S1 Figure

CLUSTAL Omega (version 1.2.4) multiple sequence alignment of the low-affinity and high affinity sites of human NRF2 (bold) which bind to the Keap 1 propeller protein and proposed similar sites in the *P. falciparum* WD40 repeat protein.

NRF2 P£W7K5T2	QQDMDLIDILWRQDIDLGVSR-EVFDFSQRRKEYELEKQKKLDKGLNSFIILWKINETSFLDPIKKFYYNCEENEKKRTHIYNNKKKNQDEYDINQINDNTI:::::::::::::::::::::::::::::::::::	54 177
NRF2 P£W7K5T2	EKERQEQLQKEQEKA-FFAQLQLDEETGE 82 DNSSENGDAINNNVGYECIDISHDNRYICALTEEKIYIKSNTKYDDETGE 227 :: *. : : : : : *:****	

In NRF2 there are seven lysine (K) residues between the 2 sites, six of which are destined to be ubiquitinated in the propeller. In the *P. falciparum* WD40 repeat protein there are six Lys residues between the putative low and high affinity sites. A closely similar picture for putative low and high affinity sites in WD40 was confirmed in *P. reichenowi* and *P. gaboni*, although sufficient sequence was not available in the PlasmoDB database to confirm the similarity of the proposed high affinity binding site in other species.