Oleuropein derivatives from olive fruit extracts reduce α-synuclein fibrillation and oligomer toxicity

Hossein Mohammad-Beigi, Farhang Aliakbari, Cagla Sahin, Charlotte Lomax, Ahmed Tawfike, Nicholas P. Schafer, Alireza Amiri-Nowdijeh, Hoda Eskandari, Ian Max Møller, Mehdi Hosseini-Mazinani, Gunna Christiansen, Jane L. Ward, Dina Morshedi, Daniel E. Otzen

Supplementary Figures S1-14 and Tables S1-3

Fig. S1. The effect of different olive fruit extracts on α SN fibrillation. First screening: Selection of the best extracts by the effect of (A) 0.025 mg/ml extract and (B) 0.3 mg/ml extract on the end-point ThT fluorescence level at 1 mg/ml α SN.

Fig. S2. SDS-PAGE analysis of the supernatants of samples of 1 mg/ml α SN incubated for 24 h in the presence of 0-0.3 mg/ml of of Koroneiki extract. Arrows highlight dimers (\approx 35 kDa) and oligomers (> 250 kDa).

Fig. S3. Oligomerization assay. (A) SEC profile of the supernatants from solutions of 1 mg/ml α SN incubated for 1 h at 37°C in the presence of different extracts. (B) Area under the peaks of small and large oligomers formed in the absence (Ctrl) and presence of 0.15 mg/ml of the best extracts.

Fig. S4. Disaggregation assay. SEC profile of the supernatants of preformed α SN fibrils incubated at 0.5 mg/ml overnight at 37°C in the absence (Ctrl) and presence of 0.15 mg/ml of the best extracts.

Fig. S5. Antioxidant activity and toxicity of the olive extracts. (A) Antioxidant activity of different olive fruit extracts at different concentrations (0.02, 0.04, 0.08, 0.12 mg/ml) measured by DPPH assay. (B) Viability of OLN-93 cells after 24 h incubation with the best olive extracts at different concentrations (0.025, 0.2, 0.5 mg/ml). (C) Oxidative stress in OLN-93 cells treated with olive extracts at different concentrations determined by DCFH-DA assay. (D) Free radical scavaging ability of the olive extracts measured in OLN-93 cells treated with 100 μ M H₂O₂. (E) Viability of SH-SY5Y cells after 24 h incubation with 0-0.5 mg/ml of the best olive extracts.

Fig. S6. HPLC chromatograms of the 7 most efficient anti-aggregative olive extracts, recorded at 230 nm.

Fig. S7. Chromatogram of Koroneiki extract using HPLC. Fractions T1-26 are indicated. The different were identified by HPLC-MS.

Fig. S8. The effect of (A) 1 mg/ml and (B) 3 mg/ml of the Koroneiki extract fractions on fibrillation of 1 mg/ml α SN. Maximum ThT fluorescence intensity normalized to control (absence of extract).

Fig. S9. The effect of Koroneiki extract fractions (3 mg/ml) on the kinetics of fibrillation of 1 mg/ml α SN monitored by ThT fluorescence.

Fig. S10. TEM images of 1 mg/ml α SN incubated alone (control) and in the presence of 3 mg/ml of Koroneiki extract fractions.

Fig. S11. SEC profiles of the supernatants of (A) samples of 1 mg/ml α SN incubated for 1 h at 37°C in an oligomerization assay and (B) 0.5 mg/ml preformed α SN fibrils preincubated overnight at 37°C with and without 3 mg/ml of Koroneiki extract fractions in a disaggregation assay.

Fig. S12. (A) Antioxidant activity of Koroneiki extract fractions (3 mg/ml) measured by DPPH assay. Viability of (B) OLN-93 and (C) SH-SY5Y cells after 24 h incubation with 1-3 mg/ml Koroneiki extract fractions.

Fig. S13. Total ion chromatograms of Koroneiki fractions

Fig. S13 (cont'd). Total ion chromatograms of Koroneiki fractions.

Relative Abundance

Fig. S14. Change in the level of compounds in the extracts of fruits picked at different maturation time (3, 4, 5, and 6 months after flowering) and their inhibitory effect on α SN fibrillation. HPLC chromatogram of the extracts (A, C, and E) and their effect on the maximum ThT fluorescence intensity (B, D, and F)

Nr	Olive Cultivar	Abbreviation	Origin	Nr	Olive Cultivar	Abbreviation	Origin
1	Koroneiki	-	Greece	9	Chenaran	T16	Iran
2	Arbequina	-	Spain	10	Khoshe	T17	Iran
3	Picual	-	Spain	11	Parseh	T18	Iran
4	Mari	-	Iran	12	Majnon	T20	Iran
5	Rowghani	-	Iran	13	Tak	T22	Iran
6	Zard	-	Iran	14	Zarin	T23	Iran
7	Yaghout	T10	Iran	15	Arghavan	T24	Iran
8	Gorgan	T15	Iran				

Table S1. Olive cultivars used in this study.

Peak	Retention time	m/z	Predicted ion formula	Delta (ppm)	MS-MS	λ _{max}	Identity or Compound class	How identified	Previously observed
	(min)								in <i>Olea</i> species? (reference)
1	7.63	153.0556	[C ₈ H ₉ O ₃] ⁻	0.94	123 (C ₇ H ₇ O ₂)	281	Hydroxytyrosol	authentic standard	Yes (1)
2	8.67	151.0401	[C ₈ H ₇ O ₃] ⁻	1.49	-	280	4-Hydroxyphenylacetate	Accurate mass.	Yes (1)
3	11.46	315.1086	[C ₁₄ H ₁₉ O ₈] ⁻	1.29	153 (C ₈ H ₉ O ₃)	278	Hydroxytyrosol glucoside	MSMS and literature data ^a	Yes (1)
4	12.33	245.1034	$[C_{11}H_{17}O_6]^-$	1.39	-	-	Unknown	-	-
5	12.41	389.1090	$[C_{16}H_{21}O_{11}]^{-}$	1.11	227 (C ₁₀ H ₁₁ O ₆), 183 (C ₉ H ₁₁ O ₄), 165 (C ₉ H ₉ O ₃), 121 (C ₈ H ₉ O), 89 (C ₃ H ₅ O ₃)		Oleoside	RT, MS, MSMS and literature data ^b	Yes (2)
6	13.25	407.1560	[C ₁₇ H ₂₇ O ₁₁] ⁻	1.21	$\begin{array}{c} 389 \ (C_{17}H_{25}O_{10}), \ 377 \\ (C_{16}H_{25}O_{10}), \ 357 \\ (C_{16}H_{21}O_{9}), \ 313 \\ (C_{15}H_{21}O_{7}), \ 183 \\ (C_{10}H_{15}O_{3}), \ 151 \\ (C_{9}H_{11}O_{2}), \ 113 \\ (C_{5}H_{5}O_{3}), \ 101 \\ (C_{4}H_{5}O_{3}), \ 89 \\ (C_{3}H_{5}O_{3}) \end{array}$		Glucosyl acyclodihydroelenolic acid isomer I	Putative from MSMS.	Yes (3)
7	13.55	407.1560	[C ₁₇ H ₂₇ O ₁₁] ⁻	1.24	$\begin{array}{c} 389 \ (C_{17}H_{25}O_{10}), \ 377 \\ (C_{16}H_{25}O_{10}), \ 357 \\ (C_{16}H_{21}O_{9}), \ 313 \\ (C_{15}H_{21}O_{7}), \ 183 \\ (C_{10}H_{15}O_{3}), \ 151 \\ (C_{9}H_{11}O_{2}), \ 113 \\ (C_{5}H_{5}O_{3}), \ 101 \\ (C_{4}H_{5}O_{3}), \ 89 \\ (C_{3}H_{5}O_{3}) \end{array}$		Glucosyl acyclodihydroelenolic acid.isomer II	Putative from MSMS. Identical to Peak 6	Yes (3)
8	17.10	435.1506	[C ₁₈ H ₂₇ O ₁₂] ⁻	0.877	$\begin{array}{c} 357 \ (C_{16}H_{21}O_9), 313 \\ (C_{15}H_{21}O_7), 183 \\ (C_{10}H_{15}O_3), 169 \\ (C_9H_{13}O_3), 151 \\ (C_9H_{11}O_2), 113 \\ (C_5H_5O_3), 101 \end{array}$	219	Formate adduct of Loganin(C ₁₇ H ₂₅ O ₁₀)	RT, MS, MSMS and literature data ^b	Yes (2)

Table S2. LC-MS data of fractions f5, 6, and 17-26 of Koroneiki extract obtained from HPLC separation

					$(C_4H_5O_3), 89$				
9	18.88	305.1038	[C ₁₆ H ₁₇ O ₆] ⁻	1.82	$\begin{array}{c} (C_{3}H_{3}O_{3}) \\ 153 \ (C_{8}H_{9}O_{3}), 151 \\ (C_{8}H_{7}O_{3}), 123 \\ (C_{7}H_{7}O_{2}) \end{array}$	217	Conjugate of hydroxytyrosol and hydroxyphenyl acetate (ie 4-(hydroxyphenyl)ethyl 2-(4-hydroxyphenyl)acetate) OR conjugate of Vanillin and hydroxy tyrosol	Putative based on MS/MSMS fragmentati on	-
10	20.70	609.1514	$[C_{27}H_{29}O_{16}]^{-1}$	1.17	300 (C ₁₅ H ₈ O ₇)	253, 354	Rutin	Authentic standard	Yes (2)
11	21.08	653.2030	[C ₃₀ H ₃₇ O ₁₆] ⁻	1.30	$\begin{array}{c} 621 \ (C_{29}H_{33}O_{15}), 459 \\ (C_{20}H_{27}O_{12}), 179 \\ (C_{9}H_{7}O_{4}), 161 \\ (C_{9}H_{5}O_{3}), 151 \\ (C_{8}H_{7}O_{3}) \end{array}$		Methoxyverbascoside	RT, MS, MSMS and literature data ^b	Yes (2)
12	21.27	447.0934	$[C_{21}H_{19}O_{11}]^{-1}$	1.18	285 (C ₁₅ H ₉ O ₆)	346	Luteolin-7-glucoside	Authentic standard	Yes(2)
13	21.35	453.2337	$[C_{20}H_{37}O_{11}]^{-}$	0.63	$\begin{array}{c} 321 \ (C_{15}H_{29}O_7 \), 233 \\ (C_9H_{13}O_7), 191 \\ (C_7H_{11}O_6), 161 \\ (C_6H_9O_5), 113 \\ (C_5H_5O_3), 101 \\ (C_4H_5O_3) \end{array}$	218	Unknown	-	-
14	21.46	241.0719	$[C_{11}H_{13}O_6]^{-1}$	0.169	139 (C ₆ H ₃ O ₄)	219.,328	Unknown	-	
15	21.49	623.2022	[C ₂₂ H ₃₉ O ₂₀] ⁻	-0.71	$\begin{array}{c} 461 \ (C_{16}H_{29}O_{15}), \ 179 \\ (C_{9}H_{7}O_{4}), \ 161 \\ (C_{9}H_{5}O_{3}) \end{array}$	330	Verbascoside	RT, MS, MSMS and literature data ^a	Yes (1)
16	21.50	505.2626	[C ₂₄ H ₄₁ O ₁₁] ⁻		$\begin{array}{c} 251 \ (C_9H_{15}O_8 \), 191 \\ (C_7H_{11}O_6), 149 \\ (C_3H_9O_5), 131 \\ (C_5H_7O_4), 101 \\ (C_4H_5O_3), 89 \\ (C_3H_5O_3) \end{array}$		Unknown diglycoside	-	-
17	21.86	505.2625	[C ₂₄ H ₄₁ O ₁₁] ⁻		$\begin{array}{c} 373 \ (C_{19}H_{33}O_7 \), \ 233 \\ (C_9H_{13}O_7), \ 161 \\ (C_6H_9O_5), \ 89 \\ (C_3H_5O_3) \end{array}$		Unknown diglycoside	-	-
18	21.89	465.2323	n.d.		$\begin{array}{c} 333 \ (C_{16}H_{29}O_7), \ 233 \\ (C_9H_{13}O_7), \ 161 \\ (C_6H_9O_5), \ 113 \\ (C_5H_5O_3), \ 101 \end{array}$	218	Unknown		-

					(C ₄ H ₅ O ₃), 89				
					$(C_{3}H_{5}O_{3})$				
19	22.08	465.2332	n.d.		333 (C ₁₆ H ₂₉ O ₇), 233	218	Unknown, isomer of 18	-	-
					$(C_9H_{13}O_7), 161$				
					$(C_6H_9O_5), 113$				
					$(C_5H_5O_3), 101$				
					$(C_4H_5O_3), 89$				
					$(C_3H_5O_3)$				
20	22.32	543.2047	$[C_{25}H_{35}O_{13}]^{-1}$	-2.55	$377 (C_{16}H_{25}O_{10}), 357$		Dihydrooleuropein	RT, MS,	Yes (4)
					$(C_{16}H_{21}O_9), 313$			MSMS.	
					$(C_{15}H_{21}O_7), 197$			And ref ^a	
					$(C_{10}H_{13}O_4), 101$				
					$(C_4H_5O_3)$				
		623 2041	$[C_{1}]$	1 21	461 (C. H. O.) 170		Verbasooside isomer		$V_{es}(2)$
		023.2041	$[C_{22}II_{39}O_{20}]$	1.21	$(C_1H_1O_1)$ (161)		verbaseoside isomer		1 cs (2)
					$(C_0H_1O_4), 101$				
21	22.73	701 2235	$[C_{21}H_{41}O_{19}]^{-1}$	-5.92	$377 (C_{10}H_{21}O_8) 307$	219	Oleuropein glycoside isomer	RT MS	Yes(2)
21	22.15	101.2235	[03]114]018]	5.52	$(C_{15}H_{15}O_7), 275$	219	Stearopein grycosiae isomer	MSMS.	105(2)
					$(C_{15}H_{15}O_5), 221$			And ref ^b	
					$(C_8H_{13}O_7), 179$				
					$(C_6H_{11}O_6), 149$				
					$(C_8H_5O_3), 101$				
					$(C_4H_5O_3)$				
22	22.99	701.2213	$[C_{31}H_{41}O_{18}]^{-1}$	-7.44	377 (C ₁₉ H ₂₁ O ₈), 307	219	Oleuropein glycoside isomer	RT, MS,	Yes(2)
					(C ₁₅ H ₁₅ O ₇), 275			MSMS.	
					$(C_{15}H_{15}O_5), 221$			And ref ^b	
					(C ₈ H ₁₃ O ₇), 179				
					$(C_6H_{11}O_6), 149$				
					$(C_8H_5O_3), 101$				
					$(C_4H_5O_3)$				
23	23.01	447.0924	$[C_{21}H_{19}O_{11}]^{-1}$	-0.91	$285 (C_{15}H_9O_6)$	328	Luteolin glycoside isomer	By MSMS	Yes(2)
24	23.22	467.2479	$[C_{21}H_{39}O_{11}]^{-1}$	-0.81	$335 (C_{16}H_{31}O_7), 233$	219	Terpene diglycoside	-	-
					$(C_9H_{13}O_7), 161$		(Putative)		
					$(C_6H_9O_5), 101$				
					$(C_4H_5O_3), 89$				
25	22.22	551 1416		1.04	$(U_3\Pi_5U_3)$	210	ainnamayl hydroxyla aarin	Dutativa	
23	25.52	551.1410	$[C_{21}\Pi_{27}O_{14}]$	1.94	$101 (C_9\Pi_5O_3)$	219	$(\mathbf{D}\mathbf{I}\mathbf{T}\mathbf{A}\mathbf{T}\mathbf{I}\mathbf{V}\mathbf{F})$	Putative;	
							(101A11VE)		
		701.2344	$[C_{21}H_{20}O_{11}]^{-1}$	5.70	539, 371 (C16H10O10)	220, 328	Oleuropein-glucoside or		
	1	, 01.2011	-2137-11	2.70		,0	Sieuropeni Bracobide of		1
					307 (C15H15O7). 275		Aleuricine A/B		

					$\begin{array}{c} (C_{11}H_{11}O_5), 179 \\ (C_6H_{11}O_6), 149 \\ (C_8H_5O_3) \end{array}$				
26	23.43	381.1555	[C ₁ 9H ₂₅ O ₈] ⁻	1.11	$\begin{array}{c} 231 \ (C_{10}H_{15}O_6 \), \ 201 \\ (C_9H_{13}O_5), \ 183 \\ (C_9H_{11}O_4), \ 151 \\ (C_9H_{11}O_{2}), \ 139 \\ (C_8H_{11}O_2) \end{array}$		HT-ACDE. (Hydroxytyrosylacyldihydro -elenolate)	RT, MS, MSMS.	Yes (5)
27	23.54	573.2135	n.d.		$\begin{array}{c} 345 \ (C_{15}H_{21}O_9), 225 \\ (C_{12}H_{17}O_4), 209 \\ (C_{10}H_9O_5), 183 \\ (C_9H_{11}O_4), 165 \\ (C_9H_9O_3), 141 \\ (C_7H_9O_3), 121 \\ (C_8H_9O) \end{array}$	219	Unknown	-	-
28	24.00	539.1771	[C ₂₅ H ₃₁ O ₁₃] ⁻	1.21	$\begin{array}{c} 403 \ (C_{13}H_{23}O_{14}), \ 223 \\ (C_{11}H_{11}O_5), \ 179 \\ (C_6H_{11}O_6), \ 119 \\ (C_4H_7O_4), \ 113 \\ (C_5H_5O_3), \ 101 \\ (C_4H_5O_3), \ 95 \ (C_6H_7O) \end{array}$	346	Oleuroside isomer	MS, MSMS	-
29	24.10	549.2870	n.d	2.32	$\begin{array}{c} 417 \ (C_{21}H_{37}O_8),\\ 233 (C_9H_{13}O_7), \ 161 \\ (C_6H_9O_5). \end{array}$	219	Unknown		
		377.1241	[C ₁₉ H ₂₁ O ₈] ⁻	0.96	$\begin{array}{c} 307 \ (C_{15}H_{15}O_7), 275 \\ (C_{14}H_{11}O_6), 149 \\ (C_8H_5O_3), 139 \\ (C_7H_7O_3), 127 \\ (C_6H_7O_3), 111 \\ (C_5H_3O_3), 111 \\ (C_5H_3O_3), 101 \\ (C_4H_5O_3), 95 \ (C_6H_7O) \end{array}$		Oleuropein aglycone isomer	RT, MS, MSMS. And ref ^b	Yes (2)
30	24.29	569.1924	[C ₂₆ H ₃₃ O ₁₄] ⁻	-4.11	$\begin{array}{c} 537 \left(C_{25}H_{29}O_{13} \right) 403 \\ \left(C_{17}H_{23}O_{11} \right), 371 \\ \left(C_{16}H_{19}O_{10} \right), 305 \\ \left(C_{15}H_{13}O_{7} \right), 223 \\ \left(C_{11}H_{11}O_{5} \right), 151 \\ \left(C_{8}H_{7}O_{3} \right) \end{array}$		Methoxyoleuropein	RT, MS, MSMS. And ref ^b	Yes (2)
		527.2092	$[C_{25}H_{35}O_{12}]^{-1}$	4.72	$\begin{array}{c} 377 \; (\mathrm{C_{16}H_{25}O_{10}} \;), \; 313 \\ (\mathrm{C_{15}H_{21}O_{7}}), \\ 101(\mathrm{C_4H_5O_3}) \end{array}$		Coumaroyl bearing derivative	MSMS	

		377.1241			$\begin{array}{c} 307 \ (C_{15}H_{15}O_7), \ 275 \\ (C_{14}H_{11}O_6), \ 197 \\ (C_{10}H_{13}O_4), \ 165 \\ (C_9H_9O_3), \ 149 \\ (C_8H_5O_3), \ 139 \\ (C_7H_7O_3), \ 121 \\ (C_8H_9O), \ 111 \\ (C_5H_3O_3), \ 111 \\ (C_5H_3O_3), \ 101 \\ (C_4H_5O_3), \ 95 \ (C_6H_7O) \end{array}$		Oleuropein aglycone isomer	RT, MS, MSMS. And ref ^b	Yes (2)
31	24.61	539.1745	[C ₂₅ H ₃₁ O ₁₃] ⁻	-1.44	$\begin{array}{c} 403 \ (C_{13}H_{23}O_{14}), \ 371 \\ (C_{16}H_{19}O_{10}), \ 307 \\ (C_8H_{19}O_{12}), \ 275 \\ (C_{15}H_{15}O_5), \ 223 \\ (C_{11}H_{11}O_5), \ 179 \\ (C_6H_{11}O_6), \ 149 \\ (C_8H_5O_3) \ 119 \\ (C_4H_7O_4), \ 101 \\ (C_4H_5O_3), \ 95 \ (C_6H_7O) \end{array}$	222, 282	Oleuropein	RT, MS, MSMS. And ref ^b	Yes (2)
32	24.90	535.1430	[C ₂₅ H ₂₇ O ₁₃] ⁻	-1.61	$\begin{array}{c} 389 \ (C_{16}H_{21}O_{11}), \ 345 \\ (C_{15}H_{21}O_{9}), \ 307 \\ (C_{15}H_{15}O_{7}), \ 265 \\ (C_{13}H_{13}O_{6}), \ 235 \\ (C_{12}H_{11}O_{5}), \ 205 \\ (C_{11}H_{9}O_{4}), \ 163 \\ (C_{9}H_{7}O_{3}) \ 145 \\ (C_{9}H_{5}O_{2}), \ 121 \\ (C_{8}H_{9}O) \end{array}$	219, 312	6'-(E)-p-coumaroyl- secologanoside	MS, MSMS	Yes (4)
33	25.16	539.1730	[C ₂₅ H ₃₁ O ₁₃] ⁻	1.91	$\begin{array}{c} 403\ (C_{13}H_{23}O_{14}),\ 327\\ (C_{18}H_{15}O_6),\ 307\\ (C_{15}H_{15}O_7),\ 275\\ (C_{15}H_{15}O_7),\ 275\\ (C_{15}H_{15}O_5),\ 223\\ (C_{11}H_{11}O_5),\ 197\\ (C_{10}H_{13}O_4),\ 165\\ (C_9H_0O_3),\ 149\\ (C_8H_5O_3)\ 139\\ (C_7H_7O_3),\ 119\\ (C_4H_7O_4),\ 101\\ (C_4H_5O_3),\ 95\ (C_6H_7O) \end{array}$	219	Oleuropein Isomer	RT, MS, MSMS. And ref ^b	Yes (2)
34	25.35	565.1511	[C ₂₆ H ₂₉ O ₁₄] ⁻	-4.04	345 (C ₁₅ H ₂₁ O ₉), 295 (C ₁₄ H ₁₅ O ₇), 235	220, 327	Unknown	-	-

-									
					$(C_{12}H_{11}O_5), 193$				
					$(C_{10}H_9O_4), 175$				
					$(C_{10}H_7O_3), 161$				
					$(C_9H_5O_3)$				
35	25.62	539.1793	$[C_{25}H_{31}O_{13}]^{-1}$	3.35	403 (C ₁₃ H ₂₃ O ₁₄), 371		Oleuroside Isomer	MS.MSMS	
			[20 01 10]		$(C_{16}H_{19}O_{10}), 327$,	
					$(C_{18}H_{15}O_6), 307$				
					$(C_{15}H_{15}O_7), 275$				
					$(C_{15}H_{15}O_5), 223$				
					$(C_{11}H_{11}O_5), 197$				
					$(C_{10}H_{13}O_4), 165$				
					$(C_9H_0O_3), 149$				
					(C ₈ H ₅ O ₃) 139				
					(C ₇ H ₇ O ₃), 119				
					(C ₄ H ₇ O ₄), 101				
					(C ₄ H ₅ O ₃), 95 (C ₆ H ₇ O)				
36	25.77	543.2459	$[C_{26}H_{39}O_{12}]^{-1}$	2.31	$375 (C_{16}H_{23}O_{10}), 357$	220	Dihydro oleuropein	RT, MS,	Yes (2)
					$(C_{16}H_{21}O_9), 227$			MS-MS	
					$(C_{12}H_{19}O_4), 213$				
					$(C_{10}H_{13}O_5), 199$				
					$(C_{11}H_{19}O_3), 185$				
					$(C_{10}H_{17}O_3), 169$				
					$(C_9H_{13}O_3), 151$				
					$(C_9H_{11}O_2)$ 125				
					$(C_7H_9O_2), 113$				
27	25.00	525 1 470		2.22	$(C_5H_5O_3)$	220, 200			
37	25.99	535.1479	$[C_{25}H_{27}O_{13}]^{-1}$	3.33	$389 (C_{16}H_{21}O_{11}), 345$	220, 300	Coumaroyl-secologanoside	MS. MS-	
					$(C_{15}H_{21}O_9), 30/$		Isomer	MS	
					$(C_{15}H_{15}O_7), 265$				
					$(C_{13}\Pi_{13}O_6), 255$				
					$(C_{12}\Pi_{11}O_5), 203$ $(C_{12}\Pi_{11}O_5), 163$				
					$(C_1 H_0 O_4), 105$ $(C_2 H_0 O_2) 145$				
					$(C_0H_cO_0)$ 121				
					$(C_{0}H_{0}O)$				
38	26.30	377,1243	[C19H21 O8]-	0.29	307 (C15H15O7). 275	220, 286	Isomer of oleuropein	MSMS	
50	20.50	277.1213		0.2	$(C_{14}H_{11}O_6), 171$,	aglycone	10101010	
					$(C_7H_7O_5), 149$		<i></i>		
					$(C_8H_5O_3), 139$				
					(C ₇ H ₇ O ₃), 127				
					$(C_6H_7O_3), 113$				
					(C ₅ H ₅ O ₃) 111				

					$(C_5H_3O_3), 101$				
					$(C_4H_5O_3), 95(C_6H_7O)$				
39	26.60	523.1780	$[C_{25}H_{31}O_{12}]^{-1}$	3.12	361 (C ₁₉ H ₂₁ O ₇), 291	220, 276	Ligstroside (or isomer)	MSMS	Yes (6)
					$(C_{15}H_{15}O_6), 259$				
					$(C_{15}H_{15}O_4), 101$				
					$(C_4H_5O_3)$				
40	27.00	555.2100	$[C_{26}H_{35}O_{13}]^{-1}$	2.74	511 (C ₂₅ H ₃₅ O ₁₁) 345	220	Hydroxyoleuroside	RT, MS,	Yes(2)
					$(C_{15}H_{21}O_{9}), 327$			MSMS and	
					$(C_{15}H_{19}O_8), 225$			ref ^b	
					$(C_{12}H_{17}O_4), 197$				
					$(C_{11}H_{17}O_3), 183$				
					$(C_{10}H_{15}O_3), 165$				
					$(C_9H_9O_3), 155$				
					$(C_5H_5O_3), 139$				
					$(C_6H_3O_4), 121$				
					(C_8H_9O)				
41	27.15	493.1330	$[C_{23}H_{25}O_{12}]^{-1}$	-1.04	$327 (C_{15}H_{19}O_8), 209$	220	Unknown		
					$(C_{10}H_9O_5), 183$				
					$(C_9H_{11}O_4), 165$				
					$(C_9H_9O_3), 135$				
					(C ₈ H ₇ O ₂), 121				
					$(C_7H_5O_2)$				
42	27.46	555.2040	$[C_{26}H_{35}O_{13}]^{-1}$	-3.20	345 (C ₁₅ H ₂₁ O ₉), 327	220	Hydroxyoleuroside isomer	MS, MSMS	
					$(C_{15}H_{19}O_8), 225$				
					(C ₁₂ H ₁₇ O ₄), 197				
					$(C_{11}H_{17}O_3), 183$				
					$(C_{10}H_{15}O_3), 165$				
					$(C_9H_9O_3), 155$				
					$(C_5H_5O_3), 139$				
					$(C_6H_3O_4), 121$				
					(C_8H_9O)				
43	27.70	377.1243	$[C_{19}H_{21}O_8]^-$	0.21	307 (C ₁₅ H ₁₅ O ₇), 275	220	Isomer of oleuropein	RT, MS,	Yes(2)
					$(C_{14}H_{11}O_6), 191$		aglycone	MSMS and	
					$(C_{10}H_7O_4), 171$			ref ^b	
					(C7H7O5), 149				
					(C ₈ H ₅ O ₃), 139				
					(C ₇ H ₇ O ₃), 127				
					(C ₆ H ₇ O ₃), 111				
					(C ₅ H ₃ O ₃), 101				
					(C ₄ H ₅ O ₃), 95 (C ₆ H ₇ O)				
44	28.10	461.2013	$[C_{21}H_{33}O_{11}]^{-1}$	-0.43	$167 (C_{10}H_{15}O_2)$		Unknown	-	-

45	28.14	393.1191	$[C_{19}H_{21}O_{9}]^{-1}$	1.05	$317 (C_{17}H_{17}O_6), 181$	220	Hydroxyoleuropein	Putative	-
					$(C_9H_9O_4), 137$		aglycone	from	
					$(C_8H_9O_2)$			MSMS data	
46	28.29	557 2192	$[C_{26}H_{27}O_{12}]^{-1}$	-3.68	$345 (C_{15}H_{21}O_{9}) 227$	220	6'-O-[(2E)-2 6-dimethyl-8-	MSMS data	Yes(4)
	20.29	007.2172		5.00	$(C_{12}H_{10}O_4)$ 199	220,	hydroxy-2-	momo dulu	105(1)
					$(C_{12}H_{19}O_{2}), 185$		octenovilsecologanoside		
					$(C_1, H_1, O_2), 165$		oetenoyijseeologanoside		
					$(C_{10}H_{17}O_3), 103$				
					$(C_{9}H_{9}O_{3}), 139$				
					$(C_6\Pi_3O_4), 121$				
1=	20.05		1		(C_8H_9O)				
47	29.95	545.2563	n.d.	-	-	-	Unknown	-	-
48	30.08	377.1242	$[C_{19}H_{21}O_8]^{-1}$	1.10	307 (C ₁₅ H ₁₅ O ₇), 275		Oleuropein aglycone	RT, MS,	Yes(2)
					$(C_{14}H_{11}O_6), 191$			MSMS and	
					$(C_{10}H_7O_4), 171$			ref ^b	
					$(C_7H_7O_5), 149$				
					$(C_8H_5O_3), 139$				
					(C ₇ H ₇ O ₃), 127				
					$(C_6H_7O_3), 111$				
					$(C_5H_3O_3), 101$				
					(C ₄ H ₅ O ₃), 95 (C ₆ H ₇ O)				
49	31.19	377.1243	$[C_{19}H_{21}O_8]^{-1}$	0.24	307 (C ₁₅ H ₁₅ O ₇), 275		Isomer of oleuropein	MSMS data	
					$(C_{14}H_{11}O_6), 191$		aglycone		
					$(C_{10}H_7O_4), 171$				
					$(C_7H_7O_5), 149$				
					$(C_8H_5O_3), 139$				
					$(C_7H_7O_3), 127$				
					$(C_6H_7O_3), 111$				
					$(C_5H_2O_3)$ 101				
					$(C_4H_5O_3), 95 (C_6H_7O)$				
50	32.21	943 3442	[C42H50O22]-	0.05	$513 (C_{25}H_{20}O_4) 345$	222	Unknown	-	_
00	02.21	,		0.00	$(C_{15}H_{21}O_{0})$ 227				
					$(C_{13}H_{21}C_{9}), 227$ $(C_{12}H_{10}O_{4}), 209$				
					$(C_{12}H_{19}O_{4}), 209$				
					$(C_{10}H_{17}O_{2}), 105$				
					$(C_{10}H_{17}O_{3}), 103$				
					$(C_{2}H_{2}O_{3}), 149$				
					$(C_8\Pi_5O_3), 139$				
					$(C_6\Pi_3O_4), 121$				
					$(C_8H_9O), 101$				
1	1	1			$(C_4H_5O_3)$			1	1

Nr	Fraction	Major compounds
1	5	Hydroxytyrosol, Hydroxytyrosol glucoside, and Oleoside
2	6	Acyclodihydroelenolic acid glucoside isomer, Loganin
3	17	Rutin
4	18	Verbascoside
5	19	Dihydro oleuropein
6	20	Oleuropein glucoside
7	21	Oleuropein
8	22	Oleuropein and Coumaroyl-secloganoside
9	23	Dimethyl- Hydroxyoctenoyl-secologanoside
10	24	Hydroxyoleuropein aglycone, Oleuropein aglycone
11	25	Oleuropein aglycone
12	26	Oleuropein aglycone

Table. S3. Major compounds identified in fractions from the Koroneiki extract

References

- Maalej, A., Bouallagui, Z., Hadrich, F., Isoda, H., and Sayadi, S. (2017) Assessment of Olea europaea L. fruit extracts: Phytochemical characterization and anticancer pathway investigation. *Biomedicine & Pharmacotherapy* 90, 179–186
- 2. Michel, T., Khlif, I., Kanakis, P., Termentzi, A., Allouche, N., Halabalaki, M., and Skaltsounis, A.-L. (2015) UHPLC-DAD-FLD and UHPLC-HRMS/MS based metabolic profiling and characterization of different Olea europaea organs of Koroneiki and Chetoui varieties. *Phytochemistry Letters* **11**, 424–439
- 3. Rubio-Senent, F., Martos, S., Lama-Muñoz, A., Fernández-Bolaños, J. G., Rodriguez-Gutiérrez, G., and Fernández-Bolaños, J. (2015) Isolation and identification of minor secoiridoids and phenolic components from thermally treated olive oil by-products. *Food chemistry* **187**, 166–173
- 4. Obied, H. K., Prenzler, P. D., Ryan, D., Servili, M., Taticchi, A., Esposto, S., and Robards, K. (2008) Biosynthesis and biotransformations of phenol-conjugated oleosidic secoiridoids from *Olea europaea* L. *Natural product reports* **25**, 1167–1179
- 5. Obied, H. K., Karuso, P., Prenzler, P. D., and Robards, K. (2007) Novel secoiridoids with antioxidant activity from Australian olive mill waste. *Journal of agricultural and food chemistry* **55**, 2848–2853
- 6. Gariboldi, P., Jommi, G., and Verotta, L. (1986) Secoiridoids from Olea europaea. Phytochemistry 25, 865-869