E), see eq. 16 below. Now we are at the position of finding the cross section and the Auger amplitude in the limit of
our interests which are defined by eq. 12

σ(∆E) = 〈|(e · k̂)FAp|2〉 =
〈(

1 + ζP2(k̂ · p̂)
)
|F |2

(
1 + η(p̂ · R̂(0))

)〉
,

F ≈ −ı
∫ ∞

0
dteı[∆E+Dtr+Drot,0+ıΓ]t

(
1− ı ρ2

(
R̂(0)× k̂

)2 (p̂ · R̂(0))t2
)

= F0 + Fd, [14]

where 〈· · · 〉 ≡
∫
· · · dk̂dR̂(0). Note that for σ(∆E) the following approximations are made: First we replaced (e · k̂)2 by

1 + ζP2(k̂ · p̂) according to eq. 22, but neglect the constant factor 1
3 (1− cosχ) given in that equation. Second, in Ap the vector

R̂(t) is replaced by R̂(0) since in the course of our experiments the molecule does not rotate more than 11◦, see eq. 11 and
12. Third, in |Ap|2 the term proportional to η2 is neglected. The first and the second terms in the integrand of F give the
"instantaneous" (F0) and the "time-delayed" or "dynamical" (Fd) contribution, respectively, which can be expressed in the
time-independent picture as

F0 = 1
∆E +Dtr +Drot,0 + ıΓ , [15]

Fd = ıρ(R̂(0)× k̂)2(p̂ · R̂(0))
[∆E +Dtr +Drot,0 + ıΓ]3 .

Taking into account that |F |2 ≈ |F0|2 + 2Re(F0F
∗
d ) within the used approximation (12) one can see that the cross section

σ(∆E) consist of two parts:

σ(∆E) = σ0(∆E) + ησint(∆E),

σ0(∆E) =
〈 1 + ζP2(k̂ · p̂)

(∆E +Dtr +Drot,0)2 + Γ2

〉
, [16]

σint(∆E) = 4ρΓ
〈 (∆E +Dtr +Drot,0)f

[(∆E +Dtr +Drot,0)2 + Γ2]3
〉
,

where f = [1 + ζP2(k̂ · p̂)](R̂(0) × k̂)2(R̂(0) · p̂)2 is the product of (e · k̂)2, |Ap|2 and the squares of the denominator of
Re(F0F

∗
d ).
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Note that the integrands of σ0(∆E) and σint(∆E) depend implicitly on k̂ and R̂(0) because of Dtr and Drot,0. Taking
into account that the integrand in σ0(∆E) does not change under transformation ∆E, k̂→ −∆E,−k̂, while the integrand in
σint(∆E) changes sign, we get the following symmetry properties

σ0(∆E) = σ0(−∆E), σint(∆E) = −σint(−∆E). [17]

As can be seen in eqs. 16 and 17 the dynamics of the rotational Doppler shift results in an additional contribution σint(∆E)
which is an antisymmetric function of ∆E. Thus the interference between the "instantaneous" and "time-delayed" Auger
channels is responsible for the observed asymmetry of the Auger spectral profile.

2. Anisotropy parameter

The Auger process depends on the angle between e and p. Therefore one can average the ionization probability Pk = (e · k̂)2

over orientations of e around the momentum of the Auger electron p with fixed angle χ = ∠(e,p). Using equation

e∗i ej = 1
2
(
δij(1− cos2 χ) + (3 cos2 χ− 1)p̂ip̂j

)
, [18]

we obtain
Pk = (e · k̂)2 = 1

2
(
1− cos2 χ+ (3 cos2 χ− 1)(p̂ · k̂)2) . [19]

In our experiment the momentum of the Auger electron p is parallel to e only approximately. Namely, the Auger electrons are
collected in a cone around the polarization vector e with the opening angle 2χ = 45◦. Therefore the probability Pk should be
integrated in this range

1
2

∫ χ

0
dχ′ sinχ′

(
1− cos2 χ′ + (3 cos2 χ′ − 1)(p̂ · k̂)2) = 1

3(1− cosχ)
(
1 + ζP2(p̂ · k̂)

)
, [20]

where P2(p̂ · k̂) is the Legendre polynomial and

ζ = cosχ(1 + cosχ) ≈ 1.78 [21]

is the anisotropy parameter. In our simulations the unimportant prefactor (1− cosχ)/3 is dropped and we use the following
equation for the ionization probability

Pk = 1 + ζP2(p̂ · k̂). [22]

3. Role of the anisotropy of photoionization

In the previous sections, we described the photoionization process using the plane-wave approximation for the fast photoelectron.
In this case, the transition dipole moment d for the ionization of a C 1s electron is parallel to the momentum of the photoelectron,
i.e. d ∝ k. The ionization probability Pk depends quadratically on (p̂ · k̂) (see eqs. 19 and 22). In principle, a term linear in
(p̂ · k̂) can also contribute to Pk, due to scattering of the fast electron by the oxygen atom. To describe the latter effect, we
have to go beyond the plane wave approximation. Since the momentum of the photoelectron is large

kR ∼ 50� 1, [23]

it is sufficient to take only the single scattering correction to the plane wave (7) into account. Within this approximation, the
wavefunction near the core-ionized n-th atom

ψk =
∑
lm

B
(n)
lm Rl(rn)Ylm(r̂n), [24]

B
(n)
lm ≈ 4πıl

[
eık·RnYlm(k̂) +

∑
n′(6=n)

eıkRnn′

Rnn′
Ylm(R̂nn′ )eık·Rn′ fn′ (R̂nn′ k̂)

]
consists of the plane-wave contribution as well as the scattering contributions from the surrounding atoms (n′ 6= n). Here,
rn is the radius vector of the electron with respect to the center n, Rn the radius vector of the n-th atom, and Rl(rn) the
solution of the radial Schrödinger equation near the n-th atom. The amplitude fn′ (R̂nn′ k̂) for the scattering of the electron
by the n′-th atom depends on the angle between the momentum k and the radius vector between the n-th and n′-th atoms,
Rnn′ = Rn −Rn′ .

For the present case of C 1s ionization of the CO molecule, only the p-wave (l = 1) contributes to the transition dipole
moment d and the amplitude of the photoionization process (e · d)

d ∝ k̂ + R̂(0)e
ı(kR−k·R(0))

R
fo(k̂ · R̂(0)), [25]

(e · d) ∝ (e · k̂) + (e · R̂(0))e
ı(kR−k·R(0))

R
fo(k̂ · R̂(0)),
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where R(0) = RC(0) −RO(0) is the internuclear axis at the time of the photoionization, see above, and fo(k̂ · R̂(0)) the
amplitude for the scattering process of electron by oxygen atom. Using eq. 18 we obtain

(e · d̂)2 ≈ 1
2

[
1− cos2 χ+ (3 cos2 χ− 1)(k̂ · p̂)2 [26]

+
(
(1− cos2 χ)(k̂ · R̂(0)) + (3 cos2 χ− 1)(k̂ · p̂)(R̂(0) · p̂)

)
2Re

(
eı(kR−k·R(0))

R
fo(k̂ · R̂(0))

)]
,

In the next step we shall average the cross section over all molecular orientations R̂(0). It is important to notice that the
scattering contribution ∝ exp(−ık ·R(0)) experiences fast oscillations due to the large values for kR (see eq. 23). The fact that
kR ∼ 50� 1 allows performing the integration over R̂(0) of the scattering term ∝ fo(k̂ · R̂(0)) using the following asymptotic
formula

1
4π

∫
e−ık·R(0)Φ(R̂(0))dR̂(0) ≈ 1

2ıkR
(
eıkRΦ(−k̂)− e−ıkRΦ(k̂)

)
. [27]

According to this equation, both the forward scattering (R(0) ↑↑ k) and the backward scattering (R(0) ↑↓ k) contribute
to the cross section. In the following we will only take the forward scattering into account since in the high-energy region
|fo[π]| � |fo[0]|, where fo[θ] is the scattering amplitude for the angle θ. With this approximation and the factorization of the
cross section σ(R̂(0)) of a fixed-in-space molecule, see the integrand in eq. 3 of the main article, namely with

σ(R̂(0)) = (e · d̂)2σAuger(R̂(0)), [28]
σAuger(R̂(0)) = |F |2Qp = |F |2(1 + η(p̂ · R̂(0)))

we obtain

σ = 1
4π

∫
σ(R̂(0))dR̂(0) = 1

4π

∫
(e · d̂)2σAuger(R̂(0))dR̂(0) [29]

≈ Pk

{ 1
4π

∫
σAuger(R̂(0))dR̂(0)− Im(fo[0])

kR2 σAuger(k̂)
}
.

= Pk

{ 1
4π

∫
σAuger(R̂(0))dR̂(0)− σtot

4πR2 σAuger(k̂)
}
.

Here σtot is the total cross section of scattering of an electron by the oxygen atom. The quantity Pk is defined in eqs. 19 and 22
and fo[0] is the forward scattering amplitude. From this equation, we can readily see that the photoionization does not cause
any extra angular contribution to the total cross section such as a term linear in (k̂ · p̂). Indeed, Pk depends quadratically on
(k̂ · p̂) and the rotational Doppler shift is absent in the scattering term because Drot ∝ [k×R(0)] ≡ 0 for k ‖ R(0).

Note that the scattering anisotropy of the photoionization, see eq. 14, does not affect the dynamical contribution
(ıρ
(
R̂(0)× k̂

)2 (p̂ · R̂(0))t2) because it equals zero due to R(0) ‖ k. To conclude, the anisotropy of photoionization does not
create an asymmetry of the Auger profile.

4. Quantum theory

The numerical simulations were performed using strict quantum theory of rotational motion characterized by the rotational
energies EJ = J(J + 1)/2I of the rotational states |JM〉. The amplitude of the Auger process subsequent to the core ionization

F =
∑
JM

〈J0M0|(e · k̂)eıαk·R|JM〉〈JM |Apeıαp·R|JfMf 〉
∆E +Dtr − (EJ − EJf ) + ıΓ [30]

is defined by the matrix element of transition from the initial rotational state |J0M0〉 to the rotational state |JM〉 of the
core-excited state and by the matrix element of the transition from the rotational state |JM〉 to the final rotational state |JfMf 〉.
It is important to notice that the sum over the intermediate rotational states |JM〉 results in the interference contributions
similar to that of the lifetime vibrational interference (8, 9). This interference in the energy domain is equivalent to the
dynamics and interference in the time domain (8, 9) as we will see also below. Since the ejection of the fast photoelectron
heats the CO molecule up to an effective rotational temperature of 4000 K we can neglect the initial room temperature and
assume J0 = M0 = 0.

To find the Auger amplitude, we need the equation, see Ref. (10),

eıαk·R = 4π
∑
lm

ıljl(αkR)Y ∗lm(k̂)Ylm(R̂). [31]

Using the quantum theory of angular momentum (10) and the sum rule∑
Mf

C
JMf

j10JfMf
C
J′Mf

j′
10JfMf

Y ∗J′Mf
(k̂)YJMf (k̂) [32]

= (−1)Jf
1

4π (2J ′ + 1)(2J + 1)
∑
l

Cl0J′0J0C
l0
j10j′

10

{
Jf J j1
l j′1 J

′

}
Pl(cos θ)
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one can obtain the following expression for the cross section of the studied Auger process:

σ =
∑
JfMf

|F|2dk̂ = σ0 + ησint, [33]

σ0 = σ(0) + ζσ(2), σint = σ
(0)
int + ζσ

(2)
int ,

where

σ(n) =
∑
j1,j′

1

∑
J,J′=0

∑
Jf ,`

(−1)Jf cos
(
π

2 [J + j1 − (j′1 + J ′)]
)
jJ(αkR)jJ′ (αkR)jj1 (αpR)jj′

1
(αpR)

×(2j1 + 1)(2j′1 + 1)(2Jf + 1)
√

(2J + 1)(2J ′ + 1)CJ0
j10Jf 0C

J′0
j′

10Jf 0

×C`0J′0J0C
`0
j10j′

10

{
JfJj1
`j′1J

′

}∫ π

0
dθ sin θP`(cos θ)Pn(cos θ)Re

(
zJ,Jf z

∗
J′,Jf

)
,

σ
(n)
int = −

∑
j1,j′

1

∑
J,J′=0

∑
L,Jf ,`

(−1)Jf jJ(αkR)jJ′ (αkR)jj1 (αpR)jj′
1
(αpR)

×(2j1 + 1)(2j′1 + 1)(2Jf + 1)
√

(2J + 1)(2J ′ + 1)

× cos
(
π

2 [J + L− (j′1 + J ′)]
)

sin
(
π

2 (j1 − L)
)(

CL0
j1010

)2
CJ0
L0Jf 0C

J′0
j′

10Jf 0

×C`0J′0J0C
`0
L0j′

10

{
JfJL
`j′1J

′

}∫ π

0
dθ sin θP`(cos θ)Pn(cos θ)Im

(
zJ,Jf z

∗
J′,Jf

)
. [34]

Here n = 0, 2, u = k/M is the translational recoil velocity, the symbols with curly brackets are 6j-symbols, and

zJ,Jf = 1
∆E + pu cos θ − (EJ − EJf )− ıΓ , [35]

Re(zJ,Jf z
∗
J′,Jf

) =
[E + pu cos θ − (EJ − EJf )][E + pu cos θ − (EJ′ − EJf )] + Γ2

[{E + pu cos θ − (EJ − EJf )}2 + Γ2][{E + pu cos θ − (EJ′ − EJf )}2 + Γ2] ,

Im(zJ,Jf z
∗
J′,Jf

) = Γ(EJ − EJ′ )
[{E + pu cos θ − (EJ − EJf )}2 + Γ2][{E + pu cos θ − (EJ′ − EJf )}2 + Γ2] .

The two terms σ(0) and ζσ(2) of eq. 33 are shown in Fig. S1. They possess a symmetric profile and describe the broadening of
the Auger line due to the translational and rotational Doppler effects. The term ζσ(2) is caused by the anisotropy of the core
ionization ζP2(k̂ · p̂), see eq. 22. This term has a dip around ∆E = 0 and is responsible for the Doppler splitting of the Auger
profile (see Figure 2a and Figure 4a of the main article).

The term
ησint = η(σ(0)

int + ζσ
(2)
int ) [36]

of eq. 33 is caused by the interference between intermediate rotational levels of the core-ionized state. This can be seen by
the fact that it is absent for the case of only one rotational level J in the core-ionized state. In this case holds J = J ′ and
Im(zJ,Jf z

∗
J,Jf

) ≡ 0 so that ησint vanishes, see eq. 34. It is important to notice that this term is proportional to η and exists
only because of the anisotropic contribution (η/2)(p̂ · R̂) to the Auger transition matrix element Ap as given in eq. 5. The
interference contribution described by eq. 36 has an antisymmetric dependence on ∆E, see Fig. S1b, since the interference of
the rotational levels is equivalent to the dynamics in the time domain (dynamical rotational Doppler effect). This is in nice
agreement with the semiclassical theory, see eqs. 16 and 17 above.

Finally we shall point out the strong correlation of the rotational and translational motions via rotational and translational
Doppler effect. For this purpose we display in Fig. S1 the individual contributions to eq. 33 once by taking the translational
Doppler effect fully into account (solid lines) and once by neglecting it (dashed lines), i.e. using in eq. 35 pu→ 0. As the most
obvious difference we see that σ(0)

int = 0 when the translational Doppler shift is absent. The reason for this correlation is that
both the translational and rotational Doppler shifts depend on the momenta k of photoelectron and of the Auger electron p.

Role of recoil-induced vibrational excitation

The recoil effect affects the probability P0ν of the vibrational excitation (11, 12)

P0ν = 1
2

∫ π

0
P0ν(θ) sin θdθ, [37]

P0ν(θ) =
∣∣〈ψ0(x)|eıαkx cos θ|ψν(x− x0)〉

∣∣2 ,
where the factor exp(ıαkx cos θ) describes the momentum exchange between the photoelectron and molecule, ψ0(x) and
ψν(x− x0) are initial and final vibrational wave functions, x = R−R0 is the displacement from the ground state equilibrium,

6 of 8 Denis Céolin, Ji-Cai Liu, Vinícius Vaz da Cruz, Hans Ågren, Loïc Journel, Renaud Guillemin, Tatiana Marchenko,
Rajesh K. Kushawaha, Maria Novella Piancastelli, Ralph Püttner, Marc Simon, and Faris Gel’mukhanov



Fig. S1. Partial cross sections σ(0), σ(2), σ(0)
int , and σ

(2)
int of the Auger process given in eq. 33 which explain the Doppler broadening

and asymmetry of the Auger profile. The calculations are performed using eq. 34 as well as a photon energy of ω = 12 keV. a, The partial cross sections σ(0)

and σ(2) form the symmetrical part of the total cross section. The dip around ∆E = 0 seen in σ(2) is responsible for the formation of the Doppler splitting (see Figure 2a and
Figure 4a of the main text). b, The contributions σ(0)

int and σ(2)
int have an antisymmetric spectral shape. These terms appear due to the quantum interference between different

rotational levels of the core-excited state and because of the anisotropy of the Auger decay. The solid and dashed lines in a and b show the partial cross sections with and
without (pu → 0) taking the translational Doppler effect into account, respectively.
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x0 = R
(i)
0 − R0 = −0.0972 a.u. (13) is the shift of the minimum of the potential of core-ionized state with respect to R0,

θ = ∠(k,R0), k =
√

2(ω − I1sC ), I1sC = 296.24 eV (3) is the ionization potential of the 1s electron of carbon. Results of
calculations of P0ν are collected in Table S1. One can see that mainly the vibrational levels ν = 0, 1, 2 are populated when the
photon energy is close to the ionization threshold (no recoil effect). The level ν = 3 is very slightly populated when the photon
energy approaches the highest energy in our experiment, ω = 12 keV: its population grows from 2% (ω = I1sC ) to 6% (ω = 12
keV). Taking into account these results, as well as the same equilibrium distance of the core-ionized and the final d1Σ+ Auger
states of CO (13), one can conclude that the role of the recoil-induced vibrational excitation is negligibly small for the effect
studied here. Our calculations for low excitation energy agree with the experimental data (14).

Table S1. Recoil induced vibrational excitation of the CO molecule

ω (keV) P00 P01 P02 P03 P04

no recoil 0.5554 0.3266 0.0960 0.0188 0.0028
2.5 0.5139 0.3408 0.1143 0.0258 0.0044
8 0.4405 0.3507 0.1494 0.0455 0.0111
12 0.3990 0.3467 0.1685 0.0611 0.0184
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