

advances.sciencemag.org/cgi/content/full/5/3/eaav0316/DC1

Supplementary Materials for

Newly developed reversible MAO-B inhibitor circumvents the shortcomings of irreversible inhibitors in Alzheimer's disease

Jong-Hyun Park, Yeon Ha Ju, Ji Won Choi, Hyo Jung Song, Bo Ko Jang, Junsung Woo, Heejung Chun, Hyeon Jeong Kim, Su Jeong Shin, Oleg Yarishkin, Seonmi Jo, Mijeong Park, Seul Ki Yeon, Siwon Kim, Jeongyeon Kim, Min-Ho Nam, Ashwini M. Londhe, Jina Kim, Sung Jin Cho, Suengmok Cho, Changho Lee, Sung Yeoun Hwang, Sang Wook Kim, Soo-Jin Oh, Jeiwon Cho, Ae Nim Pae, C. Justin Lee*, Ki Duk Park*

*Corresponding author. Email: cjl@kist.re.kr (C.J.L.); kdpark@kist.re.kr (K.D.P.)

Published 20 March 2019, *Sci. Adv.* **5**, eaav0316 (2018) DOI: 10.1126/sciadv.aav0316

This PDF file includes:

Supplementary Results

Supplementary Materials and Methods

Fig. S1. General procedure for the preparation of KDS compounds.

Fig. S2. Structure-activity relationship of the synthesized compounds.

Fig. S3. The KINOMEscan screening results with 1000 nM KDS2010 for off-target selectivity.

Fig. S4. Mode of KDS2010 binding with MAO-B.

Fig. S5. Three-day and 2-day interactions of selegiline, KDS2010, and KDS0014 inside MAO-B.

Fig. S6. Acute treatment of KDS2010 (3 days) restored memory impairment in APP/PS1 mice.

Fig. S7. Passive avoidance test for learning and memory in APP/PS1 mice with 2-week KDS2010 treatment.

Fig. S8. KDS2010 significantly recovers spatial learning and memory in Morris water maze.

Fig. S9. Model diagrams of long-term treatment of AD with either irreversible or reversible MAO-B inhibitors.

Fig. S10. Data distribution of bar graphs.

Table S1. Inhibitory effects of the synthesized compounds against hMAO enzymes.

Table S2. In vitro and in vivo ADME/Tox profile of KDS2010.

Table S3. In vivo pharmacokinetic parameters of KDS2010.

Table S4. KDS2010 interactions with 87 primary molecular targets including GPCRs, kinases, non-kinase enzymes, nuclear receptors, transporters, and various ion channels.

Table S5. KDS2010 interactions with 97 kinase including TK, TKL, STE, CK1, AGC, CAMK, CMGC, ATYPICAL, LIPID, and Mutant form.

Table S6. Detailed information for statistical analysis.

Table S7. Primer sequences for each enzyme (F: forward primer and R: reverse primer).

Supplementary Results

Reversibility test

To investigate the reversibility of KDS2010 MAO-B inhibition, we measured MAO-B inhibition after three separate washes. First, the inhibitory activities of 1 μ M KDS2010 and 1 μ M selegiline, an irreversible MAO-B inhibitor, were examined. Both compounds inhibited human MAO-B (hMAO-B) activity by over 90%. Next, an aliquot of the enzyme solution containing 1 μ M of compound was washed using an effective centrifugation ultrafiltration method. After 3 repeat washes of the KDS2010 sample, 82% of the hMAO-B enzymatic activity was recovered, indicating that KDS2010 is a reversible inhibitor. However, enzymatic activity was not recovered in the assay performed with selegiline (Fig. 2E).

Mode of MAO-B inhibition of KDS2010

To examine the mode of MAO-B inhibition, substrate-dependent kinetic experiments were performed, and both the corresponding progression curves and the Lineweaver–Burk plots were generated. The Michaelis–Menten kinetic parameters, Michaelis constant (K_m) and maximal velocity (V_{max}) of hMAO-B inhibition were determined in the presence and absence of KDS2010. The Lineweaver–Burk plot for different concentration of KDS2010 was linear and intersected at the *y*-axis. Using Sigma plot[®], V_{max} , K_m and inhibition constant (K_i) were calculated ($V_{max} = 3.303e^{+7}$, $K_m = 1.02e^{-4}$ and $K_i = 2.48e^{-9}$). These results indicate that KDS2010 is a competitive MAO-B inhibitor (Figure S3).

Molecular modeling

We performed a molecular docking study to investigate the KDS2010 binding site on hMAO-B. Fig. 2G shows an overlay of the KDS2010 binding pose inside the hMAO-B protein with that of selegiline, which covalently binds to FAD. KDS2010 had a very compact binding pose with a glide score of -10.611 kcal/mol. The fluorine atom formed one halogen bond with PRO102 (Fig. 2G, middle). KDS2010 formed two hydrogen bonds with GLN206. In the hydrophobic region of the binding cavity, the central benzene ring of KDS2010 was engaged through π -sulfur interaction with CYS172 and π - π T-shaped interactions with TYR326, which is the "gating" residue in the MAO-B inhibitor binding site. The binding mode of KDS2010 was compared to that of selegiline (Fig. 2G, right). The alkyne group of selegiline formed a covalent bond with FAD, and the phenyl group was fixed in position inside the inhibitor binding site by two π -type interactions with TYR326 and CYS172.

We also have shown 3D and 2D interactions of Selegiline, KDS2010, and KDS0014 (Fig. S5). Figures in the main article (Fig. 2) rendered by pymol software. 2D and 3D-zoomed figures of interactions were prepared using Discovery Studio 2018 Software. KDS0014 has a slightly lower docking score of -9.820 kcal/mol but has a similar interactions with KDA2010. Hydrogen bond interactions with GLN206, pi-sulfur contact with CYS172, pi-pi-static interactions with TYR326, and pi-alkyl contacts with ILE199, ILE171 are similar to KDS2010.

Overall KDS2010 possibly occupied the same binding cavity as selegiline but formed more compact reversible interactions with important residues according to the molecular modeling results.

In vitro and *in vivo* Absorption, Distribution, Metabolism and Excretion/Toxicity (ADME/Tox) studies

To determine whether KDS2010 has good drug-like properties for clinical candidate, we performed various *in vitro* and *in vivo* ADME/Tox tests. First, KDS2010 showed favorable metabolic stabilities against 4 selected liver microsomal enzymes (human, dog, rat, and mouse), with 92%, 61%, 60% and 66% of the parent compound remaining after 30 min of incubation, respectively. Plasma stabilities of KDS2010 in both human and rat were also excellent, with 98% and 95% of the parent compound remaining after 120 min of incubation, respectively (table S2). In the CYP inhibition test, the KDS2010 IC₅₀ values against 5 tested isotypes (1A2, 2C9, 2C19, 2D6, and 3A4) were over 10 μ M, indicating that KDS2010 is not likely to cause adverse effects by means of drug-drug interactions (table S2). In the *in vivo* toxicity studies, no significant toxicities were observed after oral administration of either a single dose tested up to 1,000 mg/kg body weight or 14 consecutive doses tested up to 200 mg/kg/day. Therefore, the No Observed Adverse Effect Level (NOAEL) for KDS 2010 was > 1,000 mg/kg and > 200 mg/kg/day for single dose and 14-day repeated doses, respectively (table S2). In addition, in a hERG channel binding assay, KDS2010 exerted low inhibitory effects against hERG, an important cardiac ion channel, indicating that it is unlikely to cause human cardiotoxicity.

In vivo Pharmacokinetics/Blood-Brain Barrier (PK/BBB) study

We investigated *in vivo* PK of KDS2010 and observed an excellent PK profile with a favorable half-life ($t_{1/2} = 3.3\pm0.2$ h), high drug exposure in the blood after oral administration ($C_{max} = 952.1\pm80.3$), and excellent bioavailability (F = 123%). The total drug concentration in the brain 2 h after oral administration (10 mg/kg body weight) was very high (6,716.3\pm260.6 ng/g) and the brain-to-plasma total drug concentration ratio (brain total drug concentration/plasm total drug concentration, B/P; 2h after oral administration) was 9.2, indicating that KDS2010 is a suitable CNS drug (table S3).

Supplementary Materials and Methods

Kinetic studies of MAO-B inhibition

To examine the interaction mode of KDS2010, the type of enzyme inhibition was determined by using Michaelis-Menten kinetic experiments. The detailed MAO-B enzyme assay is described in the online methods. Briefly, the catalytic rates of human MAO-B enzyme were measured at six different concentrations of the benzylamine substrate (0.063, 0.125, 0.25, 0.5, 1 and 2 mM) in the absence or in the presence of four different concentrations of KDS2010 (0.1, 0.3, 1, 3 and 10 nM). The corresponding progression curves and the Lineweaver-Burk plots were generated using Sigma plot[®]. In addition, the maximal velocity (V_{max}), Michaelis constant (K_m) and inhibition constant (K_i) were calculated.

Pharmacokinetic study

Rats (Sprague-Dawlery) were purchased from Koatech (Korea), and maintained in a specific pathogen-free facility (Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Korea). Rats (250-300 g) at 7-week of age were fasted for 16 h and used in the pharmacokinetic experiments. Control blood was collected from the jugular vein prior to KDS2010 administration. For oral administration, four rats were treated with a suspension of KDS2010 in 10% DMSO, 15% water, and 75% PEG400 at a dose of 10 mg/kg via oral gavage. For intravenous administration, KDS2010 was injected at a dose of 1 mg/kg via the caudal vein. Dosing volume of KDS2010 was 600 µL for oral and 200 µL for intravenous administration. Blood from the jugular vein was collected in heparinized tubes at 0.08, 0.25, 0.5, 1, 2, 4, 6 and 8 h after compound administration. The plasma was isolated from the blood samples by centrifugation at 12,000 rpm for 15 min. Then, 20 µL of plasma was mixed with 80 µL of acetonitrile (Sigma) containing internal standard and centrifuged at 14,000 rpm for 5 min. The plasma supernatants were collected and loaded into triple quadrupole LC-MS/MS (Triple Quad 5500, Applied Biosystems) to measure the KDS2010 serum concentration. The standard curve range was 5 to 1000 ng/mL and the lower limit of quantification of measurements was 5 ng/mL. Pharmacokinetic parameters were analyzed by non-compartmental analysis using Phoenix WinNolin version 6.4 (Pharsight).

To determine the brain-to-plasma ratio (B/P), brains obtained from rats 2 h after oral administration (10 mg/kg) were washed three times with PBS to remove blood and homogenized in 4 volumes per brain weight of PBS. In total, 20 μ L of brain homogenate was added to 80 μ L acetonitrile and the mixture was centrifuged at 14,000 rpm for 5 min. The supernatant was analyzed using the method described above to determine the brain KDS2010 concentration.

In vivo toxicity

In vivo toxicity studies were performed by Medicilon (Medicilon Preclincal Research LLC.). For single dose tests, the rats (Sprague Dawley, n=10/group) were administered KDS2010 at 250, 500, 1000 or 2000 mg/kg via oral gavage and changes in mortality, body weight, and food consumption were monitored for 14 days. For the repeated dose test, the rats (n=20/group) were given KDS2010 at 50, 100 and 200 mg/kg/day for 14 consecutive days via oral gavage and sacrificed on day 15th for pathological assessments. The volume for each administration was 10 mL/kg/day.

In vitro assays for CYP inhibition

The luminescence assay using the P450-Glo screening systems (Promega) was used to determine is KDS2010 inhibits CYP. The luminogenic inhibition assays were performed following the protocols from Promega Corp. (Technical Bulletin, P450-Glo Assays, Promega Corp., 2009). Briefly, a CYP enzyme and an appropriate substrate were combined in potassium phosphate (KPO₄) buffer (100 mM, pH 7.4) with or without KDS2010, and the reaction was initiated by adding an NADPH regenerating system (containing NADP⁺, glucose-6-phosphate, magnesium chloride (MgCl₂) and glucose-6-phosphate dehydrogenase). After incubation at 37 °C for 10-30 min (different incubation time depending on the isotype), the reconstituted luciferin detection reagent was added to stop the reaction and produce the luminescent signal. After 20 min of incubation to stabilize the signal, luminescence was detected using microplate reader (SpectraMax[®]i3, Molecular Devices) and the values were reported as relative light unit (RLU).

Assessment of metabolic stability

To assess the stability of KDS2010 against human liver microsomes, reaction mixture (120 μ L) consisting of 1 μ M KDS2010, human liver microsomal fractions (0.5 mg/mL,

Corning[®]UltraPoolTM HLM150), NADPH-regenerating system (10 mM glucose-6-phosphate, 0.2 U/ml glucose-6-phosphate dehydrogenase and 9.2 mM MgCl₂), and 100 mM potassium phosphate (pH 7.4) was pre-incubated for 5 min at 37 °C. The reaction was initiated by addition of NADPH (1.2 mM). At 0 and 30 min, samples (50 μ L) were taken from the reaction mixture, combined with acetonitrile (50 μ L), and centrifuged at 10,000×g for 10 min. The supernatants were analyzed by LC/MS/MS to detect the remaining KDS2010.

To assess the stability of KDS2010 against plasma enzymes, human plasma (198 μ L Sigma-Aldrich) was pre-incubated for 5 min at 37 °C and then 2 μ L of KDS2010 (100 μ M, final concentration 1 μ M) was added. At 0, 15 and 30 min, samples (50 μ L) were taken from the reaction mixture, combined with acetonitrile (50 μ L), and centrifuged at 10,000×g for 5 min. The supernatants were analyzed by LC/MS/MS to detect the remaining KDS2010. The percentage of the parent compound remaining was calculated by comparing peak areas.

hERG channel inhibition assay

hERG channel binding assay was performed using predictor hERG fluorescence polarization assay (#PV5365, Invitrogen) according to the manufacturer's instructions. Briefly, KDS2010 was serially diluted (16 points, 3–fold) and incubated with the reaction mixture containing hERG membrane, fluorescence tracer red dye and fluorescence polarization buffer for 4 h at 25 °C. Fluorescence (Excitation at 530 nm, Emission at 590 nm) was measured using a multi-mode microplate reader (Synergy Neo, Biotek). E-4031 was used as a positive standard (IC₅₀ = 10-90 nM).

General Synthetic Method

Melting points were determined in open capillary tubes using a Standford Research Systems melting point apparatus and were uncorrected. Reactions progression was checked using analytical thin-layer chromatography (TLC) plates (#1.05715, Merck) and analyzed with 254 nm and 365 nm ultraviolet light. The reaction mixtures were purified by flash column chromatography using silica gel (#1.09385, Merck). Nuclear magnetic resonance (NMR) spectral data were obtained at either 300 MHz (¹H) or 400 MHz (¹H) and at75 MHz (¹³C) or 100 MHz (¹³C) using a BRUKER apparatus. Chemical shifts (δ) were expressed in parts per million (ppm) from Tetramethylsilane (TMS), the internal standard and coupling constants (*J*) were expressed

in hertz and assigned as follows: s, singlet; d, doublet; t, triplet; q, quartet; AB_q, AB quartet; br, broad. All chemical reagents and solvents were of reagent grade, used without further purification and were purchased from commercial sources. Low-resolution mass spectrometry was performed on a liquid chromatograph mass spectrometer (SHIMADZU Excellence in Science, LCMS-2020). Analytical HPLC was performed using a Waters E2695 system equipped with a SHISEIDO capcell pak C₁₈ MG II column (4.6 mm × 150 mm; 5 µm). HPLC data were recorded using the following parameters: 1% acetic acid in H₂O/MeCN, 90/10 \rightarrow 0/100 in 10 min, +10 min isocratic hold, flow rate of 1.0 mL/min, $\lambda = 254$ and 280 nm. Compounds were checked by using TLC, ¹H and ¹³C NMR and LR-MS. The TLC, NMR, and the analytical data confirmed that the purity of the products was $\geq 95\%$.

General procedure for the aldehyde compounds (2a-2k) (Method A)

A mixture of 4-bromobenzaldehyde, the desired quantitiy of arylboronic acid (**1a–1k**) (1.3 equiv), tetrakis(triphenylphosphine)palladium(0) (4-8 mol%), and Na₂CO₃ (4.86 equiv) in degassed toluene/H₂O (7/3) was refluxed for 18 h. The reaction mixture was filtered through celite and concentrated *in vacuo*. The resulting residue was dissolved in EtOAc (200 mL), and washed with H₂O (2 × 200 mL). The organic layer was dried with anhydrous Na₂SO₄ and concentrated *in vacuo*. The residue was purified by using column chromatography on silica gel.

General procedure for the free amine compounds (3a–3k) (Method B)

To a solution of L-alaninamide hydrochloride (1.2 equiv, > 95% optical purity) in anhydrous methanol, triethylamine (TEA, 1.5 equiv) was added, and then the desired biphenyl aldehyde (**2a–2k**) was added at room temperature. After 2-5 h, the reaction mixture was concentrated *in vacuo*. The residue was dissolved in EtOAc and washed with brine. The organic layer was dried over anhydrous Na₂SO₄, and then sodium cyanoborohydride (4-6 equiv) was added to the reaction mixture at 0°C. The reaction mixture was stirred at room temperature (18 h) and further concentrated *in vacuo*. The residue was dissolved in EtOAc (150 mL) and washed with brine (2 × 150 mL). The organic layer was dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The residue was dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The residue was dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The residue was dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The

General procedure for the final KDS compounds (Method C)

Methanesulfonic acid (1.00-1.25 equiv) was added to a solution of amine 3a-3k (1 equiv) in EtOAc at 50-55°C. After 1 h, the reaction mixture was cooled to room temperature, filtered *in vacuo* and washed with EtOAc. The filter cake was dried, yielding the desired compounds without further purification.

2'-Fluoro-[1,1'-biphenyl]-4-carbaldehyde (2a)

Using Method A, 4-bromobenzaldehyde (1.00 g, 5.40 mmol), 2-fluorophenylboronic acid (**1a**) (0.97 g, 6.92 mmol), tetrakis(triphenylphosphine)palladium(0) (0.25 g, 0.216 mmol) and Na₂CO₃ (2.78 g, 26.3 mmol) in toluene/H₂O (50 mL/7.2 mL) gave **2a** as a white solid (0.26 g, 24%); R_f = 0.65 (n-Hexane/EtOAc 9/1); mp 43–45 °C; ¹H NMR (300 MHz, DMSO–*d*₆) δ 10.07 (s, C(O)**H**), 7.98-8.06 (m, 2Ar**H**), 7.79 (dd, *J* = 1.6, 8.2 Hz, 2Ar**H**), 7.62 (td, *J* = 1.7, 7.9 Hz, 1Ar**H**), 7.49–7.55 (m, 1Ar**H**), 7.44–7.49 (m, 2Ar**H**); ¹³C NMR (100 MHz, CDCl₃) δ 191.9 (**C**(O)H), 159. 8 (d, *J*_{C-F} = 247.7 Hz), 142.0, 135.4, 130.7 (d, *J*_{C-F} = 14.4 Hz), 130.2 (d, *J*_{C-F} = 8.3 Hz), 129.8, 129.7 (d, *J*_{C-F} = 7.5 Hz), 127.8 (q, *J*_{C-F} = 13.1 Hz), 124.6, 116.3 (d, *J*_{C-F} = 20.8 Hz) (Ar**C**).

3'-Fluoro-[1,1'-biphenyl]-4-carbaldehyde (2b)

Using Method A, 4-bromobenzaldehyde (2.98 g, 16.09 mmol), 3-fluorophenylboronic acid (**1b**) (3.91 g, 20.60 mmol), tetrakis(triphenylphosphine)palladium(0) (0.74 g, 0.64 mmol) and Na₂CO₃ (8.29 g, 78.2 mmol) in toluene/H₂O (148.9 mL/21.4 mL) gave **2b** as a white solid (2.64 g, 82%); $R_f = 0.30$ (n-Hexane/EtOAc 15/1); mp 33–35 °C; ¹H NMR (400 MHz, DMSO– d_6) δ 10.07 (s, C(O)**H**), 8.01 (d, J = 8.3 Hz, 2Ar**H**), 7.96 (d, J = 8.3 Hz, 2Ar**H**), 7.63–7.67 (m, 2Ar**H**), 7.54–7.59 (m, 1Ar**H**), 7.27–7.31 (m, 1Ar**H**); ¹³C NMR (75 MHz, DMSO– d_6) 193.0 (**C**(O)**H**), 163.1 (d, $J_{C-F} = 242.4$ Hz, **C**F), 144.8 (d, $J_{C-F} = 2.2$ Hz), 141.6 (d, $J_{C-F} = 7.9$ Hz), 135.9, 131.4 (d, $J_{C-F} = 2.2$ Hz)

8.4 Hz), 130.5, 127.9, 123.6 (d, $J_{C-F} = 2.6$ Hz), 115.7 (d, $J_{C-F} = 20.9$ Hz), 114.3 (d, $J_{C-F} = 22.3$ Hz) (Ar**C**).

4'-Fluoro-[1,1'-biphenyl]-4-carbaldehyde (2c)

Using Method A, 4-bromobenzaldehyde (1.50 g, 8.11 mmol), 4-fluorophenylboronic acid (**1c**) (1.45 g, 10.38 mmol), tetrakis(triphenylphosphine)palladium(0) (0.75 g, 0.65 mmol) and Na₂CO₃ (4.18 g, 39.40 mmol) in toluene/H₂O (75 mL/10.8 mL) gave **2c** as a white soild (1.51 g, 93%); $R_f = 0.25$ (n-Hexane/EtOAc 10/1); mp 79–80 °C; ¹H NMR (400 MHz, DMSO– d_6) δ 10.05 (s, C(O)**H**), 7.99 (d, J = 8.1 Hz, 2Ar**H**), 7.90 (d, J = 8.1 Hz, 2Ar**H**), 7.84 (d, J = 5.7 Hz, 2Ar**H**), 7.81 (d, J = 5.7 Hz, 2Ar**H**), 7.32–7.37 (m, 2Ar**H**); ¹³C NMR (75 MHz, CDCl₃) δ 191.8 (**C**(O)H), 163.2 (d, $J_{C-F} = 246.9$ Hz, **C**F), 146.1, 135.9 (d, $J_{C-F} = 3.3$ Hz), 135.2, 130.3, 129.1 (d, $J_{C-F} = 8.2$ Hz), 127.5, 116.0 (d, $J_{C-F} = 86.1$ Hz) (Ar**C**).

2'-Chloro-[1,1'-biphenyl]-4-carbaldehyde (2d)

Using method A, , 4-bromobenzaldehyde (3.00 g, 16.21 mmol), 2-chlorophenylboronic acid (**1d**) (3.25 g, 20.75 mmol), tetrakis(triphenylphosphine)palladium(0) (0.75 g, 0.65 mmol) and Na₂CO₃ (8.35 g, 78.8 mmol) in toluene/H₂O (150 mL/21.6 mL) gave **2d** as a white soild (0.39 g, 11%); R_f = 0.20 (n-Hexane/EtOAc 5/1); mp 71–72 °C; ¹H NMR (300 MHz, DMSO–d₆) δ 10.08 (s, C(O)**H**), 8.00 (d, J = 7.9 Hz, 2Ar**H**), 7.67 (d, J = 7.9 Hz, 2Ar**H**), 7.58–7.64 (m, 1Ar**H**), 7.44–7.52 (m, 3Ar**H**); ¹³C NMR (75 MHz, DMSO–d₆) δ 193.1 (**C**(O)H), 145.0, 139.2, 135.8, 131.6, 130.6, 130.5, 1300.4, 129.8, 128.1 (Ar**C**).

3'-Chloro-[1,1'-biphenyl]-4-carbaldehyde (2e)

Using Method A, 4-bromobenzaldehyde (0.50 g, 2.7 mmol), 3-chlorophenylboronic acid (**1e**) (0.52 g, 3.24 mmol), tetrakis(triphenylphosphine)palladium(0) (0.12 g, 0.11 mmol) and Na₂CO₃ (1.39 g, 13.13 mmol) in toluene/H₂O (25 mL/3.6 mL) gave **2e** as a white soild (0.49 g, 84%); R_f = 0.25 (n-Hexane/EtOAc 9/1); mp 49–51 °C; ¹H NMR (400 MHz, DMSO–*d*₆) δ 10.07 (s, C(O)**H**), 8.02 (d, *J* = 8.2 Hz, 2Ar**H**), 7.96 (d, *J* = 8.2 Hz, 2Ar**H**), 7.85 (s, 1Ar**H**), 7.75 (d, *J* = 7.3 Hz, 1Ar**H**), 7.57–7.50 (m, 2Ar**H**); ¹³C NMR (400 MHz, DMSO–*d*₆) δ 193.1 (**C**(O)**H**), 144.6, 141.4, 136.0, 134.4, 131.3, 131.3, 130.6, 128.8, 128.0, 127.4, 127.3, 126.3 (Ar**C**).

4'-Chloro-[1,1'-biphenyl]-4-carbaldehyde (2f)

Using Method A, 4-bromobenzaldehyde (3.00 g, 16.21 mmol), 4-chlorophenylboronic acid (**1f**) (3.25 g, 20.75 mmol), tetrakis(triphenylphosphine)palladium(0) (0.75 g, 0.65 mmol) and Na₂CO₃ (8.35 g, 78.8 mmol) in toluene/H₂O (150 mL/21.6 mL) gave **2f** as a white soild (2.73 g, 78%); R_f = 0.35 (n-Hexane/EtOAc 10/1); mp 142–145 °C; ¹H NMR (300 MHz, DMSO–d₆) δ 10.06 (s, C(O)**H**), 8.01 (d, *J* = 8.2 Hz, 2Ar**H**), 7.92 (d, *J* = 8.2 Hz, 2Ar**H**), 7.81 (d, *J* = 8.5 Hz, 2Ar**H**), 7.56 (d, *J* = 8.5 Hz, 2Ar**H**); ¹³C NMR (75 MHz, CDCl₃) δ 191.7 (C(O)H), 145.8, 138.2, 135.5, 134.8, 130.3, 129.2, 129.1, 128.6, 128.3, 127.9, 127.5 (Ar**C**).

2'-(Trifluoromethyl)-[1,1'-biphenyl]-4-carbaldehyde (2g)

Using Method A, 4-bromobenzaldehyde (3.00 g, 16.22 mmol), 2-(trifluoromethyl) phenylboronic acid (**1g**) (3.94 g, 20.76 mmol), tetrakis(triphenylphosphine)palladium(0) (0.76 g, 0.64 mmol) and Na₂CO₃ (8.36 g, 78.8 mmol) in toluene/H₂O (150 mL/21.6 mL) gave **2g** as a white solid (0.40 g, 10%); R_f = 0.25 (n-Hexane/EtOAc 15/1); mp 77–80 °C; ¹H NMR (300 MHz, CDCl₃) δ 10.08 (s, C(O)**H**), 7.93 (d, J = 8.3 Hz, 2Ar**H**), 7.78 (d, J = 7.9 Hz, 2Ar**H**), 7.46–7.65 (m, 4Ar**H**), 7.33 (d, J = 7.32 Hz, 1Ar**H**); ¹³C NMR (75 MHz, DMSO–d₆) δ 193.3 (**C**(O)H), 145.7, 139.9, 136.0, 132.9, 132.2, 130.1, 129.5, 129.1, 127.2 (q, J_{C-F} = 29.4 Hz), 126.7 (q, J_{C-F} = 5.2 Hz), 124.5 (q, J_{C-F} = 272.2 Hz) (Ar**C**).

3'-(Trifluoromethyl)-[1,1'-biphenyl]-4-carbaldehyde (2h)

Using Method A, 4-bromobenzaldehyde (0.50 g, 2.70 mmol), 3-(trifluoromethyl) phenylboronic acid (**1h**) (0.67 g, 3.51 mmol), tetrakis(triphenylphosphine)palladium(0) (0.13 g, 0.11 mmol) and Na₂CO₃ (1.43 g, 13.51 mmol) in toluene/H₂O (25 mL/3.6 mL) gave **2h** as a colorless oil (0.61 g, 97%); $R_f = 0.20$ (n-Hexane/EtOAc 15/1); ¹H NMR (400 MHz, DMSO– d_6) δ 10.10 (s, C(O)**H**), 8.00–8.10 (m, 6Ar**H**), 7.73–7.82 (m, 2Ar**H**); ¹³C NMR (75 MHz, CDCl₃) δ 191.8 (**C**(O)H), 145.6, 130.6, 135.8, 131.5 (q, $J_{C-F} = 32.2$ Hz), 130.7, 130.4, 129.6, 127.9, 125.1 (q, $J_{C-F} = 3.8$ Hz), 124.2 (q, $J_{C-F} = 3.7$ Hz), 124.0 (q, $J_{C-F} = 270.6$ Hz) (Ar**C**).

4'-(Trifluoromethyl)-[1,1'-biphenyl]-4-carbaldehyde (2i)

Using Method A, 4-bromobenzaldehyde (1.50 g, 8.11 mmol), 3-(trifluoromethyl) phenylboronic acid (**1i**) (1.97 g, 10.38 mmol), tetrakis(triphenylphosphine)palladium(0) (0.38 g, 0.32 mmol) and Na₂CO₃ (4.18 g, 39.4 mmol) in toluene/H₂O (75 mL/10.8 mL) gave **2i** as a white solid (1.17 g, 58%); R_f = 0.30 (Hexane/EtOAc 10/1); mp 73–74 °C; ¹H NMR (300 MHz, CDCl₃) δ 10.09 (s,

C(O)**H**), 7.97–8.01 (m, 2Ar**H**), 7.74–7.77 (m, 6Ar**H**); ¹³C NMR (75 MHz, CDCl₃) δ 193.2 (**C**(O)**H**), 144.6, 143.3, 136.2, 130.7, 129.2 (q, $J_{C-F} = 31.7$ Hz), 128.4, 128.3, 126.4 (q, $J_{C-F} = 3.8$ Hz), 124.6 (q, $J_{C-F} = 264.0$ Hz) (Ar**C**).

3'-(Trifluoromethoxy)-[1,1'-biphenyl]-4-carbaldehyde (2j)

Using Method A, 4-bromobenzaldehyde (2.00 g, 10.8 mmol), 3-(trifluoromethoxy) phenylboronic acid (**1j**) (2.85 g, 13.8 mmol), tetrakis(triphenylphosphine)palladium(0) (0.5 g, 0.43 mmol) and Na₂CO₃ (5.57 g, 52.5 mmol) in toluene/H₂O (100 mL/14.4 mL) gave **2j** as a colorless oil (2.15 g, 75%); R_f = 0.35 (n-Hexane/EtOAc 10/1); ¹H NMR (300 MHz, DMSO– d_6) δ 10.08 (s, C(O)**H**), 8.02 (dd, J = 1.9, 6.6 Hz, 2Ar**H**), 7.97 (dd, J = 1.9, 6.6 Hz, 2Ar**H**), 7.81–7.86 (m, 1Ar**H**), 7.76 (s, 1Ar**H**), 7.66 (t, J = 8.0 Hz, 1Ar**H**), 7.42–7.50 (m, 1Ar**H**); ¹³C NMR (75 MHz, CDCl₃) δ 191.8 (**C**(O)H), 149.8 (**C**OCF₃), 145.5, 141.9, 135.8, 130.4, 130.3, 128.7, 125.7, 120.7, 120.5 (q, J_{C-F} = 256.0 Hz), 120.0 (Ar**C**).

4'-(Trifluoromethoxy)-[1,1'-biphenyl]-4-carbaldehyde (2k)

Using Method A, 4-bromobenzaldehyde (0.50 g, 2.70 mmol), 3-methoxyphenylboronic acid (**1k**) (0.71 g, 3.46 mmol), tetrakis(triphenylphosphine)palladium(0) (0.13 g, 0.108 mmol) and Na₂CO₃ (1.39 g, 13.1 mmol) in toluene/H₂O (25 mL/3.6 mL) gave **2k** as a white solid (0.71 g, 98%); R_f = 0.65 (n-Hexane/EtOAc 9/1); mp 31–33 °C; ¹H NMR (300 MHz, DMSO–d₆) δ 10.07 (s, C(O)**H**), 7.96–8.05 (m, 2Ar**H**), 7.88–7.95 (m, 4Ar**H**), 7.51 (d, *J* = 8.0 Hz, 2Ar**H**); ¹³C NMR (75 MHz, CDCl₃) δ 191.7 (**C**(O)H), 149.5266, 145.7, 138.4, 135.5, 130.3, 128.8, 127.7, 121.4, 120.5 (q, *J*_{C-F} = 256.1 Hz) (Ar**C**).

(S)-2-(((2'-Fluoro-[1,1'-biphenyl]-4-yl)methyl)amino)propanamide (3a)

Using method B, L-alaninamide hydrochloride (0.19 g, 1.52 mmol), triethylamine (0.21 mL, 1.52 mmol) **2a** (0.25 g, 1.27 mmol) and sodium cyanoborohydride (0.13 g, 1.90 mmol) in MeOH (1.3 mL) gave **3a** as a white solid (0.21 g, 62%); $R_f = 0.10$ (EtOAc); mp 133–136 °C; ¹H NMR (300 MHz, DMSO– d_6) δ 7.26–7.58 (m, 8Ar**H**, C(O)N**H**H'), 7.01 (br s, C(O)NH**H'**), 3.59 and 3.74 (AB_q, J = 13.7 Hz, C**H**₂), 3.03 (q, J = 6.8 Hz, C**H**), 2.43 (br s, N**H**), 1.15 (d, J = 6.8 Hz, C**H**₃); ¹³C NMR (75 MHz, CDCl₃) δ 178.1 (**C**(O)), 159.8 (d, $J_{C-F} = 246.1$ Hz), 139.0, 134.9, 130.7 (d, $J_{C-F} = 3.5$ Hz), 129.2 (d, $J_{C-F} = 2.8$ Hz), 128.8 (d, $J_{C-F} = 8.2$ Hz), 128.1, 124.4 (d, $J_{C-F} = 3.7$ Hz), 116.1 (d, $J_{C-F} = 22.6$ Hz) (Ar**C**), 57.8 (**C**H), 52.2 (**C**H₂), 19.7 (**C**H₃).

(S)-2-(((3'-Fluoro-[1,1'-biphenyl]-4-yl)methyl)amino)propanamide (3b)

Using method B, L-alaninamide hydrochloride (0.58 g, 4.63 mmol), triethylamine (0.81 mL, 5.78 mmol), **2b** (0.77 g, 3.85 mmol) in MeOH (4.19 mL), and sodium cyanoborohydride (0.38 g, 5.78 mmol) in MeOH (3.85 mL) gave **3b** as a white solid (0.48 g, 45%); $R_f = 0.20$ (EtOAc); mp 128–130 °C; ¹H NMR (300 MHz, DMSO– d_6) δ 7.65 (d, J = 8.12 Hz, 2ArH), 7.48–7.52 (m, 3ArH), 7.43 (d, J = 8.2 Hz, 2ArH), 7.34 (br s, C(O)NHH'), 7.14–7.21(m, 1ArH), 6.99 (br s, C(O)NHH'), 3.59 and 3.73 (AB_q, J = 13.7 Hz, CH₂), 3.03 (q, J = 6.9 Hz, CH), 2.43 (br s, NH), 1.15 (d, J = 6.87 Hz, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 178.1 (C(O)), 163.2 (d, $J_{C-F} = 244.0$ Hz), 143.1 (d, $J_{C-F} = 7.6$ Hz), 139.3, 139.0 (d, $J_{C-F} = 2.2$ Hz), 130.3 (d, $J_{C-F} = 8.3$ Hz), 128.6, 127.3, 122.7 (d, $J_{C-F} = 2.7$ Hz), 114.1 (d, $J_{C-F} = 21.0$ Hz), 113.9 (d, $J_{C-F} = 21.9$ Hz) (ArC), 57.7 (CH), 52.2 (CH₂), 19.7 (CH₃).

(S)-2-(((4'-Fluoro-[1,1'-biphenyl]-4-yl)methyl)amino)propanamide (3c)

Using method B, L-alaninamide hydrochloride (0.37 g, 3.0 mmol), triethylamine (1.04 mL, 7.49 mmol), **2c** (0.50 g, 2.50 mmol) in MeOH (2.71 mL), and sodium cyanoborohydride (0.28 g, 3.75 mmol) in MeOH (2.50 mL) gave **3c** as a white solid (0.35 g, 51%); $R_f = 0.20$ (EtOAc); mp 129–133 °C; ¹H NMR (300 MHz, DMSO– d_6) δ 7.65–7.72 (m, 2ArH), 7.58 (d, J = 8.2 Hz, 2ArH), 7.35 (br s, C(O)NHH'), 7.24–7.31(m, 2ArH), 6.99 (br s, C(O)NHH'), 3.58 and 3.72 (AB_q, J = 13.7 Hz, CH₂), 3.03 (q, J = 6.9 Hz, CH 1.15 (d, J = 6.9 Hz, CH₃), the remaining peak was not detected and is believed to overlap with H₂O signals; ¹³C NMR (100 MHz, DMSO– d_6) δ 177.4 (C(O)), 162.2 (d, $J_{C-F} = 181.9$ Hz), 140.4, 138.0, 137.0 (d, $J_{C-F} = 2.3$ Hz), 129.0, 126.9 (d, $J_{C-F} = 5.2$ Hz), 116.2 (ArC), 56.9 (CH), 51.1 (CH₂), 19.8 (CH₃), the remaining aromatic peak was not detected.

(S)-2-(((2'-Chloro-[1,1'-biphenyl]-4-yl)methyl)amino)propanamide (3d)

Using method B, L-alaninamide hydrochloride (0.16 g, 1.44 mmol), triethylamine (0.25 mL, 3.53 mmol), **2d** (0.26 g, 1.20 mmol) in MeOH (1.30 mL), and sodium cyanoborohydride (0.32 g, 4.80 mmol) in MeOH (1.20 mL) gave **3d** as a white solid 0.16 g, 47%); $R_f = 0.15$ (EtOAc); mp 91–94 °C; ¹H NMR (300 MHz, DMSO–*d*₆) δ 7.53–7.58 (m, 1Ar**H**), 7.30–7.48 (m, 7ArH, C(O)N**H**H'), 6.98 (br s, C(O)NH**H**'), 3.60 and 3.74 (AB_q, *J* = 13.6 Hz, C**H**₂), 3.06 (q, *J* = 6.8 Hz, C**H**), 2.44 (br s, N**H**), 1.17 (d, *J* = 6.8 Hz, C**H**₃); ¹³C NMR (75 MHz, DMSO–*d*₆) δ 177.4 (C(O)), 140.7, 140.2, 137.5, 132.0, 131.8, 130.3, 129.5, 129.4, 128.2, 128.0 (Ar**C**), 57.1 (CH), 51.2 (CH₂), 19.9 (CH₃).

(S)-2-(((3'-Chloro-[1,1'-biphenyl]-4-yl)methyl)amino)propanamide (3e)

Using method B, L-alaninamide hydrochloride (0.21 g, 1.66 mmol), triethylamine (0.23 mL, 1.66 mmol), **2e** (0.30 g, 1.38 mmol), and sodium cyanoborohydride (0.13 g, 2.08 mmol) in MeOH (1.36 mL) gave **3e** as a white solid (0.22 mg, 54%); $R_f = 0.10$ (EtOAc); mp 121–123 °C; ¹H NMR (400 MHz, DMSO– d_6) δ 7.70 (s, 1ArH), 7.62–7.65 (m, 3ArH), 7.48 (t, J = 7.8 Hz, 1ArH), 7.40–7.48 (m, 3ArH), 7.34 (br s, C(O)NHH'), 6.99 (br s, C(O)NHH'), 3.59 and 3.74 (AB_q, J = 13.7 Hz, CH₂), 3.03 (q, J = 6.7 Hz, CH), 2.44 (br s, NH), 1.15 (d, J = 6.8 Hz, CH₃); ¹³C NMR (75 MHz, DMSO– d_6) δ 177.4 (C(O)), 142.7, 141.1, 137.4, 134.2, 131.2, 129.0, 127.5, 127.0, 126.7, 125.7 (ArC), 57.0(CH), 51.1(CH₂), 19.8 (CH₃).

(S)-2-(((4'-Chloro-[1,1'-biphenyl]-4-yl)methyl)amino)propanamide(3f)

Using method B, L-alaninamide hydrochloride (0.35 g, 3.00 mmol), triethylamine (0.97 mL, 6.92 mmol), **2f** (0.50 g, 2.31 mmol) in MeOH (2.51 mL), and sodium cyanoborohydride (0.23 g, 3.46 mmol) in MeOH (2.31 mL) gave **3f** as a white solid (386 mg, 58%); $R_f = 0.15$ (EtOAc); mp 166–164 °C; ¹H NMR (300 MHz, DMSO– d_6) δ 7.66–7.70 (m, 2ArH), 7.61 (d, J = 8.2 Hz, 2ArH), 7.49–7.53 (m, 2ArH), 7.42 (d, J = 8.2 Hz, 2ArH), 7.33 (br s, C(O)NHH'), 6.99 (br s, C(O)NHH'), 3.58 and 3.73 (AB_q, J = 13.7 Hz, CH₂), 3.03 (q, J = 6.8 Hz, CH), 2.43 (br s, NH), 1.08 (d, J = 6.7 Hz, CH₃); ¹³C NMR (75 MHz, DMSO– d_6) δ 177.4 (C(O)), 140.8, 139.3, 137.6, 132.6, 129.3, 129.0, 128.7, 126.9 (ArC), 56.9 (CH), 51.1 (CH₂), 19.8 (CH₃).

(S)-2-(((2'-(Trifluoromethyl)-[1,1'-biphenyl]-4-yl)methyl)amino)propanamide (3g)

Using method D, L-alaninamide hydrochloride (**13**) (0.15 g, 1.34 mmol), triethylamine (0.23 mL, 1.68 mmol) **2g** (0.28 g, 1.11 mmol) in MeOH (1.22 mL) and sodium cyanoborohydride (0.30 g, 4.48 mmol) in MeOH (1.12 mL) gave **3g** as a white solid (0.17 g, 48%); $R_f = 0.15$ (EtOAc); mp 109–111 °C; ¹H NMR (400 MHz, DMSO– d_6) δ 7.82 (d, J = 7.6 Hz, 1Ar**H**), 7.70 (t, J = 7.6 Hz, 1Ar**H**), 7.59 (t, J = 7.6 Hz, 1Ar**H**), 7.32–7.45 (m, 3Ar**H**, C(O)N**H**H'), 7.24 (d, J = 7.8 Hz, 2Ar**H**), 7.00 (br s, C(O)NH**H**'), 3.60 and 3.73 (AB_q, J = 13.7 Hz, C**H**₂), 3.05 (q, J = 6.8 Hz, C**H**), 2.48 (br s, N**H**), 1.16 (d, J = 6.8 Hz, C**H**₃); ¹³C NMR (75 MHz, DMSO– d_6) δ 177.4 (**C**(O)), 141.2, 140.7, 138.1, 132.7, 128.9, 128.4, 127.8, 127.3 (q, $J_{C-F} = 29.0$ Hz), 126.4, 124.7 (q, $J_{C-F} = 273.6$ Hz) (Ar**C**), 57.2 (**C**H), 51.2 (**C**H₂), 19.8 (**C**H₃).

(S)-2-(((3'-(Trifluoromethyl)-[1,1'-biphenyl]-4-yl)methyl)amino)propanamide (3h)

Using method B, L-alinamide hydrochloride (2.11 g, 16.91 mmol), triethylamine (2.34mL, 16.91 mmol), **2h** (3.30 g, 14.10 mmol), and sodium cyanoborohydride (1.40 g, 21.14 mmol) in MeOH (14.09 mL) gave **3h** as a white solid (1.15 g, 26%); $R_f = 0.15$ (EtOAc); mp 106–108 °C; ¹H NMR (400 MHz, DMSO–*d*₆) δ 7.94–7.99 (m, 2Ar**H**), 7.69–7.71 (m, 4Ar**H**), 7.45–7.47 (m, 2Ar**H**), 7.36 (br s, C(O)N**H**H'), 7.02 (br s, C(O)NH**H'**), 3.60 and 3.75 (AB_q, *J* = 13.8 Hz, NHC**H**₂Ar), 3.04 (q, *J* = 6.8 Hz, C**H**), 1.16 (d, *J* = 6.8 Hz, C**H**₃); ¹³C NMR (75 MHz, DMSO–*d*₆) δ 177.5 (**C**(O)), 141.6, 141.3, 137.4, 131.0, 130.4, 130.3 (q, *J*_{C-F} = 31.2 Hz), 129.1, 127.1, 124.7 (q, *J*_{C-F} = 270.8 Hz), 124.2 (q, *J*_{C-F} = 3.6 Hz) 123.3 (q, *J*_{C-F} = 3.7 Hz) (Ar**C**), 57.0 (**C**H), 51.1 (**C**H₂), 19.8 (**C**H₃).

(S)-2-(((4'-(Trifluoromethyl)-[1,1'-biphenyl]-4-yl)methyl)amino)propanamide (3i)

Using method B, L-alaninamide hydrochloride (0.30 g, 2.4 mmol), triethylamine (0.42 mL, 4.12 mmol), **2i** (0.50 g, 2.0 mmol) in MeOH (2.17 mL), and sodium cyanoborohydride (0.30 g, 3.0 mmol) in MeOH (2.0 mL) gave **3i** as a white solid (0.33 g, 53%); $R_f = 0.10$ (EtOAc); mp 144–147 °C; ¹H NMR (300 MHz, DMSO–*d*₆) δ 7.89 (d, J = 8.1 Hz, 2ArH), 7.80 (d, J = 8.3 Hz, 2ArH), 7.69 (d, J = 7.9 Hz, 2ArH), 7.47 (d, J = 8.0 Hz, 2ArH), 7.34 (br s, C(O)NHH'), 6.99 (br s, C(O)NHH'), 3.60 and 3.75 (AB_q, J = 13.8 Hz, CH₂), 3.04 (q, J = 6.8 Hz, CH), 1.15 (d, J = 6.8 Hz, CH₃), the remaining peak was not detected and is believed to overlap with H₂O signals; ¹³C NMR (75 MHz, DMSO–*d*₆) δ 177.4 (C(O)), 144.5, 141.6, 137.4, 129.1, 128.1 (q, $J_{C-F} = 31.8$ Hz), 127.7, 127.2, 126.2 (q, $J_{C-F} = 3.8$ Hz), 124.8 (q, $J_{C-F} = 270.1$ Hz) (ArC), 57.0 (CH), 51.1 (CH₂), 19.8 (CH₃).

(S)-2-(((3'-(Trifluoromethoxy)-[1,1'-biphenyl]-4-yl)methyl)amino)propanamide (3j)

Using method B, L-alaninamide hydrochloride (0.28 g, 2.25 mmol), triethylamine (0.39 mL, 2.82 mmol), **2j** (0.50 g, 1.88 mmol) in MeOH (2.04 mL) and sodium cyanoborohydride (0.17 g, 2.57 mmol) in MeOH (1.71 mL) gave **3j** as a white solid (0.34 g, 54%); $R_f = 0.10$ (EtOAc); mp 95–97 °C; ¹H NMR (300 MHz, DMSO– d_6) δ 7.55–7.76 (m, 5ArH), 7.44 (d, J = 7.8 Hz, 2ArH), 7.30–7.38 (m, 1ArH, C(O)NHH'), 6.99 (br s, C(O)NHH'), 3.59 and 3.74 (AB_q, J = 13.7 Hz, CH₂), 3.03 (q, J = 6.8 Hz, CH), 2.43 (br s, NH), 1.15 (d, J = 6.8 Hz, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 178.0 (C(O)), 149.8(COCF₃), 142.9, 139.4, 138.7, 130.1 128.6, 127.3, 125.4, 120.6 (q, $J_{C-F} = 255.7$ Hz), 119.6 (ArC), 57.7(CH), 52.2 (CH₂), 19.7 (CH₃).

(S)-2-(((4'-(Trifluoromethoxy)-[1,1'-biphenyl]-4-yl)methyl)amino)propanamide (3k)

Using method B, L-alaninamide hydrochloride (0.23 g, 1.81 mmol), triethylamine (0.25 mL, 1.81 mmol), **2k** (0.40 g, 1.51 mmol) and sodium cyanoborohydride (0.15 g, 2.26 mmol) in MeOH (1.5 mL) gave compound **3k** as a white solid (0.32 g, 62%); $R_f = 0.10$ (EtOAc); mp 129–132 °C; ¹H NMR (400 MHz, DMSO– d_6) δ 7.78 (d, J = 8.6 Hz, 2Ar**H**), 7.63 (d, J = 8.0 Hz, 2Ar**H**), 7.41–7.53 (m, 4Ar**H**), 7.34 (br s, C(O)N**H**H'), 7.00 (br s, C(O)NH**H**'), 3.59 and 3.73 (AB_q, J = 13.7 Hz, C**H**₂), 2.98–3.11 (m, C**H**), 2.42 (br s, N**H**), 1.15 (d, J = 6.8 Hz, C**H**₃); ¹³C NMR (75 MHz, CDCl₃) δ 178.1 (C(O)), 148.7 (COCF₃), 139.6, 139.1, 128.9, 128.6, 128.4, 127.3, 121.3, 120.6 (q, $J_{C-F} = 255.4$ Hz) (ArC), 57.7 (CH), 52.2 (CH₂), 19.7 (CH₃).

(S)-2-(([1,1'-Biphenyl]-4-ylmethyl)amino)propanamide methanesulfonate (KDS2051)

Using method E, to a solution of **240** (0.15 g, 0.59 mmol), methanesulfonic acid (47.84 µL, 0.74 mmol) in EtOAc (1.18 mL) gave **350** as a white solid (0.18 g, 86%); $R_f = 0.00$ (CH₂Cl₂/MeOH 10/1); mp 252–256 °C; HPLC purity: 6.2 min, >99.9%; ¹H NMR (300 MHz, DMSO–*d*₆) δ 9.19 (br s, ⁺NH₂), 7.98 (br s, C(O)NHH'), 7.75 (d, J = 8.0 Hz, 2ArH), 7.70 (d, J = 7.8 Hz, 2ArH), 7.65 (br s, C(O)NHH'), 7.60 (d, J = 8.0 Hz, 2ArH), 7.48 (t, J = 7.5 Hz, 2ArH), 7.34–7.43 (m, 1ArH), 4.10–4.20 (m, CH₂), 3.78–3.94 (m, CH), 2.37 (s, SCH₃), 1.47 (d, J = 6.8 Hz, CH₃); ¹³C NMR (75 MHz, DMSO–*d*₆) δ 170.9 (C(O)), 141.2, 139.8, 131.3, 131.2, 129.5, 128.3, 127.3, 127.2 (ArC), 55.0 (CH), 48.6 (CH₂), 40.2 (SCH₃), 16.4 (CH₃); HRMS (M + H)⁺(ESI⁺) 255.1500 [M + H]⁺ (calcd for C₁₆H₁₈N₂OH⁺ 255.1497)

(S)-2-(((2'-Fluorobiphenyl-4-yl)methyl)amino)propanamide methanesulfonate (KDS0011)

Using method C, **3a** (0.10 g, 0.37 mmol) and methanesulfonic acid (28.10 µL, 0.43 mmol) in EtOAc (1.50 mL) gave **KDS0011** as a white solid (0.12 g, 90%); $R_f = 0.00$ (CH₂Cl₂/MeOH 10/1); mp 131–135 °C; HPLC purity: 6.4 min, >99.9%; ¹H NMR (300 MHz, DMSO–*d*₆) δ 9.17 (br s, ⁺NH₂), 7.94 (br s, C(O)NHH'), 7.30–7.94 (m, 8ArH, C(O)NHH'), 4.08–4.25 (m, CH₂), 3.80 (q, *J* = 6.7 Hz, CH), 2.30 (s, SCH₃), 1.45 (d, *J* = 6.7 Hz, CH₃); ¹³C NMR (75 MHz, DMSO–*d*₆) δ 170.9 (C(O)), 159.5 (d, *J*_{C-F} = 244.6 Hz), 136.2, 131.7, 131.2 (d, *J*_{C-F} = 3.1 Hz), 130.8, 130.4 (d, *J*_{C-F} = 5.4 Hz), 129.5 (d, *J*_{C-F} = 2.7 Hz), 128.0 (d, *J*_{C-F} = 13.0 Hz), 125.5 (d, *J*_{C-F} = 3.4 Hz), 116.6 (d, *J*_{C-F} = 22.3 Hz) (ArC), 55.1 (CH), 48.7 (CH₂), 16.4 (CH₃), the SCH₃ peak was overlapped with the DMSO signals; HRMS (M + H)⁺(ESI⁺) 237.1399 [M + H]⁺ (calcd for C₁₆H₁₇FN₂OH⁺ 237.1403)

(S)-2-(((3'-Fluorobiphenyl-4-yl)methyl)amino)propanamide methanesulfonate (KDS0015)

Using method C, **3b** (0.30 g, 1.10 mmol) and methanesulfonic acid (89.36 µL, 1.38 mmol) in EtOAc (2.50 mL) gave **KDS0015** as a white solid (0.39 g, 97%); $R_f = 0.00$ (CH₂Cl₂/MeOH 10/1); mp 235–238 °C; HPLC purity: 6.4 min, >99.9%; ¹H NMR (300 MHz, DMSO–*d*₆) δ 9.15 (br s, ⁺NH₂), 7.92 (br s, C(O)NHH'), 7.81 (d, *J* = 8.3 Hz, 2ArH), 7.68 (br s, C(O)NHH'), 7.49–7.60 (m, 5ArH), 7.21–7.27 (m, 1ArH), 7.24 (m, 1ArH), 4.11–4.20 (m, CH₂), 3.76 (q, *J* = 9.3 Hz, CH), 2.30 (s, SCH₃), 1.44 (d, *J* = 9.3 Hz, CH₃); ¹³C NMR (75 MHz, DMSO–*d*₆) δ 171.0 (C(O)), 163.2 (d, *J*_{C-F} = 241.9 Hz), 142.3, 139.8, 132.0, 131.5 (d, *J*_{C-F} = 8.7 Hz), 131.2, 127.5, 123.3, 115.0 (d, *J*_{C-F} = 21.1 Hz), 113.9 (d, *J*_{C-F} = 21.9 Hz) (ArC), 55.0 (CH), 48.6 (CH₂), 16.4 (CH₃), the SCH₃ peak was overlapped with the DMSO signals; HRMS (M + H)⁺(ESI⁺) 273.1401 [M + H]⁺ (calcd for C₁₆H₁₇FN₂OH⁺ 273.1403)

(S)-2-(((4'-Fluorobiphenyl-4-yl)methyl)amino)propanamide methanesulfonate (KDS2006)

Using method C, **3c** (0.20 g, 0.73 mmol) and methanesulfonic acid (59.58 µL, 0.92 mmol) in EtOAc (1.46 mL) gave **KDS2006** as a white solid (0.24 g, 88%); $R_f = 0.00$ (CH₂Cl₂/MeOH 10/1); mp 162–164 °C; HPLC purity: 6.4 min, 97.6%; ¹H NMR (300 MHz, DMSO–*d*₆) δ 9.18 (br s, ⁺NH₂), 7.95 (br s, C(O)NHH'), 7.72–7.77 (m, 4ArH), 7.65 (br s, C(O)NHH'), 7.58 (d, *J* = 8.2 Hz, 2ArH), 7.28–7.34 (m, 2ArH), 4.12–4.15 (m, CH₂), 3.78–3.84 (m, CH), 2.37 (s, SCH₃), 1.45 (d, *J* = 6.9 Hz, CH₃); ¹³C NMR (75 MHz, DMSO–*d*₆) δ 171.0 (C(O)), 140.2, 136.3 (d, *J*_{C-F} = 3.1 Hz), 131.2, 131.1, 129.2 (d, *J*_{C-F} = 8.2 Hz), 127.3, 116.3 (d, *J*_{C-F} = 21.2 Hz) (ArC), 54.9 (CH), 48.5 (CH₂), 16.3 (CH₃), the SCH₃ peak was overlapped with the DMSO signals; HRMS (M + H)⁺(ESI⁺) 273.1399 [M + H]⁺ (calcd for C₁₆H₁₇FN₂OH⁺ 273.1403)

(S)-2-(((2'-Chlorobiphenyl-4-yl)methyl)amino)propanamide methanesulfonate (KDS2042)

Using method C, **3d** (0.10 g, 0.35 mmol) and methanesulfonic acid (28.10 µL, 0.43 mmol) in EtOAc (3.46 mL) gave **KDS2042** as a white solid (0.08 g, 63%); $R_f = 0.00$ (CH₂Cl₂/MeOH 10/1); mp 216–220 °C; HPLC purity: 6.7 min, 97.8%; ¹H NMR (300 MHz, DMSO– d_6) δ 9.18 (br s, ⁺NH₂), 7.96 (br s, C(O)NHH'), 7.67 (br s, C(O)NHH'), 7.59 (d, J = 8.1 Hz, 3ArH), 7.52 (d, J = 8.2 Hz, 2ArH), 7.39–7.47 (m, 3ArH), 4.09–4.28 (m, CH₂), 3.86–3.90 (m, CH), 2.30 (s, SCH₃), 1.47 (d, J = 6.9 Hz, CH₃); ¹³C NMR (75 MHz, DMSO– d_6) δ 170.9 (C(O)), 139.8, 139.6, 131.9, 131.8, 131.7, 130.4, 130.0, 128.1, 55.2 (CH), 48.7 (CH₂), 16.4 (CH₃), the SCH₃ peak was overlapped with the DMSO signals. The remaining peak was not detected and is believed to overlap with the observed signals; HRMS (M + H)⁺(ESI⁺) 289.1105 [M + H]⁺ (calcd for C₁₆H₁₇ClN₂OH⁺ 289.1108)

(S)-2-(((3'-Chlorobiphenyl-4-yl)methyl)amino)propanamide methanesulfonate (KDS0014)

Using method C, **3e** (0.15 g, 0.52 mmol) and methanesulfonic acid (48.90 µL, 0.75 mmol) in EtOAc (0.52 mL) gave **KDS0014** as a white solid (0.18 g, 90%); $R_f = 0.00$ (CH₂Cl₂/MeOH 10/1); mp 220–223 °C; HPLC purity: 6.9 min, 97.3%; ¹H NMR (400 MHz, DMSO–*d*₆) δ 9.16 (br s, ⁺NH₂), 7.92 (br s, C(O)NHH'), 7.81 (d, *J* = 8.14 Hz, 2ArH), 7.77 (br s, C(O)NHH'), 7.67–7.70 (m, 2ArH), 7.59 (d, *J* = 8.1 Hz, 1ArH), 7.52 (t, *J* = 7.9 Hz, 1ArH), 7.46 (d, *J* = 8.1 Hz, 1ArH), 4.12–4.20 (m, CH₂), 3.78 (q, *J* = 6.7 Hz, CH), 2.30 (s, SCH₃), 1.45 (d, *J* = 6.7 Hz, CH₃); ¹³C NMR (75 MHz, DMSO–*d*₆) δ 170.9 (C(O)), 141.9, 139.5, 134.3, 132.0, 131.3, 131.2, 128.1, 127.5, 126.9, 125.9 (ArC), 55.1 (CH), 48.6 (CH₂), 16.4 (CH₃), the SCH₃ peak was overlapped with the DMSO signals; HRMS (M + H)⁺(ESI⁺) 289.1106 [M + H]⁺ (calcd for C₁₆H₁₇ClN₂OH⁺ 289.1108)

(S)-2-(((4'-Chlorobiphenyl-4-yl)methyl)amino)propanamide methanesulfonate (KDS2005)

Using method C, **3f** (0.15 g, 0.52 mmol) and methanesulfonic acid (42.14 µL, 0.65 mmol) in EtOAc (1.04 mL) gave **KDS2005** as a white solid (0.17 g, 84%); $R_f = 0.00$ (CH₂Cl₂/MeOH 10/1); mp 220–223 °C; HPLC purity: 7.0 min, 98.2%; ¹H NMR (300 MHz, DMSO– d_6) δ 9.17 (br s, ⁺NH₂), 7.94 (br s, C(O)NHH'), 7.73–7.78 (m, 4ArH), 7.66 (br s, C(O)NHH'), 7.53–7.60 (m, 4ArH), 4.10–4.20 (m, CH₂), 3.76–3.82 (m, CH), 2.32 (s, SCH₃), 1.45 (d, *J* = 6.9 Hz, CH₃); ¹³C NMR (100 MHz, DMSO– d_6) δ 170.9 (C(O)), 139.9, 138.6, 133.2, 131.7, 131.2, 129.4, 129.0, 127.3 (ArC), 54.9, (CH), 48.5 (CH₂), 16.3 (CH₃), the SCH₃ peak was overlapped with the DMSO signals; HRMS (M + H)⁺(ESI⁺) 289.1109 [M + H]⁺ (calcd for C₁₆H₁₇ClN₂OH⁺ 289.1108)

(S)-2-(((2'-Trifluoromethylbiphenyl-4-yl)methyl)amino)propanamide methanesulfonate (KDS2041)

Using method C, **3g** (0.12 g, 0.37 mmol) and methanesulfonic acid (30.20 µL, 0.47 mmol) in EtOAc (3.72 mL) gave **KDS2041** as a white solid (0.14 g, 87%); $R_f = 0.00$ (CH₂Cl₂/MeOH 10/1); mp 224–227 °C; HPLC purity: 7.0 min, 95.8%; ¹H NMR (300 MHz, DMSO–*d*₆) δ 9.20 (br s, ⁺NH₂), 7.94 (br s, C(O)NHH'), 7.85 (d, *J* = 7.8 Hz, 1ArH), 7.75 (t, *J* = 7.4 Hz, 1ArH), 7.61–7.67 (m, 2ArH), 7.57 (d, *J* = 7.2 Hz, 1ArH), 7.39–7.41 (m, 2ArH, C(O)NHH'), 4.11–4.22 (m, CH₂), 3.86–3.88 (m, CH), 2.32 (s, SCH₃), 1.47 (d, *J* = 6.7 Hz, CH₃); ¹³C NMR (75 MHz, DMSO–*d*₆) δ 170.9 (C(O)), 140.5, 140.4, 132.8, 132.5, 131.9, 130.1, 129.4, 128.7, 127.3 (q, *J*_{C-F} = 29.2 Hz), 126.5 (q, *J*_{C-F} = 5.2 Hz), 124.6 (q, *J*_{C-F} = 270.5 Hz), 55.4, (CH), 48.8 (CH₂), 40.2 (SCH₃), 16.4 (CH₃); HRMS (M + H)⁺(ESI⁺) 323.1368 [M + H]⁺ (calcd for C₁₇H₁₇F₃N₂OH⁺ 323.1371)

(S)-2-(((3'-Trifluoromethylbiphenyl-4-yl)methyl)amino)propanamide methanesulfonate (KDS0012)

Using method C, **3h** (0.09 g, 0.28 mmol) and methanesulfonic acid (25.94 µL, 0.40 mmol) in EtOAc (1.10 mL) gave **KDS0012** as a white solid (0.10 g, 92%); $R_f = 0.00$ (CH₂Cl₂/MeOH 10/1); mp 215–217 °C; HPLC purity: 7.3 min, >99.9%; ¹H NMR (400 MHz, DMSO–*d*₆) δ 9.16 (br s, ⁺NH₂), 7.98–8.02 (m, 2ArH), 7.90 (br s, C(O)NHH'), 7.84 (d, J = 8.1 Hz, 2ArH), 7.69–7.76 (m, 2ArH), 7.65 (br s, C(O)NHH'), 7.59 (d, J = 8.1 Hz, 2ArH), 4.14 (m, CH₂), 3.69–3.84 (m, CH), 2.27 (S, SCH₃), 1.43 (d, J = 6.9 Hz, CH₃); ¹³C NMR (75 MHz, DMSO–*d*₆) δ 171.0 (C(O)), 140.9, 139.5, 132.2, 131.3, 130.6, 130.3 (q, $J_{C-F} = 31.4$ Hz), 127.6, 124.8, 124.6 (q, $J_{C-F} = 270.7$ Hz), 123.5 (q, $J_{C-F} = 3.6$ Hz) (ArC), 55.2 (CH), 48.6 (CH₂), 16.4 (CH₃). The SCH₃ peak was overlapped with the DMSO signals. The remaining peak was not detected and is believed to

overlap with the observed signals; HRMS $(M + H)^+(ESI^+)$ 323.1373 $[M + H]^+$ (calcd for $C_{17}H_{17}F_3N_2OH^+$ 323.1371)

(S)-2-(((4'-Trifluoromethylbiphenyl-4-yl)methyl)amino)propanamide methanesulfonate (KDS2010)

Using method C, **3i** (1.12 g, 3.63 mmol) and methanesulfonic acid (295.00 µL, 1.25 mmol) in EtOAc (7.26 mL) gave **KDS2010** as a white solid (1.26 g, 83%, 9:1 enantiomeric mixture); $R_f = 0.00$ (CH₂Cl₂/MeOH 10/1); mp 241–243 °C; HPLC purity: 7.4 min, 99.7%; ¹H NMR (300 MHz, DMSO–*d*₆) δ 9.20 (br s, ⁺NH₂), 7.94 (d, *J* = 7.7 Hz, 2ArH, C(O)NHH'), 7.83–7.86 (m, 4ArH), 7.63–7.66 (m, 2ArH, C(O)NHH'), 4.12–4.23 (m, CH₂), 3.82 (q, *J* = 6.4 Hz, CH), 2.33 (s, SCH₃), 1.46 (d, *J* = 6.4 Hz, CH₃); ¹³C NMR (75 MHz, DMSO–*d*₆) δ 170.9 (C(O)), 143.8, 139.6, 132.4, 131.3, 128.6 (q, *J*_{C-F} = 31.9 Hz), 128.0, 127.8, 126.3 (q, *J*_{C-F} = 3.8 Hz), 124.8 (q, *J*_{C-F} = 270.3 Hz) (ArC), 55.0 (C(O)CH⁺NH₂), 48.5 (CH₂), 40.2 (SCH₃), 16.4 (CH₃); HRMS (M + H)⁺(ESI⁺) 323.1374 [M + H]⁺ (calcd for C₁₇H₁₇F₃N₂OH⁺ 323.1371)

(S)-2-(((3'-Trifluoromethoxybiphenyl-4-yl)methyl)amino)propanamide methanesulfonate (KDS2002)

Using method C, **3j** (0.25 g, 0.74 mmol) and methanesulfonic acid (59.94 μ L, 0.92 mmol) in EtOAc (1.48 mL) gave **KDS2002** as a white solid (0.29 g, 90%); $R_f = 0.00$ (CH₂Cl₂/MeOH 10/1); mp 209–212 °C; HPLC purity: 7.5 min, 98.8%; ¹H NMR (300 MHz, DMSO– d_6) δ 9.16 (br s, ⁺NH₂), 7.92 (br s, C(O)NHH'), 7.83 (d, J = 8.2 Hz, 2ArH), 7.77 (d, J = 8.2 Hz, 1ArH), 7.59–7.69 (m, 4ArH, C(O)NHH'), 7.39–7.42 (m, 1ArH), 4.08–4.23 (m, CH₂), 3.77 (q, J = 7.0 Hz, CH), 2.30 (s, SCH₃), 1.44 (d, J = 7.0 Hz, CH₃); ¹³C NMR (100 MHz, DMSO– d_6) δ 170.9

(C(O)), 149.5, 142.2, 139.4, 132.2, 131.5, 131.2, 127.6, 126.3, 120.6 (q, $J_{C-F} = 254.7 \text{ Hz}$), 120.5, 119.7 (ArC), 55.0, (CH), 48.5 (CH₂), 16.4 (CH₃), the SCH₃ peak was overlapped with the DMSO signals; HRMS (M + H)⁺(ESI⁺) 339.1322 [M + H]⁺ (calcd for C₁₇H₁₇F₃N₂O₂H⁺ 339.1320)

(S)-2-(((4'-Trifluoromethoxybiphenyl-4-yl)methyl)amino)propanamide methanesulfonate (KDS2001)

Using method C, **3k** (0.10 g, 0.30 mmol) and methanesulfonic acid (23.98 µL, 0.37 mmol) in EtOAc (0.59 mL) gave **KDS2001** as a white solid (0.12 g, 92%); $R_f = 0.00$ (CH₂Cl₂/MeOH 10/10); mp 256–259 °C; HPLC purity: 7.6 min, 99.8%; ¹H NMR (400 MHz, DMSO–*d*₆) δ 9.17 (br s, ⁺NH₂), 7.92 (br s, C(O)NHH'), 7.83 (d, *J* = 8.7 Hz, 2ArH), 7.78 (d, *J* = 8.2 Hz, 2ArH), 7.67 (br s, C(O)NHH'), 7.59 (d, *J* = 8.1 Hz, 2ArH), 7.48 (d, *J* = 8.2 Hz, 2ArH), 4.08–4.23 (m, CH₂), 3.71–3.88 (m, CH), 2.30 (s, SCH₃), 1.44 (d, *J* = 7.0 Hz, CH₃); ¹³C NMR (100 MHz, DMSO–*d*₆) δ 170.9 (C(O)), 148.5, 139.7, 139.1, 131.8, 129.1, 127.5, 122.0, 120.6 (q, *J*_{C-F} = 254.7 Hz) (ArC), 55.0 (CH), 48.6 (CH₂), 16.4 (CH₃), the SCH₃ peak was overlapped with the DMSO signals; HRMS (M + H)⁺(ESI⁺) 339.1316 [M + H]⁺ (calcd for C₁₇H₁₇F₃N₂O₂H⁺ 339.1320)

(*R*)-2-(((4'-(Trifluoromethyl)-[1,1'-biphenyl]-4-yl)methyl)amino)propanamide (25b)

Using method D, D-alaninamide hydrochloride (**14**) (0.15 g, 1.20 mmol), triethylamine (0.21 mL, 1.50 mmol) **2b** (0.25 g, 1.00 mmol) in MeOH (1.09 mL) and sodium cyanoborohydride (0.26 g, 4.00 mmol) in MeOH (1.00 mL) gave **25b** as a white solid (0.21 g, 64%); $R_f = 0.10$ (EtOAc); mp 143–145 °C; ¹H NMR (300 MHz, DMSO– d_6) δ 7.89 (d, J = 8.3 Hz, 2Ar**H**), 7.80 (t, J = 8.3 Hz,

2Ar**H**), 7.69 (d, J = 8.1 Hz, 2Ar**H**), 7.47 (d, J = 8.1 Hz, 2Ar**H**), 7.35 (br s, C(O)N**H**H²), 7.00 (br s, C(O)NH**H**²), 3.60 and 3.75 (AB_q, J = 13.8 Hz, NHC**H**₂Ar), 3.03 (q, J = 6.8 Hz, C**H**), 2.44 (br s, N**H**), 1.15 (d, J = 6.8 Hz, C**H**₃); ¹³C NMR (75 MHz, CDCl₃) δ 177.9 (C(O)), 144.3, 139.7, 138.8, 129.4 (q, $J_{C-F} = 32.3$ Hz), 128.6, 127.5, 127.3, 125.8 (q, $J_{C-F} = 3.7$ Hz), 124.3 (q, $J_{C-F} = 270.1$ Hz) (Ar**C**), 57.7 (CH), 52.2 (CH₂), 19.7 (CH₃).

(*R*)-2-(((4'-(Trifluoromethylbiphenyl-4-yl)methyl)amino)propanamide methanesulfonate (KDS2029)(R-isomer of KDS2010)

Using method B, D-alaninamide hydrochloride (0.15 g, 1.20 mmol, > 95% optical purity), triethylamine (0.21 mL, 1.50 mmol) **2i** (0.25 g, 1.00 mmol) in MeOH (1.09 mL) and sodium cyanoborohydride (0.26 g, 4.00 mmol) in MeOH (1.00 mL) gave free form of KDS2029 as a white solid (0.21 g, 64%, 9:1 enantiomeric mixture); $R_f = 0.10$ (EtOAc); mp 143–145 °C; ¹H NMR (300 MHz, DMSO– d_6) δ 7.89 (d, J = 8.3 Hz, 2Ar**H**), 7.80 (t, J = 8.3 Hz, 2Ar**H**), 7.69 (d, J = 8.1 Hz, 2Ar**H**), 7.47 (d, J = 8.1 Hz, 2Ar**H**), 7.35 (br s, C(O)N**H**H'), 7.00 (br s, C(O)NH**H**'), 3.60 and 3.75 (AB_q, J = 13.8 Hz, NHC**H**₂Ar), 3.03 (q, J = 6.8 Hz, C**H**), 2.44 (br s, N**H**), 1.15 (d, J = 6.8 Hz, C**H**₃); ¹³C NMR (75 MHz, CDCl₃) δ 177.9 (C(O)), 144.3, 139.7, 138.8, 129.4 (q, $J_{C-F} = 32.3$ Hz), 128.6, 127.5, 127.3, 125.8 (q, $J_{C-F} = 3.7$ Hz), 124.3 (q, $J_{C-F} = 270.1$ Hz) (ArC), 57.7 (CH), 52.2 (CH₂), 19.7 (CH₃).

Using method C, the resulting solid (0.17 g, 0.53 mmol), methanesulfonic acid (42.80 µL, 0.66 mmol) in EtOAc (1.05 mL) gave KDS2029 as a white solid (0.19 g, 87%); $R_f = 0.00$ (CH₂Cl₂/MeOH 10/1); mp 241–244 °C; HPLC purity: 7.4 min, 99.8%; ¹H NMR (300 MHz, DMSO–*d*₆) δ 9.18 (br s, ⁺NH₂), 7.93–7.95 (m, 2ArH, C(O)NHH'), 7.84 (d, *J* = 7.9 Hz, 4ArH), 7.62–7.66 (m, 2ArH, C(O)NHH'), 4.12–4.22 (m, CH₂), 3.80 (q, *J* = 6.5 Hz, CH), 2.31 (s, SCH₃), 1.45 (d, *J* = 6.5 Hz, CH₃); ¹³C NMR (75 MHz, DMSO–*d*₆) δ 170.9 (C(O)), 143.8, 139.5, 132.4, 131.3, 128.6 (q, *J*_{C-F} = 31.7 Hz) (ArC), 55.1 (CH), 48.6 (CH₂), 40.2 (SCH₃), 16.4 (CH₃); HRMS (M + H)⁺(ESI⁺) 323.1373 [M + H]⁺ (calcd for C₁₇H₁₇F₃N₂OH⁺ 323.1371)

Chiral resolution of KDS2010

Analytical resolution was carried out using a SHIMADZU NEXERA supercritical fluid chromatography (SFC) system with LC-30AD SF CO₂ and LC-20AD LC pump, a SPD-M20A diode array detector connected to a SFC-30A back pressure regulator. 1 μ L of the desired racemate (5 mg/1 mL MeOH) were injected on a DAICEL chiralpak AD-H 5 μ m column 150 × 4.6 mm. The sample was eluted with CO₂:MeOH:DEA (80:20:1) with a flowrate of 3 mL/min at 25 °C. Retention time (RT) of the separated enantiomers of **KDS2010**: *S*) 2.59 min *R*) 2.84 min.

Fig. S1. General procedure for the preparation of KDS compounds.

Fig. S2. Structure-activity relationship of the synthesized compounds.

Fig. S3. The KINOMEscan screening results with 1000 nM of KDS2010 for off-target selectivity. Schematic diagram of the KINOMEscan[™] screening results categorizing human kinases and disease-associated mutant variants. Competitive binding assays for 97 human kinases were performed at 1000 nM KDS2010 and the amount of inhibition through the control ligand reaction was expressed as the size of the red circle and the green circle. Zero interaction mapped means there is no meaningful responses (≥ 50% inhibition). TK, Tyrosine Kinase; TKL, Tyrosine Kinase Like; STE, Yeast STE-MAPK family; CK1, Casein Kinase 1; AGC, PKA, PKG, PKC family; CAMK, Calmodulin/Calcium regulated kinases; CMGC, CDK, MAPK, GSK3 and

CLK; see table S4 for the detailed results.

Fig. S4. Mode of KDS2010 binding with MAO-B. The catalytic rates were measured at different concentrations of benzylamine (0.065, 0.125, 0.25, 0.5, 1 and 2 mM) in the absence and in the presence of different concentrations (0.3, 1 and 3 nM) of KDS2010. The maximal velocity (V_{max}), Michaelis constant (K_m) and inhibition constant (K_i) were calculated using Sigma plot[®].

Fig. S5. Three-day and 2-day interactions of selegiline, KDS2010, and KDS0014 inside MAO-B. Selegiline, FAD, KDS2010, and KDS0014 shown in yellow, cyan, purple, and green color respectively. Amino acid residues surrounding 4Å of ligand shown in stick format. Color indication for a particular type of interactions explained below the 2D image of protein-ligand interactions.

Fig. S6. Acute treatment of KDS2010 (3 days) restored memory impairment in APP/PS1 mice. (A) Schematic diagram of the passive avoidance test for wild-type (WT) and APP/PS1 mice with or without oral administration of KDS2010 (10 mg/kg for 3 days; n=9 for WT + water; n=8 for APP/PS1 + water; n=8 for APP/PS1 + KDS2010; both sexes at 10- to 11-month of age). (B) Latency to enter the dark chamber during the passive avoidance test. *p < 0.05, **p < 0.01 (One-way ANOVA with *Tukey*'s multiple comparisons test). Data are means ± s.e.m. Data distribution of bar graphs was presented in the Fig. S10.

Fig. S7. Passive avoidance test for learning and memory in APP/PS1 mice with 2-week KDS2010 treatment. (A) Experimental protocol for the passive avoidance test for wild-type and APP/PS1 mice with oral administration of KDS2010 (1mg/kg or 10 mg/kg for 2-week). (B) Latency to enter the dark chamber during the passive avoidance test (*n*=21 for WT + water; *n*=16 for APP/PS1 + water; *n*=11 for APP/PS1 + KDS2010 1 mg/kg, *n*=9 for APP/PS1 + KDS2010 10 mg/kg; both sexes at 10- to 12-month of age). **p* < 0.05, ***p* < 0.01, *****p* < 0.0001, and (Oneway ANOVA with *Tukey's* test). (C) Representative trace of GABA_A receptor-mediated current recorded from granule cells of the dentate gyrus (*n*=6 for WT + water; *n*=8 for APP/PS1 + water; *n*=6 for APP/PS1 + KDS2010 1 mg/kg; *n*=5 for APP/PS1 + KDS2010 10 mg/kg; both sexes at 10- to 11-month of age). Red bars represent the application of GABA_A receptor antagonist bicuculline (BIC; 20 μ M). (D) Tonic GABA current by 20 μ M BIC. ***p* < 0.01 (One-way ANOVA with *Tukey's* test). n.s., not significant Data are means ± s.e.m. Data distribution of bar graphs was presented in the Fig. S10.

Fig. S8. KDS2010 significantly recovers spatial learning and memory in Morris water maze. (A) Experimental protocol for Morris water maze test for WT and APP/PS1 mice with or without oral administration of KDS2010 (10 mg/kg/day for 28 days; both sexes at 10- to 12- month of age). (B) Escape latency during acquisition test. ***p < 0.001, compared with APP/PS1, ^{###}p < 0.001, compared with WT (Two-way repeated measures ANOVA) (C) Swimming speed during acquisition test. n.s., not significant. (Two-way repeated measures ANOVA followed by Fisher's LSD analysis). (D) Swimming speed during acquisition and reversal test (37 day-treatment). Compared with APP/PS1 + water., n.s., not significant, Acquisition (One-way ANOVA with *Tukey's* test), Reversal (One-way ANOVA with *Dunnett's* test). Also see table S6.

Fig. S9. Model diagrams of long-term treatment of AD with either irreversible or reversible MAO-B inhibitors. Aβ: amyloid-beta, MAO-B: monoamine oxidase-B, DAO: diamine oxidase, Best1: bestrophin 1, Pre: presynaptic terminal, Post: postsynapse, NMDAR: *N*-methy-*D*aspartate receptor, AMPAR: α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor

n.s

Fig. S10. Data distribution of bar graphs.

Fig. S10. Data distribution of bar graphs (continued).

Table S1. Inhibitory effects of the synthesized compounds against hMAO enzymes.

Compound	Stance	V	Inhibition ($IC_{50}, \mu M)^a$	SI ^b
Code	Stereo	Λ	hMAO-B	hMAO-A	- 51
KDS2051 ^{<i>a</i>}	S	Н	>10	> 100	nd ^e
KDS0011	S	2'-F	8.24 ± 0.16	> 100	>12.1
KDS0015	S	3'-F	3.69 ± 0.08	> 100	>27.1
KDS2006	S	4'-F	4.29 ± 0.08	> 100	>23.3
KDS2042	S	2'-Cl	> 10	> 100	nd^e
KDS0014	S	3'-Cl	0.242 ± 0.008	> 100	>413
KDS2005	S	4'-Cl	0.182 ± 0.007	> 100	>549
KDS2041	S	2'-CF ₃	> 10	> 100	nd ^e
KDS0012	S	3'-CF ₃	0.316 ± 0.006	> 100	>316
KDS2010	S^{c}	4'-CF ₃	0.008 ± 0.001	> 100	>10,000
KDS2002	S	3'-OCF ₃	0.216 ± 0.005	> 100	>463
KDS2001	S	4'-OCF ₃	0.098 ± 0.003	> 100	>1,020
KDS2029					
(R-isomer of	R^{c}	4'-CF ₃	0.058 ± 0.003	> 100	>1,724
KDS2010)					
Selegiline ^d			0.010 ± 0.001	1.5 ± 0.02	150
Sembragiline ^d			$\begin{array}{c} 0.015 \pm 0.005 \\ 0.006 \pm 0.001^{f} \end{array}$	3.85 ^{<i>f</i>}	653 ^{<i>f</i>}

^{*a*}Inhibition data are reported as IC₅₀ (μ M) ; the SEM was always less than ±5%.

^bSI; selectivity index, the selectivity for the MAO-B isoform and is given as the ratio of $IC_{50}(MAO-A)/IC_{50}(MAO-B)$.

^cEnantiomeric purity of KDS2010 & KDS2029; both ~9:1 enantiomeric mixture

^{*d*}Positive controls; selegiine: irreversible inhibitor, sembragiline: reversible inhibitor.

^{*e*}nd: not determined.

^{*f*}: Borroni, E. et al. Sembragiline: a novel, selective monoamine oxidase type B inhibitor for the treatment of Alzheimer's disease. *J. Pharmacol. Exp. Ther.* 362, 413-423 (2017)

Sta	bility (% rema	ining) ^a	CYP inhibition		In vivo Toxicity (Rat)		hERG
Species	Microsomes	Plasma	Subtype	% Inhibition at 10 μM	Dosing (p.o.)	NOAEL ^b (mg/kg)	inhibition, IC ₅₀ (μM) ^d
Human	92.2±7.2	98.3±5.2	1A2	62.5±2.8	Single	>1000	>50
Dog	60.7±5.2	nd^c	2C9	99.1±4.3	Repeated (2weeks)	>200	
Rat	59.5±6.5	95.2±6.7	2C19	84.0±3.8			
Mouse	66.0±3.1	nd ^c	2D6	89.3±6.1			
			3A4	98.8±5.7			

Table S2. In vitro and in vivo ADME/Tox profile of KDS2010.

^{*a*}% Parent compound remaining was determined after 30 min (microsomes) or 120 min (plasma) incubation. ^{*b*}NOAEL; No observed adverse effect level, the highest tested dose at which no such adverse effect is found in

exposed test organisms. %.

^{*c*}nd; Not determined. %.

^{*d*}hERG channel binding assay was performed using predictor hERG fluorescence polarization assay. IC₅₀ value was calculated with nonlinear regression fit with four parameters.

	PK ^a						
Compd.	<i>i.v.</i>				<i>p.o.</i>		F
1	AUC_{all}	CL	V_{ss}	<i>t</i> _{1/2}	C _{max}	AUC_{all}	(%)
	(ng*h/mL)	(mL/min/kg)	(L/kg)	(h)	(ng/mL)	(ng*h/mL)	(70)
KDS2010	421.1±42.6	39.9±4.0	10.1±0.8	3.3±0.2	952.1±80.3	5201.5±458	123.5
Comnd	Plasma co	oncentration	Brain	concentrat	tion^{b} B	rain-to-plasma	ratio ^c
Compa.	(ng/mL)		(ng/g)			(B/P)	
KDS2010	730.2±51.3		6,716.3±260.6		6	9.2	

Table S3. In vivo pharmacokinetic parameters of KDS2010.

^{*a*}Rats (n = 5) were dosed with 1 mg/kg for *i.v.* and 10 mg/kg for *p.o.*. Parameters were calculated from composite mean plasma concentration-time data. Data are expressed as the mean ± SD. %.

^{*b*}Brain concentration was determined by the amount of KDS2010 in total brain homogenate from rats (n = 5, 2 h after oral administration with 10 mg/kg).

^cB/P: brain concentration/plasma concentration (2 h after oral administration with 10 mg/kg) calculated using 1 g/mL brain density.

Abbreviations: *Compd*, compound; *AUC*, area under the plasma concentration–time curve; *CL*, time-averaged total body clearance; V_{ss} , apparent volume of distribution at steady state; $t_{1/2}$, elimination half-life; C_{max} , maximum concentration of the drug; *F*, bioavailability

Table S4. KDS2010 interactions with 87 primary molecular targets including GPCRs,

% Binding Target **Abbreviation Species** Substrate response at 1μM GPCR 3 1.0 nM [³H] DPCPX Adenosine A₁ A_1 Human Adenosine A2A A_{2A} Human 0.050 µM [³H] CGS-21680 -2 Adrenergic α_{1A} Rat 0.25 nM [³H] Prazosin 5 α_{1A} 0.25 nM [3H] Prazosin 2 Adrenergic α_{1B} Rat α_{1B} -3 0.60 nM [³H] Prazosin Adrenergic α_{1D} α_{1D} Human 8 Adrenergic α_{2A} 1.50 nM [³H] Rauwolscine α_{2A} Human -3 2.50 nM [³H] Rauwolscine Adrenergic α_{2B} Human α_{2B} -3 0.030 nM [¹²⁵I] Cyanopindolol Adrenergic β_1 β_1 Human 0 0.20 nM [³H] CGP-12177 Adrenergic β_2 β_2 Human Angiotensin AT₁ AT_1 Human 20.0 pM [¹²⁵¹] (Sar¹, Ile⁸)-Angiotensin II -2 0.50 nM [³H] Bradykinin -2 Bradykinin B2 Human B_2 Cannabinoid CB1 2.0 nM [³H] SR141716A -5 CB_1 Human Cannabinoid CB₂ 2.40 nM [³H] WIN-55,212-2 11 CB_2 Human 0.10 nM [¹²⁵I] MIP-1α 15.0 pM [¹²⁵I] IL-8 Chemokine CCR1 CCR1 -4 Human 10 Chemokine CXCR2 (IL-8RB) CXCR2 Human 0.11 nM [¹²⁵I] CCK-8 Cholecystokinin CCK₁ (CCK_A) CCK₁ Human -13 0.050 nM [125I] CCK-8 Cholecystokinin CCK₂ (CCK_B) Human 10 CCK₂ 2 Dopamine D₁ D_1 Human 1.40 nM [³H] SCH-23390 Dopamine D_{2L} Human 0.16 nM [³H] Spiperone 5 D_{2L} 0.16 nM [³H] Spiperone 0 Dopamine D₂₈ Human D_{2S} 0.030 nM [¹²⁵I] Endothelin-1 ET_A 11 Endothelin ETA Human 4.0 nM [³H] CGP-54626 -4 GABA_{B1A} **GABA**_{B1A} Human Glutamate, Metabotropic,mGlu₅ 14 mGlu₅ Human 0.030 µM [³H] Ouisqualic acid Histamine H1 1.20 nM [³H] Pyrilamine H_1 Human 11 Histamine H₂ H₂ Human 0.10 nM [¹²⁵I] Aminopotentidine 1 0.30 nM [³H] LTD4 Leukotriene, Cysteinyl CysLT₁ CysLT₁ Human 2 0.040 nM [¹²⁵I] NDP-α-MSH -3 Melanocortin MC₁ MC_1 Human 20.0 pM [¹²⁵I] NDP-α-MSH 8 Melanocortin MC₄ MC_4 Human 0.80 nM [³H] N-Methylscopolamine -3 Muscarinic M₁ M_1 Human 0.80 nM [³H] N-Methylscopolamine -2 Muscarinic M₂ M_2 Human Muscarinic M₃ M_3 Human 0.80 nM [³H] N-Methylscopolamine 1 Muscarinic M₄ 0.80 nM [³H] N-Methylscopolamine 3 M_4 Human Tachykinin NK1 0.80 nM [³H] Substance P NK_1 Human -11 Opiate $\delta 1$ (OP1, DOP) 1.30 nM [³H] Naltrindole 7 DOP Human 15.0 pM ^{[125}I] Peptide YY -4 Neuropeptide Y Y₁ NPY₁ Human Opiate κ (OP2, KOP) KOP 0.60 nM [³H] Diprenorphine -1 Human Opiate $\mu(OP3, MOP)$ MOP Human 0.60 nM [³H] Diprenorphine 14 Platelet Activating Factor (PAF) PAF Human 0.12 nM [3H] PAF -10 Serotonin 1.50 nM [3H] 8-OH-DPAT 2 5-HT_{1A} Human (5-Hydroxytryptamine) 5-HT_{1A} Serotonin 5-HT_{1B} 1.0 nM [³H] GR125743 -3 Human (5-Hydroxytryptamine) 5-HT_{1B} Serotonin $5-HT_{2A}$ Human 0.50 nM [³H] Ketanserin -3 (5-Hydroxytryptamine) 5-HT_{2A} 1.20 nM [³H] Lysergic acid diethylamide Serotonin $5\text{-}HT_{2B}$ Human 19 (LSD) (5-Hydroxytryptamine) 5-HT_{2B} Serotonin 5-HT_{2C} Human 1.0 nM [³H] Mesulergine -5

(5-Hydroxytryptamine) 5-HT_{2C}

kinases, non-kinase enzymes, nuclear receptors, transporters, and various ion channels.

Vasopressin V _{1A}	V_{1A}	Human	0.030 nM [¹²⁵ I]PhenylacetylTyr(Me)PheGlnAsnArg ProArgTyr	-6
Kinase				
Protein Tyrosine Kinase, Insulin Recentor	IR	Human	200 µg/mL Poly(Glu:Tyr)	-15
Protein Tyrosine Kinase, LCK	LCK	Human	200 μg/mL Poly(Glu:Tyr)	0
Protein Serine/Threonine Kinase, PKC, Nonselective	РКС	Rat	370 μg/mL Histone	12
Non-Kinase Enzyme				
ATPase, Na ⁺ /K ⁺ , Heart	ATPase	Pig	100 µM ATP	-9
Phosphodiesterase PDE4	PDE4	Human	$1.01 \ \mu M \ [^{3}H]cAMP + cAMP$	-5
Peptidase, CTSG (Cathepsin G)	CISG	Human	20.0 µM Suc-Ala-Ala-Pro-Phe-AMC	0
Enzyme	ACE	Rabbit	Gly (FAPGG)	0
Cholinesterase, Acetyl	ACES	Human	700 µM Acetylthiocholine	27
Cyclooxygenase COX-1	COX-1	Human	100 µM Arachidonic acid	15
Cyclooxygenase COX-2	COX-2	Human	$0.30 \mu\text{M}$ Arachidonic acid	-11
Monoamine Oxidase MAO-A	Mao-a Mao h	Human	50.0 µM Kynuramine	5
Phosphodiesterase PDF3	PDF3	Human	$1.01 \text{\mu}\text{M} [^{3}\text{H}]_{c}\text{AMP} + c\text{AMP}$	-7
$PPAR_{\gamma}$	PPARy	Human	$5.0 \text{ nM} [^{3}\text{H}] \text{ Rosiglitazone}$	-7
Nuclear Receptor	TTTTC	Traman		-5
Androgen (Testosterone)	AR	Human	$0.50 \text{ nM} [^{3}\text{H}]$ Methyltrienolone	-3
Estrogen ERa	ERα	Human	$0.50 \text{ mW} [^{3}\text{H}]$ Estradiol	1
Glucocorticoid	GR	Human	$5.0 \text{ nM} [^{3}\text{H}]$ Dexamethasone	7
Progesterone PR-B	PR-B	Human	$0.50 \text{ nM} [^{3}\text{H}]$ Progesterone	-4
Transporter				-
Transporter Adenosine	AT	Guinea Pig	$0.50 \text{ nM} [^{3}\text{H}]$ Nitrobenzylthioinosine	5
Transporter, Dopamine (DAT)	DAT	Human	0.15 nM [¹²⁵ I] RTI-55	8
Transporter, GABA	GAT	Rat	6.0 nM ^{[3} H] GABA	4
Transporter, Norepinephrine (NET)	NET	Human	0.20 nM [¹²⁵ I] RTI-55	12
Transporter, Serotonin (SERT)	SERT	Human	0.40 nM [³ H] Paroxetine	-3
Channel				
GABA _A , Chloride Channel,	CADA C	Dat	2.0 mM [³ 11] TDOD	0
ТВОВ	GADA _A , C	Nat		0
GABA _A , Flunitrazepam, Central	$GABA_A, F$	Rat	$1.0 \text{ nM} [^{3}\text{H}]$ Fluntrazepam	9
GABA: Ro-15-1788	NMDA, A	Kal	2.0 IIM ['H] CGP-39633	2
Hippocamp`us	GABA _A , R	Rat	1.0 nM [³ H] Ro-15-1788	17
Glutamate, AMPA	AMPA	Rat	5.0 nM [³ H] AMPA	2
Glutamate, Kainate	Kainate	Rat	5.0 nM [³ H] Kainic acid	-1
Glutamate, NMDA, Glycine	NMDA, G	Rat	0.33 nM [³ H] MDL 105,519	1
Glutamate, NMDA, Phencyclidine	NMDA, Ph	Rat	4.0 nM [³ H] TCP	3
Glutamate, NMDA, Polyamine	NMDA, Polv	Rat	2.0 nM [³ H] Ifenprodil	2
Glycine, Strychnine-Sensitive	Glycine	Rat	10 nM [³ H] Strychnine	2
Nicotinic Acetylcholine	nÁchR	Human	0.10 nM ^{[125} I] Epibatidine	-10
Nicotinic Acetylcholine α1, Bungarotoxin	nAchR α1	Human	0.60 nM [¹²⁵ I] α-Bungarotoxin	-5
Serotonin (5-Hydroxytryptamine) 5-HT	5-HT ₃	Human	0.69 nM [³ H] GR-65630	11
Calcium Channel L-Type,	CAV	Rat	0.10 nM [³ H] Nitrendipine	-1
Calcium Channel L-Type,	(L-TYPE), D CAV	Rat	2.0 nM [³ H] Diltiazem	-8
Benzothiazepine	(L-TYPE), B	Dat	$0.40 \text{ mM} [^{3}\text{III}]$ () Decrements	16
Calcium Channel L-Type,	CAV	Kat	0.40 nm [-H] (-)-Desmetnoxyverapamil	10

Phenylalkylamine	(L-TYPE), P		(D-888)	
Calcium Channel N-Type	CAV (N-TYPE)	Rat	10 pM [¹²⁵ I] ω-Conotoxin GVIA	0
Potassium Channel [K _{ATP}]	K _{ATP}	Human	5.0 nM [³ H] Glyburide	-7
Potassium Channel hERG	hERG	Human	1.50 nM [³ H] Astemizole	3
Sodium Channel, Site 2	Na channel	Rat	5.0 nM [³ H] Batrachotoxinin	38

Table S5. KDS2010 interactions with 97 kinase including TK, TKL, STE, CK1, AGC, CAMK, CMGC, ATYPICAL, LIPID, and Mutant form.

Target	Abbreviation	%Ctrl comp. inhibition at 1 uM
ТК		
c-abl oncogene 1, receptor tyrosine kinase	ABL1-	10
	nonphosphorylated	
c-abl oncogene 1, receptor tyrosine kinase	ABL1-	8
	phosphorylated	
anaplastic lymphoma receptor tyrosine kinase	ALK	41
AXL receptor tyrosine kinase	AXL	17
bone morphogenetic protein receptor, type II (serine/threonine kinase)	BMPR2	0
Bruton agammaglobulinemia tyrosine kinase	BTK	5
colony stimulating factor 1 receptor	CSF1R	1
epidermal growth factor receptor	EGFR	0
EPH receptor A2	EPHA2	15
erb-b2 receptor tyrosine kinase 2	ERBB2	8
erb-b2 receptor tyrosine kinase 4	ERBB4	6
PTK2 protein tyrosine kinase 2	PTK2	4
fibroblast growth factor receptor 2	FGFR2	10
fibroblast growth factor receptor 3	FGFR3	6
fms-related tyrosine kinase 3	FLT3	14
insulin-like growth factor 1 receptor	IGF1R	0
insulin receptor	INSR	28
Janua Iringgo 🤉	JAK2(JH1 domain-	28
Janus kinase 2	catalytic)	
Laura Linaar 2	JAK3 (JH1 domain-	10
Janus kinase 3	catalytic)	
v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog	KIT	0
met proto-oncogene (hepatocyte growth factor receptor)	MET	4
platelet-derived growth factor receptor, alpha polypeptide	PDGFRA	6
platelet-derived growth factor receptor, beta polypeptide	PDGFRB	0
ret proto-oncogene	RET	13
SRC proto-oncogene, non-receptor tyrosine kinase	SRC	10
TEK tyrosine kinase, endothelial	TEK	5
neurotrophic tyrosine kinase, receptor, type 1	NTRK1	0
tyrosine kinase 2	TYK2	44
kinase insert domain receptor (a type III receptor tyrosine kinase)	KDR	0
zeta-chain (TCR) associated protein kinase 70kDa	ZAP70	0
TKL		
activin A receptor, type IB	ACVR1B	5
v-raf murine sarcoma viral oncogene homolog B1	BRAF	6
mitogen-activated protein kinase kinase kinase 9	MAP3K9	9
v-raf-1 murine leukemia viral oncogene homolog 1	RAF1	3
transforming growth factor, beta receptor 1	TGFBR1	17
STE		
mitogen-activated protein kinase kinase kinase 4	MAP3K4	1
mitogen-activated protein kinase kinase 1	MAP2K1	9
mitogen-activated protein kinase kinase 2	MAP2K2	0
p21 protein (Cdc42/Rac)-activated kinase 1	PAK1	6
p21 protein (Cdc42/Rac)-activated kinase 2	PAK2	22
p21 protein (Cdc42/Rac)-activated kinase 3	PAK4	0
CK1		
casein kinase 1, delta	CSNK1D	0
casein kinase 1, gamma 2	CSNK1G2	2

AGC		
v-akt murine thymoma viral oncogene homolog 1	AKT1	7
v-akt murine thymoma viral oncogene homolog 2	AKT2	0
3-phosphoinositide dependent protein kinase-1	PDPK1	2
protein kinase, cAMP-dependent, catalytic, alpha	PRKACA	21
protein kinase C, epsilon	PRKCE	0
Rho-associated, coiled-coil containing protein kinase 2	ROCK2	0
ribosomal protein S6 kinase, 90kDa, polypeptide 3	RPS6KA3	0
serine/threonine kinase 32C	STK32C	0
САМК		
checkpoint kinase 1	CHEK1	0
doublecortin-like kinase 1	DCLK1	33
serine/threonine kinase 11	STK11	0
mitogen-activated protein kinase-activated protein kinase 2	MAPKAPK2	21
MAP/microtubule affinity-regulating kinase 3	MARK3	2
MAP kinase interacting serine/threenine kinase 1	MKNK1	- 5
MAP kinase interacting serine/threonine kinase 2	MKNK2	15
nim-1 oncogene	PIM1	0
nim-2 oncogene	PIM2	ő
nim-3 oncogene	PIM3	5
NUAK family SNF1-like kinase 2	NUAK2	0
testis-specific serine kinase 1B	TSSK1B	Ő
CMGC	ISSIID	0
cyclin-dependent kinase 19	CDK19	2
cyclin-dependent kinase 2	CDK2	2 4
cyclin-dependent kinase 2	CDK2	3
cyclin-dependent kinase 7	CDK5 CDK7	3
cyclin-dependent kinase 9	CDK9	0
dual-specificity tyrosine_(V)-phosphorylation regulated kinase 1B	DVRK1R	3
MAP/microtubule affinity-regulating kinase 3	MAPK3	3
alvogen synthese kingse 3 beta	GSK3B	8
mitagen activated protein kinase 8	MADKS	8
mitogen-activated protein kinase 9	MADKO	14
mitogen-activated protein kinase 10	MADK10	4
mitogen-activated protein kinase 10	MADK14	3
mitogen-activated protein kinase 14	MAPK14 MADV11	5
avalin dependent kingse 16	CDV16	20
role like kingse 1	DI V1	11
polo-like kinase 1	PLN1 DLV2	11
polo-like kinase 5	PLK5 DLV4	15
DOIO-IIKE KIIIASE 4	PLN4 CDDV2	28
OTHER	SKPK5	21
OTHER		20
aurora kinase A	AURKA	20
aurora kinase B	AURKB	8
conserved helix-loop-helix ubiquitous kinase	CHUK	3
inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase beta	IKBKB	12
unc-51-like kinase 2	ULK2	0
ATYPICAL		
coenzyme Q8A	CABC1	11
RIO kinase 2	RIOK2	3
LIPID		
phosphoinositide-3-kinase, class 2, beta polypeptide	PIK3C2B	2
phosphoinositide-3-kinase, catalytic, alpha polypeptide	PIK3CA	0
phosphoinositide-3-kinase, catalytic, gamma polypeptide	PIK3CG	0
MUTANT		
c-abl oncogene 1 recentor turosine kinase	ABL1(E255K)-	0
e autoneogene 1, receptor tyrosine kinase	phosphorylated	

a abl an account 1, macantan tempaina binaga	ABL1(T315I)-	10
c-abi oncogene 1, receptor tyrosine kinase	phosphorylated	
v-raf murine sarcoma viral oncogene homolog B1	BRAF(V600E)	9
epidermal growth factor receptor	EGFR(L858R)	29
v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog	KIT(D816V)	8
v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog	KIT(V559D,T670I)	5

Figure No.	Result from statistical analysis
1B	$\label{eq:WT} \begin{aligned} & \text{WT} + \text{water} \ (16.0068 \pm 1.077, n = 180), \text{APP/PS1} + \text{water} \ (87.4866 \pm 2.946, n = 289), \text{APP/PS1} + \\ & \text{Selegiline 3D} \ (39.5503 \pm 2.691, n = 119), \text{APP/PS1} + \\ & \text{Selegiline 4W} \ (105.996 \pm 5.117, n = 101) \\ & \textit{Kruskal-Wallis} \ \text{test with } \textit{Dunnett's} \ \text{multiple comparisons test} \\ & \text{Kruskal-Wallis statistcs} = 354.1 \\ & \text{WT} + \text{water vs. } \text{APP/PS1} + \\ & \text{Water, } p < 0.0001; \\ & \text{APP/PS1} + \text{water vs. } \text{APP/PS1} + \\ & \text{Selegiline 3D}, p < 0.0001; \\ & \text{APP/PS1} + \text{water vs. } \text{APP/PS1} + \\ & \text{Selegiline 4W}, p = 0.1111 \end{aligned}$
1D	WT + water (27.47 \pm 2.178, <i>n</i> =15), APP/PS1 + water (87.15 \pm 7.899, <i>n</i> =20), APP/PS1 + Selegiline 3D (62.53 \pm 5.079, <i>n</i> =15), APP/PS1 + Selegiline 4W (45.92 \pm 2.746, <i>n</i> =24) One-way ANOVA with <i>Tukey</i> 's multiple comparisons test F(3, 70) = 23.59, <i>p</i> < 0.0001 WT + water vs. APP/PS1 + water, <i>p</i> < 0.0001; APP/PS1 + water vs. APP/PS1 + Selegiline 3D, <i>p</i> = 0.0092; APP/PS1 + water vs. APP/PS1 + Selegiline 4W, <i>p</i> < 0.0001
1E	$\label{eq:WT} \begin{aligned} & \text{WT} + \text{water } (1.789 \pm 0.2144, n=15), \text{APP/PS1} + \text{water } (7.265 \pm 1.388, n=20), \text{APP/PS1} + \text{Selegiline 3D} (4.233 \pm 0.8632, n=15), \text{APP/PS1} + \text{Selegiline 4W} (4.072 \pm 0.6429, n=24) \\ & \textit{Kruskal-Wallis test with Dunnett's multiple comparisons test} \\ & \textit{Kruskal-Wallis statistcs} = 22.3 \\ & \text{WT} + \text{water vs. } \text{APP/PS1} + \text{water, } p < 0.0001; \\ & \text{APP/PS1} + \text{water vs. } \text{APP/PS1} + \text{Selegiline 3D}, p > 0.9999; \\ & \text{APP/PS1} + \text{water vs. } \text{APP/PS1} + \text{Selegiline 4W}, p = 0.8297 \end{aligned}$
1F	Acquisition: WT + water ($30.92 \pm 7.659, n=9$), APP/PS1 + water ($46.31 \pm 9.886, n=8$), APP/PS1 + Selegiline 3D ($33.46 \pm 7.607, n=8$), APP/PS1 + Selegiline 4W ($17.76 \pm 4.116, n=8$) Retention: WT + water ($428.3 \pm 72.65, n=9$), APP/PS1 + water ($111.2 \pm 41.86, n=8$), APP/PS1 + Selegiline 3D ($422.1 \pm 67.81, n=8$), APP/PS1 + Selegiline 4W ($209.3 \pm 57.79, n=8$) <i>Kruskal-Wallis</i> test with <i>Dunnett's</i> multiple comparisons test Kruskal-Wallis statistcs = 13.59 WT + water vs. APP/PS1 + Selegiline 3D, $p = 0.0205$; APP/PS1 + water vs. APP/PS1 + Selegiline 4W, $p > 0.9999$
3F	$ \begin{array}{l} \text{WT} + \text{water } (483.8.3 \pm 25.87, n=44), \text{APP/PS1} + \text{water } (654 \pm 29.49, n=55), \text{APP/PS1} + \\ \text{Selegiline } 4\text{W} \ (654.5 \pm 39.16, n=50), \text{APP/PS1} + \text{KDS2010} \ 4\text{W} \ (486.8 \pm 43.39, n=46) \\ \textit{Kruskal-Wallis } \text{test with } \textit{Dunnett's } \text{ multiple comparisons } \text{test} \\ \text{Kruskal-Wallis statistcs} = 19.68 \\ \text{WT} + \text{water } \text{vs. } \text{APP/PS1} + \text{water, } p = 0.0020; \\ \text{WT} + \text{water } \text{vs. } \text{APP/PS1} + \text{KDS2010} \ 4\text{W}, p > 0.9999; \\ \text{APP/PS1} + \text{water } \text{vs. } \text{APP/PS1} + \text{Selegiline } 4\text{W}, p > 0.9999; \\ \text{APP/PS1} + \text{water } \text{vs. } \text{APP/PS1} + \text{KDS2010} \ 4\text{W}, p = 0.0126 \\ \end{array} $
3Н	WT + water (7.167 \pm 1.956, <i>n</i> =10), APP/PS1 + water (16.41 \pm 1.916, <i>n</i> =8), APP/PS1 + KDS2010 4W (3.3 \pm 1.243, <i>n</i> =8), APP/PS1 + Selegiline 4W (17.71 \pm 4.122, <i>n</i> =11), APP/PS1 + Selegiline 4W + AG (2.467 \pm 0.8841, <i>n</i> =9) <i>Kruskal-Wallis</i> test with <i>Dunnett's</i> multiple comparisons test Kruskal-Wallis statistcs = 24.02 APP/PS1 + water vs. APP/PS1 + KDS2010 4W, <i>p</i> = 0.0282; APP/PS1 + KDS2010 4W vs. APP/PS1 + Selegiline 4W, <i>p</i> = 0.0178;

 Table S6. Detailed information for statistical analysis.

	APP/PS1 + Selegiline 4W vs. APP/PS1 + Selegiline 4W+AG, $p = 0.0023$
40	WT + water (495.9 ± 30.33, n =30), APP/PS1 + water (1156 ± 42.93, n =73), APP/PS1 + KDS2010 4W (688.9 ± 27.55, n =50) One-way ANOVA with <i>Tukey's</i> multiple comparisons test F(2, 149) = 72.41, $p < 0.0001$ WT + water vs. APP/PS1 + water, $p < 0.0001$; WT + water vs. APP/PS1 + KDS2010 4W, p = 0.0107; APP/PS1 + water vs. APP/PS1 + KDS2010 4W, $p < 0.0001$
4D	$ \begin{array}{l} \text{WT + water (75.25 \pm 3.18, n=43), APP/PS1 + water (106.6 \pm 1.808, n=112), APP/PS1 + KDS2010 4W (78.87 \pm 1.867, n=85) \\ \textit{Kruskal-Wallis test with Dunnett's multiple comparisons test} \\ \textit{Kruskal-Wallis statistcs = 94.82} \\ \textit{WT + water vs. APP/PS1 + water, } p < 0.0001; \\ \textit{WT + water vs. APP/PS1 + KDS2010 4W, } p > 0.9999; \\ \textit{APP/PS1 + water vs. APP/PS1 + KDS2010 4W, } p < 0.0001 \\ \end{array} $
10	WT + water (36.89 ± 3.195 , $n=18$), APP/PS1 + water (93.88 ± 5.23 , $n=33$), APP/PS1 + KDS2010 4W (49.03 ± 3.391 , $n=29$) One-way ANOVA with <i>Tukey's</i> multiple comparisons test F(2, 77) = 45.75 , $p < 0.0001$ WT + water vs. APP/PS1 + water, $p < 0.0001$; WT + water vs. APP/PS1 + KDS2010 4W, $p = 0.1947$; APP/PS1 + water vs. APP/PS1 + KDS2010 4W, $p < 0.0001$
40	WT + water (2.533± 0.2713, $n=18$), APP/PS1 + water (6.017 ± 0.6702, $n=33$), APP/PS1+KDS2010 4W (3.344 ± 0.388, $n=29$) <i>Kruskal-Wallis</i> test with <i>Dunnett</i> 's multiple comparisons test Kruskal-Wallis statistcs = 22.45 WT + water vs. APP/PS1 + water, $p < 0.0001$; WT + water vs. APP/PS1 + KDS2010 4W, $p = 0.8135$; APP/PS1 + water vs. APP/PS1 + KDS2010 4W, $p = 0.0009$
4E	Acquisition: WT + water (26.27 ± 4.744, n=15), APP/PS1 + water (17.76 ± 4.116, n=8), APP/PS1 + Selegiline 4W (17.76 ± 4.116, n=8), APP/PS1 + KDS2010 4W (49.93 ± 21.46, n=8) Retention: WT + water (489.6 ± 22.15, n=15), APP/PS1 + water (291.3 ± 52.68, n=8), APP/PS1 + Selegiline 4W (209.3 ± 57.79, n=8), APP/PS1+KDS2010 4W (499.3 ± 38.66, n=8) <i>Kruskal-Wallis</i> test with <i>Dunnett</i> 's multiple comparisons test Kruskal-Wallis statistcs = 22.59 WT + water vs. APP/PS1 + water, $p = 0.0103$; WT + water vs. APP/PS1 + KDS2010 4W, $p > 0.9999$; APP/PS1 + water vs. APP/PS1 + Selegiline 4W, $p > 0.9999$; APP/PS1 + water vs. APP/PS1 + KDS2010 4W, $p = 0.0167$
4G	WT + water (0.9692± 0.02083, $n=13$), APP/PS1 + water (0.01667 ± 0.009039, $n=18$), APP/PS1 + Selegiline 2W (0.6444 ± 0.1617, $n=9$), APP/PS1 + Selegiline 4W (0.1583 ± 0.0848, $n=12$), APP/PS1 + KDS2010 2W (0.9 ± 0.1, $n=10$), APP/PS1 + KDS2010 4W (0.875 ± 0.07258, $n=8$) <i>Kruskal-Wallis</i> test with <i>Dunnett's</i> multiple comparisons test Kruskal-Wallis statistcs = 45.47 WT + water vs. APP/PS1 + water, $p < 0.0001$; APP/PS1 + water vs. APP/PS1 + Selegiline 2W, $p = 0.0726$; APP/PS1 + water vs. APP/PS1 + Selegiline 4W, $p > 0.9999$; APP/PS1 + water vs. APP/PS1 + KDS2010 2W, $p < 0.0001$; APP/PS1 + water vs. APP/PS1 + KDS2010 2W, $p = 0.0716$

	5B	Latency-Acquisition Test; One-way repeated measures ANOVA with <i>Fisher's LSD</i> post-hoc analysis F(2,101) = 28.789, p < 0.001 WT + water vs. APP/PS1 + water, $p < 0.001$; WT + water vs. APP/PS1 + KDS2010, $p < 0.001$; APP/PS1 + water vs. APP/PS1 + KDS2010, $p = 0.067$ One-way ANOVA with <i>Fisher's LSD</i> post-hoc analysis (for each day) Day 1–5: not significant; Day 6: APP/PS1 + water vs. APP/PS1 + KDS2010, $p = 0.016$; Day 7: APP/PS1 + water vs. APP/PS1 + KDS2010, $p < 0.001$
Г	5C	Probe Test; One-way ANOVA with <i>Fisher's LSD</i> post-hoc test WT + water, $F(3,28) = 10.560$, $p < 0.001$; APP/PS1 + water, $F(3,36) = 0.232$, $p = 0.874$; APP/PS1 + KDS2010, $F(3,28) = 14.779$, $p < 0.001$
Γ	5D	Latency-Reversal Test; One-way repeated measures ANOVA with <i>Fisher's LSD</i> post-hoc analysis F(2,101) = 12.963, p < 0.001 WT + water vs. APP/PS1 + water, p < 0.001; WT + water vs. APP/PS1 + KDS2010, p = 0.019; APP/PS1 + water vs. APP/PS1 + KDS2010, p = 0.012 One-way ANOVA with <i>Fisher's LSD</i> post-hoc analysis (for each day) Day 1-2: not significant; Day 3: APP/PS1 + water vs. APP/PS1 + KDS2010, p = 0.002
Γ	Supple 6B	Acquisition: WT + water ($30.92 \pm 7.659, n=9$), APP/PS1 + water ($46.31 \pm 9.886, n=8$), APP/PS1 + KDS2010 3D ($60.58 \pm 16.69, n=8$) Retention: WT + water ($428.3 \pm 72.65, n=9$), APP/PS1 + water ($111.2 \pm 41.86, n=8$), APP/PS1+KDS2010 3D ($418.3 \pm 78.46, n=8$) One-way ANOVA with <i>Tukey's</i> multiple comparisons test F(2, 22) = 7.106, $p = 0.0042$ WT + water vs. APP/PS1 + water, $p = 0.0074$; APP/PS1 + water vs. APP/PS1 + KDS2010 3D, $p = 0.0117$
Г	Supple 7B	Acquisition: WT + water (64.26 ± 9.091 , $n=21$), APP/PS1 + water (40.37 ± 7.054 , $n=16$), APP/PS1+ KDS2010 1 mg/kg (29.88 ± 4.766 , $n=11$), APP/PS1 + KDS2010 10 mg/kg (33.22 ± 6.943 , $n=9$) Retention: WT + water (454.4 ± 31.06 , $n=21$), APP/PS1 + water (83.76 ± 13.28 , $n=16$), APP/PS1+KDS2010 1 mg/kg (254.2 ± 66.54 , $n=11$), APP/PS1+KDS2010 10 mg/kg (313.7 ± 66.47 , $n=9$) One-way ANOVA with <i>Tukey's</i> multiple comparisons test F($3, 53$) = 17.88, $p < 0.0001$ WT + water vs. APP/PS1 + water, $p < 0.0001$; WT + water vs. APP/PS1 + KDS2010 10 mg/kg, $p = 0.1114$; APP/PS1 + water vs. APP/PS1 + KDS2010 1 mg/kg, $p = 0.0323$; APP/PS1 + water vs. APP/PS1 + KDS2010 10 mg/kg, $p = 0.0039$
r	Supple 7D	WT + water (7.167 \pm 1.956, <i>n</i> =6), APP/PS1 + water (16.41 \pm 1.916, <i>n</i> =8), APP/PS1 + KDS2010 1 mg/kg (6.000 \pm 2.066, <i>n</i> =6), APP/PS1+KDS2010 10 mg/kg (6.000 \pm 1.643, <i>n</i> =5) One-way ANOVA with <i>Dunnett's</i> multiple comparisons test F(3, 21) = 7.654, <i>p</i> = 0.0012 WT + water vs. APP/PS1 + water, <i>p</i> = 0.0085;

	APP/PS1 + water vs. APP/PS1 + KDS2010 1 mg/kg, $p = 0.0045$; APP/PS1 + water vs. APP/PS1 + KDS2010 10 mg/kg, $p = 0.0061$
Supple 8B	Latency-Acquisition Test; Two-way repeated measures ANOVA Genotype effect: $F(1,116) = 71.076$, $p < 0.001$ Drug effect: $F(1,116) = 7.844$, $p = 0.006$ Genotype * Drug interaction: $F(1,116) = 11.498$, $p = 0.001$ One-way ANOVA with <i>Fisher</i> 's <i>LSD</i> post-hoc analysis WT + water vs. WT + KDS2010, $p = 0.686$; WT + water vs. APP/PS1 + water, $p < 0.001$; WT + KDS2010 vs. APP/PS1 + water, $p < 0.001$; WT + KDS2010 vs. APP/PS1 + KDS2010, $p < 0.001$; APP/PS1 + water vs. APP/PS1 + KDS2010, $p < 0.001$;
Supple 8C	Swim speed-Acquisition Test Two-way repeated measures ANOVA Genotype effect: $F(1,116) = 1.328$, $p = 0.252$ Drug effect: $F(1,116) = 0.035$, $p = 0.851$ Genotype * Drug interaction: $F(1,116) = 0.001$, $p = 0.979$ One-way ANOVA with <i>Fisher's LSD</i> post-hoc analysis WT + water vs. WT + KDS2010, $p = 0.912$; WT + water vs. APP/PS1 + water, $p = 0.441$; WT + water vs. APP/PS1 + KDS2010, $p = 0.331$; WT + KDS2010 vs. APP/PS1 + water, $p = 0.509$; WT + KDS2010 vs. APP/PS1 + KDS2010, $p = 0.392$; APP/PS1 + water vs. APP/PS1 + KDS2010, $p = 0.876$
Supple 8D	Swim speed-Acquisition Test; Day 6; One-way ANOVA with <i>Tukey's</i> multiple comparisons test F(2, 23) = 3.227, p = 0.0582 APP/PS1 + water vs. APP/PS1 + KDS2010, $p = 0.067$ Day 7; One-way ANOVA with <i>Tukey's</i> multiple comparisons test F(2, 23) = 3.227, p = 0.9492 APP/PS1 + water vs. APP/PS1 + KDS2010, $p = 0.3706$ Swim speed-Reversal Test; Day 10; <i>Kruskal-Wallis</i> test with <i>Dunnett's</i> multiple comparisons test Kruskal-Wallis statistcs = 4.762 APP/PS1 + water vs. APP/PS1 + KDS2010, $p = 0.0979$

Gene	Gene ID Species		Primer sequence		
МАОВ	109731	Mus musculus	F R	5'- AGTTGAGCGGCTGATACACT -3' 5'- TGGCCCATCTCATCCATTGT -3'	
DAO	13142	Mus musculus	F R	5'- CACTCGCTTACAAACCCACC -3' 5'- TCAAGTGTGGGGCTGGACTAG -3'	
GAD65	14417	Mus musculus	F R	5'- GGGATGTCAACTACGCGTTT -3' 5'- CATTGGGGTAATGGAAATCG -3'	
GAD67	14415	Mus musculus	F R	5'- CACAAACTCAGCGGCATAGA -3' 5'- CTGGAAGAGGTAGCCTGCAC -3'	

Table S7. Primer sequences for each enzyme (F: forward primer and R: reverse primer).

Additional data in 2-week toxicity: body weight changes, hematology, coagulation value, urinalysis value and organ weight changes.

¹H and ¹³C-NMR spectra

Chiral HPLC analysis of (S)/(R)-KDS2010

KDS2029 (R-isomer of KDS2010)

Tota

 $KDS2010/KDS2029 = 1/1 mixture PDA Chromatogram(kds2010_RS_iso20_AD-H.lcd)$

209246

PDA Peak T	Fable(kds2010_	_RS_iso20	_AD-H.lcd)
------------	----------------	-----------	------------

	FDA Feak Table(kuszutu_ho_isuzu_AD=h.icu)								
PDA C	Ch1 254nm								
Peak#	⊧Ret. Time	Area	Height	Mark	Conc.	Unit	ID#	Name	Area%
1	2.594	359576	73351		0.000				46.905
2	2.839	407023	74891	M	0.000				53.095
Total		766599	148242		0.000				100.000

HPLC Traces of the synthesized compounds

1.20 6.370 1.00-0.80 Q 0.60 0.40 0.20 0.00 10.00 Minutes 0.00 2.00 4.00 6.00 8.00 12.00 14.00 16.00 18.00 RT % Area Height Area 6.370 19771280 100.00 1234101 1

KDS0011

KDS2006

	RT	Area	% Area	Height
1	6.447	22794877	97.64	1579035
2	7.270	549803	2.36	57435

KDS0014

KDS2010

HR-MS spectra KDS2051

