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APPENDIX

A. Details of bias calculation from Section 4

We define the vector (Y,X,X∗, C, C∗) to be jointly normal, and write this distribution as


Y
X
X∗

C
C∗

 ∼ N


µy

µx

µx∗

µc

µc∗

 ,


σ2
y σyx Σyx∗ Σyc Σyc∗

σ2
x Σxx∗ Σxc Σxc∗

Σx∗ Σx∗c Σx∗c∗

Σc Σcc∗

Σc∗




We impose the following models:

Y = β0 + β1X + ε

X = Cα+ εx

X∗ = C∗α+ ε∗x
Recall that we also defined our exposure, W as
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W = µX(α̂) + ΣX,X∗(φ̂)ΣX∗,X∗(φ̂)−1(X∗ − µX∗(α̂))

= Cα̂+ ΣX,X∗(φ̂)ΣX∗,X∗(φ̂)−1(X∗ − C∗α̂)

Where the random variables, C,C∗, and X∗ are normally distributed and therefore W is normally

distributed. We are interested in the coefficients of the model that regresses Y on W, i.e the

conditional distribution of Y given W, which can now be written as

Y |W ∼ N

(
µy +

σyw
σ2
w

(W − µw), σ2
y −

σ2
yw

σ2
w

)

and the coefficient of interest is the one that lies in front of W in the mean component of the

above conditional distribution. Using this we can derive the bias conditional on a given set of

monitors and estimates of the first stage model parameters, θ̂

E(β̂1|θ̂) = f(θ̂)

=
σyw
σ2
w

=
cov(Y,W )

cov(W,W )

=
cov(Xβ + ε,W )

cov(W,W )

= β1
cov(X,W )

cov(W,W )

= β1

{
A

B

}
Where

A = αΣcα̂+ αΣ̂xx∗Σ̂−1
x∗ Σc∗cα− αΣ̂xx∗Σ̂−1

x∗ Σc∗cα̂+ Σ̂xx∗Σ̂−1
x∗ Σx∗x

B = α̂Σcα̂+ αΣ̂xx∗Σ̂−1
x∗ Σc∗Σ̂−1

x∗ Σ̂x∗xα+ Σ̂xx∗Σ̂−1
x∗ Σx∗Σ̂−1

x∗ Σ̂x∗x

+ α̂Σ̂xx∗Σ̂−1
x∗ Σc∗Σ̂−1

x∗ Σ̂x∗xα̂+ 2α̂Σ̂xx∗Σ̂−1
x∗ Σc∗cα− 2α̂Σ̂xx∗Σ̂−1

x∗ Σc∗cα̂

− 2αΣ̂xx∗Σ̂−1
x∗ Σc∗Σ̂−1

x∗ Σ̂x∗xα̂
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Noting that all estimated covariance matrices are estimated because we need to estimate the

vector of parameters, φ, that represent the covariance function parameters. One example is Σ̂x∗ ,

where we have suppressed the dependence on φ̂. We could have alternatively written Σ̂x∗(φ̂),

though we shorten it for brevity.

To gain more intuition into this bias we can perform a taylor series expansion of f(θ̂) around

f(θ).

f(θ̂)− f(θ) ≈ ∂f(θ)

∂θ
(θ̂ − θ) +

1

2
(θ̂ − θ)T ∂

2f(θ)

∂θ∂θT
(θ̂ − θ) (A.1)

and now we can take the expectation on both sides with respect to the distribution governing

the monitoring locations. Denoting these expectations by ES∗() we see that

ES∗

(
f(θ̂)− f(θ)

)
= ES∗(β̂1 − β1)

≈ ∂f(θ)

∂θ
ES∗(θ̂ − θ) +

1

2
Tr

(
∂2f(θ)

∂θ∂θT
V arS∗(θ̂ − θ)

)
+

1

2
ES∗(θ̂ − θ)T ∂

2f(θ)

∂θ∂θT
ES∗(θ̂ − θ)

So the marginal bias (no longer conditional on an estimate of θ from the first stage model) is a

function of the bias and variance of the first stage model parameters.

B. Trade-off for variance of β̂1

In the main text, we illustrated the trade-off that comes with preferential sampling for the

measurement error variance, var(X −W ). We used this to show how preferential sampling could

lead to less measurement error variance and therefore less variance in estimating β1. Here we

illustrate directly how this trade-off manifests in the estimation of β̂1 by making simplifying

assumptions and approximations. Let’s assume that our exposure surface follows:

(
X
X∗

)
∼ N

{(
µX(α)
µX∗(α)

)
,

(
ΣX,X(φ) ΣX,X∗(φ)
ΣX∗,X(φ) ΣX∗,X∗(φ)

)}
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and that we estimate exposure W via

Wi = Ciα̂

where Ci represents a covariate and there is no intercept, because it is centered. The exposure

model parameter, α̂ is estimated using least squares as

α̂ =

∑n∗

j=1 C
∗
jX

∗
j∑n∗

j=1 C
∗
j
2

Then, conditional on our estimates, W , we estimate the parameter of our outcome model, which

again for simplification we assume is centered with no intercept and estimated via least squares

β̂1 =

∑n
i=1WiYi∑n
i=1W

2
i

=

∑n
i=1 α̂CiYi∑n
i=1 α̂

2C2
i

=
1

α̂

∑n
i=1 CiYi∑n
i=1 C

2
i

=
η̂

α̂

where now we have written the estimate of β1 as a ratio of two random variables, one of which

involves the monitor locations and the other involving the subject locations. Now we take the

variance of this ratio and apply a taylor series approximation to the variance of a ratio

var(β̂1) = var(
η̂

α̂
)

≈
(
E(η̂)

E(α̂)

)2 [
var(η̂)

E(η̂)2
+
var(α̂)

E(α̂)2
− 2

cov(η̂, α̂)

E(α̂)E(η̂)

]
We also assume that E(α̂) ≈ α regardless of the sampling scheme for the location of the monitors,

so that this term does contribute to the var(β̂1). Since η̂ is not dependent on the monitor locations,
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we can now see that only two terms in the expression for the variance of β̂1 depend on the locations

of the monitors. cov(η̂, α̂) and var(α̂) will both change as a function of the monitors. Writing

these terms out we see that

cov(η̂, α̂) = cov

(∑n
i=1 CiYi∑n
i=1 C

2
i

,

∑n∗

j=1 C
∗
jX

∗
j∑n∗

j=1 C
∗
j
2

)

=
β1

(
∑n

i=1 C
2
i )(
∑n∗

j=1 C
∗
j
2)

n∑
i=1

n∗∑
j=1

CiC
∗
j cov

(
εxi , εx∗

j

)
Which will go up on average under preferential sampling because the locations of the monitors

will be closer to the locations of the subjects. Now we can look at

var(α̂) = cov(α̂, α̂)

= cov

(∑n∗

j=1 C
∗
jX

∗
j∑n∗

j=1 C
∗
j
2
,

∑n∗

j=1 C
∗
j
2X∗

j∑n∗

j=1 C
∗
j
2

)

=
1

(
∑n∗

j=1 C
∗
j
2)2

n∗∑
j=1

n∗∑
k=1

C∗
jC

∗
kcov

(
εx∗

j
, εx∗

k

)
Which will also go up on average under preferential sampling because the monitors will be located

more closely to each other. Now we have illustrated the trade-off that comes with preferential

sampling. On one hand the variance of β̂1 will go down under preferential sampling, since the

monitors are closer to the subjects and cov(η̂, α̂) goes up leading the overall variance to go down.

On the other hand preferential sampling makes var(α̂) go up, which increases the variance of β̂1

as monitors get closer together.

C. Two dimensional simulation study

The two-dimensional study presented here will be very similar in structure to the one-dimensional

study seen in the original manuscript. We again can define our matrix of covariates that predic-

tion exposure to be C. In this case C consists of an intercept, and two covariates that repre-
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sent elevated levels of population level. We will simulate our locations s to lie in the uniform

grid, [0,1] by [0,1]. The first covariate is an indicator that si lies in the circle of radius 0.03

around the center of the grid. The second covariate is set to be

(
1− 10 ∗ ‖si −

(
0.5
0.5

)
‖
)
∗

1(si is greater than 0.03 and less than 0.08 away from the center), which effectively produces a

concentric circle where the value decreases as si moves away from the center of the grid. We

set α = (5, 3, 3), which produces a similar effect to what was seen in the paper that the highest

population area has the highest exposure, and the exposure steadily decreases as you move away

form the highest population area. We simulate under this scenario as it is the one that is most

likely to occur in Environmental Epidemiology. We use the same simple linear regression model

to simulate our outcome

Y = β0 +Xβ1 + ε

We restrict attention to the case where we have 30 monitors, though we do not expect the

results to drastically change if we increase the number of monitors. Figure C.1 shows the mea-

surement error variance, absolute bias of β1, and variance of β1 across 10,000 simulations. We see

very similar results as those seen in the one-dimensional setting as all metrics point to preferential

sampling improving inference, particularly near p = 1.

We can also look at the estimates of the exposure model parameters. Table C.1 shows the

mean and standard errors of the estimated exposure model parameters across 10,000 simulations.

We again see very similar results to those seen in the one-dimensional setting as there is very

little difference in the bias, but differences in the variances. As before there is a slight increase

in standard error of the intercept when switching from p = 0 to p = 1. Similarly to the one

dimensional case we see a decrease in the standard errors of α̂1 and α̂2 when going from p = 0

to p = 1. If we preferentially sample too far, by setting p = 2, then the standard error for α̂2

increases back to a similar magnitude as when p = 0.
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Fig. C.1. Left panel shows the measurement error variance of the predicted exposure, the middle panel
shows the absolute bias in the estimation of β1 under the three different models, and the right panel
shows the variance of β1 under the three different models.

p α0 α1 α2 φ
0.00 5.00 (0.12) 3.00 (0.38) 3.00 (0.36) 0.03 (0.08)
0.50 5.00 (0.13) 3.00 (0.32) 3.00 (0.31) 0.03 (0.08)
1.00 5.00 (0.15) 3.00 (0.29) 3.00 (0.3) 0.02 (0.08)
1.50 5.00 (0.18) 3.01 (0.28) 3.01 (0.31) 0.02 (0.07)
2.00 4.99 (0.23) 3.01 (0.31) 3.01 (0.35) 0.02 (0.07)

Table C.1. Mean and standard errors of exposure model parameters across 10,000 simulations. True
values are α0 = 5, α1 = 3, α2 = 3, φ = 0.05

D. Simulation study with confounders in health outcome model

This simulation will follow the exact same structure as in the manuscript, though we change the

outcome model to be the following:

Y = β0 +Xβ1 + Zβz

where Z is a matrix representing two confounders. We simulated one confounder to come from

a standard Normal distribution, and another to be bernoulli with probabilty 0.3. Our exposure

model now takes the following form

X = Cα+ Zαz

where as before, α = (5, 3, 3,−3), and now αz = (1, 1). In our outcome model we again set



8 J Antonelli and others

β0 = 100, β1 = 5, and βz = (1,−1). For brevity we will restrict attention to the scenario where we

have 30 monitors, though we don’t expect the results to substantively differ for different numbers

of monitors. Figure D.1 shows results from this simulation. Each panel represents one of the key

figures from the simulation study in the main manuscript (figures 2-4) in the manuscript. The left

panel shows the measurement error variance across 10000 simulations, the middle panel shows

the absolute bias of β1, and the right panel shows the variance of β1. We see essentially identical

patterns as what we saw in the manuscript when we did not include a vector of confounders.

All three figures point to the fact that preferential sampling, particularly when p = 1, leads to

improved inference overall.
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Fig. D.1. Left panel shows the measurement error variance of the predicted exposure, the middle panel
shows the absolute bias in the estimation of β1 under the three different models, and the right panel
shows the variance of β1 under the three different models.
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