S2 Appendix: Simulation of dynamic network

We can simulate the dynamic network of partnerships using the following algorithm, which takes as inputs: the size of the network N, the distribution of λ , $f(\lambda)$, the desired power-law coefficient γ and $k_0 = \lim_{\lambda \to 0} \kappa(\lambda)$.

- 1. choose k_{∞} to be as large as possible, subject to the condition that $g(\infty) \leq 1$
- 2. draw $\lambda_1, \ldots, \lambda_N$ from $f(\lambda)$
- 3. simulate partnerships in network at time t = 0, where $\mathbb{P}(\{j, l\} \in \mathcal{P}(0)) = q_0(\lambda_j, \lambda_l) = 1 \frac{1}{1 + \frac{1}{4}}$
- 4. calculate $g(\lambda)$
- 5. generate an *N*x*N* matrix of the rates of partnership formation that each possible set of partners *A*, where:

$$A_{j,l} = \min\left\{-\ln\left(\left(1 - g(\lambda_j)g(\lambda_l)\right)\left(1 + \frac{1}{\phi}\right)\right), \frac{1}{50\phi}\right\}$$

- 6. set $A_{j,j} \coloneqq 0$ for all $j = 1, \ldots, N$
- 7. determine initial event rates $\hat{R}_a(0), R_d(0)$ (note that $\hat{R}_a(t) \ge R_a(t)$ as rejection sampling is used)
 - rate of adding partnerships $\hat{R}_a(t) = \sum_{j=1}^N \sum_{l=j+1}^N a(\lambda_j, \lambda_l)$ (time invariant)
 - rate of deleting partnerships $R_d(0) = \sum_{j,l \in \mathcal{P}(0)} d(\lambda_j, \lambda_l)$
- 8. While t < T where initially t = 0:
 - (a) Generate a time, $\tau \sim \text{Exp}(\hat{R}(t))$ after which the next event, *e* takes place;
 - (b) update the time

$$t \coloneqq t + \tau$$

(c) Determine which event took place by sampling $e \in \{a, d\}$ where

$$\mathbb{P}[e] = \frac{R_e(t-\tau)}{\hat{R}(t-\tau)}$$

- if the event sampled is a partnership formation (e = a):
 - i. propose two individuals $\{j, l\}$ from the population with probability $\frac{a(\lambda_j, \lambda_l)}{\hat{R}_a(t-\tau)}$.
 - ii. check the partnership does not already exist, if $\{j, l\} \in \mathcal{P}(t \tau)$ reject an move on to next step;
 - iii. else, accept and update the state of the model

$$\mathcal{P}(t) \coloneqq \mathcal{P}(t-\tau) \cup \{j, l\}$$
$$N_P(t) \coloneqq N_P(t-\tau) + 1$$

iv. increase rate of partnership breakups

$$R_d(t) \coloneqq R_d(t-\tau) + d(\lambda_j, \lambda_l)$$

- if the event sampled is a partnership breakup (e = d):
 - i. sample a partnership to breakup $\{j, l\}$ from the current couples $\mathcal{P}(t \tau)$ with probability $\frac{d(\lambda_j, \lambda_l)}{R_d(t \tau)}$

ii. update the state of the model

$$\mathcal{P}(t) \coloneqq \mathcal{P}(t-\tau) \setminus \{j, l\}$$

$$N_P(t) \coloneqq N_P(t-\tau) - 1$$

iii. decrease rate of partnership breakups

$$R_d(t) \coloneqq R_d(t-\tau) - d(\lambda_j, \lambda_l)$$

(d) next step

9. return the states of the model $\mathcal{P}(t)$ for all sampled times t

At any given time we have

- $\hat{R}_a(t) = \sum_{j=1}^N \sum_{l=j+1}^N a(\lambda_j, \lambda_l);$
- $R_d(t) = \sum_{\{j,l\} \in \mathcal{P}(t-\tau)} d(\lambda_j, \lambda_l);$