ELECTRONIC SUPPLEMENTARY MATERIAL

Effect of eight weeks' oral supplementation with 3-µg cyano-B12 or hydroxo-B12 in a vitamin B12-deficient population

European Journal of Nutrition (EJON)

Eva Greibe^{1*}, Namita Mahalle², Vijayshri Bhide², Sergey Fedosov³, Christian W. Heegaard³, Sadanand Naik^{2*}, Ebba Nexo¹

¹Department of Clinical Biochemistry and Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark (EG, EN); ²Department of Pathology, Deenanath Mangeshkar Hospital and Research Center, Pune, India (NM, VB, SN); ³Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark (SF, CWH).

*Address correspondence and reprint requests to Eva Greibe, Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark. Phone: +45 26 39 10 09. Email: <u>greibe@clin.au.dk</u>

ONLINE RESOURCES 1

Data fitting and comparison of the treatment models.

Changes in total serum Cbl (Δ Cbl = Cbl – Cbl₀) and holoTC (Δ holoTC = holoTC – holoTC₀) from the respective baselines (X₀) were calculated for each patient (Fig. 2). The data were plotted over time as three datasets (CN-group, HO-group, and placebo group), and the points for each group were fitted using an exponential function:

$$y = A_1 + A_2 \cdot (1 - e^{-A_3 \cdot t})$$
 Eq. 1

where y is the dependent variable (either Δ Cbl or Δ holoTC); A_1 is the baseline value; A_2 is the maximal amplitude of change; A_3 is the rate constant of change; t corresponds to the time of

treatment (independent variable). The fitting procedure included three parameters: fixed $A_1 = 0$ and floating A_2 and A_3 . The fixed zero parameter A_1 was retained in Eq. 1 (and the covariance matrix) because its error adds to the errors of A_2 and A_3 making their statistical estimates more realistic. The probability (p_i) of zero value for each parameter A_i was assessed by t-test, and the overall probability of "zero" model ($A_1 = A_2 = A_3 = 0$) was given as $p_1 \cdot p_2 \cdot p_3 = p_2 \cdot p_3$ ($p_1 = 1$ for the assigned $A_1 = 0$). The parameters A_1 , A_2 , A_3 of different groups were aligned and compared pairwise (e.g. $A_{2,CN} \pm SE$ for CN-group vs. $A_{2,HO} \pm SE$ for HO-group) and possible equality of the two values was assessed using t-test. The overall identity of the two models (e.g. CN-group vs. HO-group) was given as $p_1 \cdot p_2 \cdot p_3$.

Changes in MMA and Hcy over time were presented as ratios between the concentration at a given time point and the concentration at the baseline (e.g. MMA/MMA₀). Difference from the baseline (Δ MMA and Δ Hcy) could not be used because this value is proportional to the baseline concentration (MMA₀ and Hcy₀). At a limited concentration interval, the dependence on baseline can be compensated by division (X/X₀). The ratios were plotted as three datasets (for CN-group, HO-group and placebo group) and fitted by a linear function. The choice was taken after the initially attempted fitting Eq.1, which gave the curves of a nearly linear shape (not shown). The used function was recorded as follows:

 $y = A_0 + A_1 \cdot t \qquad \text{Eq. 2}$

where *y* is the ratio (dependent variable); A_0 is the baseline value (assigned as 1); A_1 is the slope (floating parameter); *t* is the time. The approach to analysis of the fits was identical to the procedure for Eq. 1, expect for $A_1 = 1$ for a "zero" model.

Marker CN-B12 HO-B12 placebo $p_{\rm i}$ of $p_{\rm i}$ of p_i of response Treatment $A_{\rm i} = 0 \text{ or } 1$ treatment $A_{\rm i} = 0 \text{ or } 1$ treatment $A_{\rm i} = 0 \text{ or } 1$ Cbl Eq. 1 Eq. 1 Eq. 1 0.0 ± 6.0 0.0 ± 5.8 0.0 ± 3.0 $A_1 \pm SE, (p_1)$ (1) (1) (1) $(3 \cdot 10^{-14})$ $(2 \cdot 10^{-5})$ $A_2 \pm SE, (p_2)$ 55.0 ± 6.4 36.7 ± 8.4 7.1 ± 3.3 (0.035) $(6 \cdot 10^{-4})$ 0.33 ± 0.21 (0.11) $A_3 \pm SE, (p_3)$ 0.78 ± 0.22 0.53 ± 0.64 (0.41) $(2 \cdot 10^{-17})$ $(2 \cdot 10^{-6})$ (*p*, overall) (0.014) holoTC Eq. 1 Eq. 1 Eq. 1 0.0 ± 1.4 (1.0) 0.0 ± 1.4 (1.0) 0.0 ± 0.7 (1.0) $A_1 \pm SE, (p_1)$ $A_2 \pm SE, (p_2)$ 4.9 ± 1.5 (0.0011) 4.0 ± 1.5 (0.011) -1.2 ± 0.75 (0.14) $A_3 \pm SE$, (p_3) 0.50 ± 2.3 2 ± 5 2.1 ± 2.3 (0.38)(0.32)(0.69)(*p*, overall) (0.0042)(0.0036)(0.10)MMA Eq. 2 Eq. 2 Eq. 2 1.0 ± 0.06 1.0 ± 0.03 (1.0) 1.0 ± 0.06 (1.0) $A_1 \pm SE, (p_1)$ (1.0) $A_2 \pm SE, (p_2)$ -0.022 ± 0.013 (0.082) -0.032 ± 0.007 $(3 \cdot 10^{-5})$ 0.017 ± 0.011 (0.16) $(3 \cdot 10^{-5})$ (*p*, overall) (<u>0.082</u>) (0.16)Eq. 2 Hcy Eq. 2 Eq. 2 $A_1 \pm SE, (p_1)$ 1.0 ± 0.04 (1.0) 1.0 ± 0.05 1.0 ± 0.03 (1) (1.0) $(6 \cdot 10^{-4})$ $A_2 \pm SE, (p_2)$ -0.002 ± 0.008 (0.82) 0.00 ± 0.01 (0.96) 0.023 ± 0.006 (*p*, overall) (0.82)(0.96) $(6 \cdot 10^{-4})$

Table S1. Parameters of the fitting models (approximating relative responses to treatments with CN-B12, HO-B12, and placebo, Fig. 2).

Table S2. Probability of equal fitting models for CN-B12 vs. HO-B12 treatments and eachtreatment vs. placebo (Fig. 2).

Marker	<i>p</i> of	<i>p</i> of	<i>p</i> of
	CN-B12 = HO-B12	CN-B12 = placebo	HO-B12 = placebo
ΔCbl	0.011	$1.6 \cdot 10^{-10}$	8.7 · 10 ⁻⁴
ΔholoTC	0.34	$3.3 \cdot 10^{-4}$	0.0026
MMA/MMA ₀	0.54	0.025	$5.8 \cdot 10^{-4}$
Hcy/Hcy ₀	0.86	0.016	<u>0.067</u>