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SUMMARY

Cytoskeletal actin dynamics is essential for T cell
activation. Here, we show evidence that the binding
kinetics of the antigen engaging the T cell receptor
influences the nanoscale actin organization and
mechanics of the immune synapse. Using an engi-
neered T cell system expressing a specific T cell re-
ceptor and stimulated by a range of antigens, we
found that the peak force experienced by the T cell
receptor during activation was independent of the
unbinding kinetics of the stimulating antigen.
Conversely, quantification of the actin retrograde
flow velocity at the synapse revealed a striking
dependence on the antigen unbinding kinetics.
These findings suggest that the dynamics of the
actin cytoskeleton actively adjusted to normalize
the force experienced by the T cell receptor in an
antigen-specific manner. Consequently, tuning actin
dynamics in response to antigen kinetics may
thus be a mechanism that allows T cells to adjust
the lengthscale and timescale of T cell receptor
signaling.

INTRODUCTION

Cells adapt their biomechanics to fulfill their function in a range of

complex, physical environments. During T cell activation, rear-

rangements of the actin cytoskeleton lead to mechanical

changes within the cell, driven by the nanoscale organization

of individual actin filaments (Fritzsche et al., 2017; Huse, 2017).

It is now emerging that cells can dynamically regulate their me-

chanics to meet their physiological needs via a diverse range

of feedback mechanisms (Elosegui-Artola et al., 2016; Roca-

Cusachs et al., 2017; Schwarz and Gardel, 2012). In this way,

external stimuli may lead to mechanical transitions within the

cell, which consequently influence a functional outcome, such
Cell R
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as the effector function of T cells. Molecular interactions at the

T cell membrane initiate activation, but what follows is likely to

involve a complex balance between the kinetics of key recep-

tor-ligand interactions, the dynamics of the actin cytoskeleton,

and the level of mechanical force generation. Understanding

the nature of feedback between these components is of critical

importance in providing a more complete understanding of

T cell activation.

T cell receptor (TCR) binding to the peptide-loaded major his-

tocompatibility complex (pMHC) on the surface of the antigen-

presenting cell (APC) results in an actin-driven morphological

change of the T cell. This change ultimately culminates in the for-

mation of an organized cell-cell contact between the T cell and

the APC, known as the immune synapse (IS). In the early stages

of activation, T cells spread over the surface of the APC via the

formation of a filamentous actin (F-actin)-rich lamellipodium,

similar to that observed at the leading edge of a migrating cell

(Yam et al., 2007). This morphological change occurs as a direct

result of signaling downstream of TCR phosphorylation, where

activation of the actin effector proteins Wiskott-Aldrich syn-

drome protein (WASp) and WASp family verprolin-homologous

protein (WAVE) leads to the activation of the actin nucleator

Arp2/3 (Fritzsche et al., 2017; Kumari et al., 2014). By binding

existing actin filaments, the Arp2/3 complex results in the poly-

merization of short-branched actin filaments, accounting for

the majority of the F-actin within the lamellipodium (Fritzsche

et al., 2013, 2016). In addition to Arp2/3-mediated polymeriza-

tion, formin binding leads to the extension of existing long actin

filaments, which coupled with myosin-II contractility yields the

formation of actin arcs (Murugesan et al., 2016). After the initial

spreading phase, the contact area between the T cell and the

APC stabilizes, and actin undergoes robust retrograde flow

directed toward the center of the IS. Simultaneously, TCR

micro-clusters form at the periphery of the IS andmigrate inward

as sites of active signaling in an actin-dependent manner (Dustin

et al., 2007; Kaizuka et al., 2007). TCR signaling is concentrated

in this outer region, correlating with the region of the most

dynamic actin. Actin stabilization by pharmacological perturba-

tion results in arrested TCR migration and a drop in intracellular
eports 26, 3369–3379, March 19, 2019 ª 2019 The Author(s). 3369
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Ca2+ levels, indicating that a dynamic actin cytoskeleton is

necessary to sustain the level of signaling via the TCR (Babich

and Burkhardt, 2013; Babich et al., 2012).

The active movement of TCR clusters necessitates the gener-

ation of mechanical force at the IS, and together with the kinetic

parameters of the stimulating antigens, it is likely to be key in

determining the length scale and timescale of signaling via the

TCR (Aleksic et al., 2010). Consequently, the duration of individ-

ual TCR clusters engaging MHCs or the distance traveled

defines a characteristic signaling timescale or length scale,

respectively. The kinetic parameters of the stimulating antigen

have been shown to correlate with the strength of the T cell

response, particularly the off rate of the binding kinetics (koff) of

the TCR-pMHC interaction (Aleksic et al., 2010). Because the

koff is a measure of the timescale of the TCR-pMHC interaction,

in combination with the dynamics of the actin cytoskeleton, it

also is critical in determining the overall mechanics at the IS.

Moreover, a number of studies have demonstrated that the

TCR itself may be mechanosensitive. Experiments using optical

traps (Das et al., 2015), biomembrane force probes (Liu et al.,

2014), and atomic force microscopy (AFM) (Hu and Butte,

2016) have demonstrated that applying tension to the TCR-

pMHC interaction can enhance TCR-specific signaling. In sup-

port of these observations, the TCR-pMHC has been shown to

exhibit slip-catch bond behavior, whereby forces applied to

the interaction modify the kinetics, suggesting that T cells may

discriminate antigens using mechanical force (Klotzsch and

Sch€utz, 2013; Sibener et al., 2018). Despite this, little is under-

stood of how such mechanosensitivity may be controlled at

the IS. Only recently has it been shown how actin arcs generated

by myosin-II-mediated contractility may serve to generate the

necessary forces to promote activation via a mechanosensitive

mechanism (Hong et al., 2017).

Therefore, what is lacking from our current understanding is

how the rearrangement of the T cell cytoskeleton initiated by

early signaling events influences those at later time points due

to the changing mechanical environment in which TCR traf-

ficking and signaling persist. The correlated motion of TCR

micro-clusters and actin flow at the IS indicates that the two sys-

tems are tightly coupled (Smoligovets et al., 2012; Yu et al.,

2010). In addition, traction force microscopy (TFM) has demon-

strated mechanical force production during the formation and

maintenance of the IS (Bashour and Gondarenko, 2014; Hui

et al., 2015). However, mechanistic insights into how forces

are transmitted to and experienced by the TCR from the actin

cytoskeleton remain elusive. More generally, it is unknown

whether the actin cytoskeleton serves simply as a platform for

signaling or whether the dynamics of the actin cytoskeleton is

playing an active role by tuning its dynamics to control the pa-

rameters of the TCR-pMHC interaction. In support of an active

role for the cytoskeleton, we recently demonstrated how

T cells form a ramified actin network beneath the IS, which

adjusted its mechanics to facilitate activation (Fritzsche et al.,

2017). Consistent with this, active force production by T cells

has been shown to promote the stability of the IS between

T cells and APCs through the enhanced activation of the integrin

lymphocyte function-associated antigen 1 (LFA-1), coupled

with the hindered mobility of intercellular adhesion molecule 1
3370 Cell Reports 26, 3369–3379, March 19, 2019
(ICAM-1) on the surface of the APC (Comrie et al., 2015). Conse-

quently, it is of critical importance to investigate whether feed-

back exists between the kinetics of the stimulating antigen and

the dynamics of the actin cytoskeleton, which may offer a mech-

anism by which the T cell is able to control molecular events at

the IS via moderation of the level of mechanical force generation

(Thauland et al., 2017).

Here, using Jurkat T cells expressing the New York esopha-

geal squamous cell carcinoma 1 (NY-ESO-1)157–165-specific

1G4-TCR (Chen et al., 2005), we directly measure the mechani-

cal forces experienced by the TCR at the IS by traction force ex-

periments, and firmly establish how actin dynamics is influenced

by the kinetics of the stimulating antigen. Combining a range of

biophysical tools, we highlight a mechanism by which the

T cell is able to influence activation, tuning the dynamics of

cortical actin architecture to each specific antigen to normalize

the level of mechanical force experienced by the TCR. These

findings suggest that modulating actin dynamics in response

to antigen kinetics may be a mechanism that allows T cells to

adjust the lengthscale and timescale of TCR signaling.

RESULTS

Activating Jurkat T Cells Generate Mechanical Force
Whose Magnitude Is Independent of Antigen Kinetics
To investigate themechanical force experienced by TCRs during

T cell activation, we used TFM. The elastic 3 kPa polyacrylamide

(PAA) gel surface necessary for TFMwas loadedwith fluorescent

beads and functionalized with histocompatibility leukocyte anti-

gen (HLA) A2 molecules loaded with the NY-ESO-1157–165 pep-

tide (pMHC) recognized by the 1G4-TCR expressed by the

Jurkat T cells (Figures 1A and S1). A stiffness of 3 kPa was cho-

sen as a representative soft surface similar to that present during

the physiological T cell-APC interaction, as well as being stiff

enough to maintain a linear regime of mechanical force during

TFM measurements (Bufi et al., 2015; Saitakis et al., 2017). The

high-affinity peptide NY-ESO-1157–165 peptide analog 9V (con-

taining cysteine-to-valine substitution at position 165) was

used for these experiments (Chen et al., 2005). Using TFM in

combination with Jurkat T cells expressing fluorescently tagged

monomeric actin (see Method Details), we could monitor the dy-

namics of the actin cytoskeleton and traction force generation

simultaneously. As expected, on coming into contact with the

gel surface, the Jurkat T cells rapidly spread over the surface,

forming a stable contact characterized by an actin-rich lamelli-

podium at the periphery (Figure 1B), as has been previously

shown on functionalized glass surfaces and supported lipid bila-

yers (SLBs) (Dustin et al., 2007).

By analyzing the displacement of the beads below the acti-

vating T cell, it was evident that the majority of mechanical force

was concentrated at the periphery of the cell contact, with a large

number of beads being displaced in this region compared to the

center of the contact. Contrary to the expectation of widespread

and continuous force generation, the nature of the observed

forces was localized and displayed a distinct pattern. Under

the lamellipodium, the bead motion was characteristic of so-

called load-fail events (Chan and Odde, 2008). As is evident

from the kymograph and bead tracking analysis, the beads



A B

C D

E F

Figure 1. TFMRevealed Localized Forces during TCell ActivationWhose Peak ForceWas Invariant to the Kinetics of the Stimulating Antigen

(A) Schematic of the TFM experimental setup, showing fluorescent beads localized to the top surface of 20- to 30-mm-thick PAA gel containing streptavidin-

acrylamide and the upper surface functionalized as shown using biotinylated pMHC or anti-CD3 antibodies.

(B) Confocal fluorescent imaging time-lapse of a 1G4-TCR Jurkat T cell expressing actin-SNAP and labeled with SNAP-Cell-505 (green) interacting with a 3-kPa

PAA gel functionalized with HLA-9V pMHCmolecules and loadedwith 40 nm red fluorescent beads. Scale bar, 2 mm. Inset shows a close-up of the dashed boxes.

Scale bar, 1 mm. Top and center right show the temporal projection of both actin and bead dynamics. Bottom right shows a dual-color kymograph of a radial line

profile of the activating T cell. Bead motion is visible in the outer lamellipodial region, whereas little bead motion is observed in the center of the cell contact.

(C) Left: single particle tracking of a representative selection of beads showing unidirectional bead motion. Scale bar, 0.5 mm. Right: close-up image of the

individual bead track, showing color-coded temporal evolution of bead motion.

(D) Top: kymographwith projected track overlay, showing the characteristic load-fail dynamics of the bead displacement. Cyclical events characterized by a slow

loading phase and a rapid return to an equilibrium position are observed in beads in the outer part of the cell contact. Bottom: representative kymograph of bead

displacement in a region under the center of the cell contact, showing the absences of any directed motion, which indicates a lack of traction forces.

(E) Finite element (FE) analysis of a representative load-fail event, showing the evolution of force on the gel extracted from the displacement of the bead in (D). The

evolution of force during a single load-fail event is indicated by the spatial distribution of forces shown in the heatmaps, with the corresponding time points

indicated by the colored dashed line on the time course. Scale bar, 0.5 mm.

(F) Distribution of peak fail forces as calculated by finite element analysis for each antigen stimulation condition. Error bars showmeans and SDs; NR 39 load-fail

events, 10 cells per condition.
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Figure 2. Load-Fail Dynamics Is Dependent on Actin Dynamics but Not Myosin-II Contractility

(A) Confocal fluorescent imaging time-lapse of a 1G4-TCR Jurkat T cell expressing actin-SNAP labeled with SNAP-Cell-505 interacting with an antigen-coated

coverslip before and after the addition of 500 nM jasplakinolide. The red arrowheads indicate stationary features in the lamellipodium after treatment. At right is

the corresponding kymograph. The red arrowheads show actin retrograde flow before treatment and arrested flow after treatment.

(B) Confocal fluorescent imaging time-lapse of a 1G4-TCR Jurkat T cell expressing actin-SNAP labeled with SNAP-Cell-505 interacting with an antigen-coated

coverslip before and after the addition of 100 mM Y27632. The red arrowheads indicate lamellipodial width reduction after treatment. The blue arrowheads

indicate the loss of actin arcs following treatment. At right is the corresponding kymograph.

(C) Optical flow analysis of actin flow during activation. The red arrows indicate a vector field, showing the direction of actin flow. Scale bar, 2 mm. At bottom is an

extreme closeup of the dashed box at top.

(D) Pseudo-color intensity map of radial and azimuthal actin velocity before and after the addition of 500 nM jasplakinolide. Scale bar, 2 mm. Bottom: corre-

sponding line profiles.

(E) Pseudo-color intensity map of radial and azimuthal actin velocity before and after the addition of 100 mMY27632. Scale bar, 2 mm. Bottom: corresponding line

profiles.

(legend continued on next page)
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were initially displaced in a direction that correlated with the actin

flow, toward the center of the IS (loading phase) (Figures 1C and

1D). The displacement increased gradually before reaching a

maximum, at which point the bead appeared to return elastically

to its equilibrium position (failing event). These load-fail events

would often repeat, with multiple cycles of loading and failing

during the activation period of 3 min, and each load event per-

sisted for a median of 9.3 ± 6.5 s and traveled a median length

of 139 ± 50 nm before failing (Video S1). Because surface func-

tionalization was achieved using the specific pMHC alone, it fol-

lows that the forces observed were solely a consequence of

TCR-pMHC contacts linking the cell and gel substrate, and

hence serve as a measure of the forces directly experienced

by the TCR. To further highlight that the forces were specific to

the TCR-pMHC complexes, we functionalized the gel simulta-

neously with poly-L-lysine (PLL), as has been done during previ-

ous studies of force generation during T cell activation (Hui et al.,

2015). The observed forces were strikingly different (Figure S2;

Video S2), with global contractile forces gradually increasing

over the period of 10 min. Notably, these differences were in

line with recent work showing that PLL strongly activates

T cells (Santos et al., 2018). These observations suggest that

the adhesive contact of the PLL masked the localized load-fail

forces, indicating a possible reason why they have not been pre-

viously observed in T cells.

The kinetic parameters of the antigen are key determinants of

the T cell activation response. Mechanistically, antigens having a

lower koff would be bound to the TCR for a longer period. Hence,

assuming a constant actin flow rate, this would result in a larger

distance traveled by the TCR while still bound to the pMHC

compared to the antigen with higher koff. Assuming a homoge-

neous and elastic opposing surface, one would therefore expect

that antigens binding the TCR with a lower koff would result in a

greater mechanical load imposed by the actin retrograde flow.

To investigate this model, TFM experiments were conducted

on a gel functionalized with antigens of a differing koff. Load-fail

behavior was observed across all of the antigens and was qual-

itatively similar for both anti-CD3 antibodies (OKT3 and UCHT1)

and pMHCs (HLA-A2 4D and HLA-A2 9V) of differing koff (Aleksic

et al., 2010; Chen et al., 2005; Kjer-Nielsen et al., 2004; Lee et al.,

2017; Salmerón et al., 1991). Calculating the precise level of me-

chanical load for each antigen during such events was not

possible using conventional TFM approaches and required nu-

merical solving using finite element (FE) analysis (see Method

Details) because of the localized nature of the forces. Force

reconstruction resulted in a trace of the force generated in the vi-

cinity of each bead over time, allowing the peak force experi-

enced during each load-fail event in that region of the gel to be
(F) Fold change of radial (top) and azimuthal (bottom) actin velocity within the

coverslip after the addition of 500 nM jasplakinolide or 100 mM Y27632. Error ba

(G) Left: kymograph showing the dynamics of actin and fluorescent beads before

arrowhead). Actin dynamics shows clear retrograde flow pre-treatment and the

treatment, as indicated by the small white arrowheads, and the events are dram

selection of tracks showing the dynamics of beads pre- and post-addition of 50

events. Right: quantification of load-fail event rate before and after the addition o

(H) Left: kymograph showing the dynamics of actin and fluorescent beads befo

arrowhead). Scale bar, 1 mm. Center: representative selection of tracks showin

quantification of load-fail event rate before and after the addition of Y27632. Erro
quantified (Figure 1E). As can be seen from Figure 1F, the

mean peak force experienced by the TCR for each antigen con-

dition was not significantly different (p > 0.05, one-way ANOVA

test), and there was also no apparent trend (HLA-4D: 0.16 ±

0.05 nN, HLA-9V: 0.15 ± 0.05 nN, OKT3: 0.16 ± 0.05 nN,

UCHT1: 0.16± 0.06 nN,means and SDs, NR 39 load-fail events,

10 cells per condition). Given the model outlined above, this is a

surprising result, as stronger binding antigens would be ex-

pected to show a higher peak force on a homogeneous elastic

substrate. Conversely, this result suggests that the level of me-

chanical force experienced by the TCR is modulated, depending

on the kinetics of the antigen.

Load-Fail Dynamics IsDependent onActinDynamics but
Not Myosin-II Contractility
To gain an understanding of the mechanism responsible for the

modulation of mechanical forces, it was vital to uncover the

molecular processes governing the load-fail behavior observed

during IS formation using specific cytoskeletal perturbations

(Babich et al., 2012; Yi et al., 2012). We carefully characterized

the effect of stabilizing actin filaments and inhibiting myosin-II

contractility on the actin dynamics at the IS. Using this character-

ization, we then applied the same perturbations in combination

with the force measurements to assess whether actin polymeri-

zation or myosin-II contractility was primarily responsible for

force generation.

Jasplakinolide is a specific pharmacological agent that serves

to stabilize actin filaments, and has previously been shown to

arrest TCR micro-cluster trafficking (Babich et al., 2012). To

assess the effects of actin stabilization on the overall cytoskeletal

organization, 500 nM jasplakinolide was added to T cells ex-

pressing monomeric fluorescent actin after allowing a stable

synapse to form on antigen-coated glass coverslips (Figure 2A).

As can be seen from time-lapse fluorescent imaging and corre-

sponding kymograph analysis, the addition of jasplakinolide re-

sulted in the rapid stabilization of lamellipodial actin, leading to

a dramatic slowdown of the actin flow.

Myosin-II contractility has been implicated in governing the

spatial-temporal dynamics of the T cell synapse and in control-

ling TCR cluster migration (Hammer and Burkhardt, 2013; Ilani

et al., 2009; Kumari et al., 2012); however, it is unclear how

myosin-II-mediated contractility contributes to the dynamics of

actin within the lamellipodium. Y27632 is commonly used to

inhibit myosin-II contractility by specifically targeting rho-associ-

ated protein kinase (ROCK). By repeating the actin stabilization

experiments, but this time adding 100 mM Y27632, the contribu-

tion of myosin-II to actin dynamics was investigated. Unlike

jasplakinolide, Y27632 did not stabilize actin, but the overall
lamellipodium of a 1G4-TCR Jurkat T cell interacting with an antigen-coated

rs show means and SDs; N = 12 cells per condition.

and after the addition of 500 nM jasplakinolide (time point indicated by the large

stabilization of flow immediately afterward. Load-fail events are visible before

atically reduced following treatment. Scale bar, 1 mm. Center: representative

0 nM jasplakinolide. Treatment leads to the complete termination of load-fail

f jasplakinolide. Error bars show means and SDs; N = 4 cells.

re and after the addition of 100 mM Y27632 (time point indicated by the large

g the dynamics of beads pre- and post-addition of 100 mM Y27632. Right:

r bars show means and SDs; N = 5 cells.
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organization of the synapse was perturbed (Figure 2B). Notably,

the lamellipodial region became less prominent and decreased

in its spatial width. In addition, actin arcs present in the lamellum

disassembled, leading to a decrease in actin density within the

lamellum (Figure 2B).

To further quantify the changes in the actin dynamics in

response to each perturbation, we next applied optical flow

analysis to the fluorescent time-lapse imaging (Liu, 2009). While

visual inspection indicated that the dominant actin flow was

centripetal, closer examination revealed that the flow was

spatially more complex, with a significant variation in flow speed

and direction over the contact area. The spatial dependence of

actin flow speed also correlated with structural differences in the

actin organization from the lamellipodium, with fast-moving

dense actin filaments, to sparser slow-moving filaments in the

lamellum (Figure S3; Video S3). Optical flow allowed these

more complex components to be extracted by separating the

actin velocity into a radial component (toward the center of

the contact) and an azimuthal component (tangential to the

cell edge) across the cell contact (Figure 2C) (Liu, 2009).

Figure 2D highlights the effects of 500 nM jasplakinolide on

both the radial and azimuthal components of actin flow.

Following the treatment, the optical flow pseudo-color velocity

map shows that the radial velocity is almost completely abol-

ished and that the azimuthal velocity is reduced. Line profiles

further reveal this distinct change in actin dynamics following

actin stabilization. Figure 2E displays the equivalent quantifica-

tion after the addition of 100 mM Y27632. The thinning of the la-

mellipodium observed in the fluorescent time-lapse imaging

(Figure 2B) is clearly visible in the pseudo-color velocity maps

for both the azimuthal and radial components. The magnitudes

of both radial and azimuthal velocities are similar before and

after treatment with Y27632, suggesting that while the organiza-

tion of actin at the IS is dependent on myosin-II contractility, the

actin dynamics is not. Line profiles of the radial and azimuthal

components revealed this distinct change in actin organization

following inhibition of myosin-II contractility. The change in la-

mellipodial actin radial velocity for each perturbation was further

quantified by plotting the fold change in radial velocity before

and after treatment (Figure 2F), supporting the conclusions

drawn from the representative cells in Figures 2D and 2E

(N = 12 cells per condition).

Next, we applied the described perturbations during the TFM

measurements on activating T cells. After allowing a stable syn-

apse to form, the addition of jasplakinolide resulted in a signifi-

cantly reduced retrograde flow of actin and load-fail events, as

is evident from the kymograph and bead traces shown in Fig-

ure 2G for a representative cell (Video S4; p < 0.5, N = 4 cells).

This effect was quantified by analyzing the load-fail event rate

before and after the addition of the drug, in which the rate fell

to zero immediately after the addition of jasplakinolide. Equiva-

lent experiments were performed using Y27632 (Figure 2H).

Myosin-II inhibition did not significantly change the load-fail

event rate, as is evident from the quantification shown in Fig-

ure 2H (Video S5; p > 0.5, N = 5 cells). This result indicates

that it is the retrograde flow of actin that is primarily responsible

for the observed forces and gives further support to the concept

that a tight coupling between the TCR and the actin cytoskeleton
3374 Cell Reports 26, 3369–3379, March 19, 2019
is responsible for the transmission of force from actin to the TCR

during activation.

Actin Flow Velocity at the IS Is Antigen Dependent
The pharmacological perturbations of the actin cytoskeleton

presented above indicated that actin polymerization was primar-

ily responsible for the forces experienced by the TCR. In support

of this, it is understood that TCR dynamics during activation

correlates with the motion of the actin cytoskeleton (Figure S4)

(Kaizuka et al., 2007; Murugesan et al., 2016) and that a coupling

between TCR and the actin cytoskeleton is likely to be respon-

sible for TCR cluster migration (Figure S4; Video S6) (Smoligo-

vets et al., 2012; Yu et al., 2010). These observations indicate

that the length- and timescale of the TCR-pMHC interaction

may be controlled by the dynamics of the underlying actin cyto-

skeleton. As has been shown, the peak force experienced under

varying antigens was consistent, implying that the T cell employs

a mechanism to normalize this force at the IS. Owing to the

apparent coupling between TCR and the actin cytoskeleton, as

well as the force dependence on actin polymerization, any tuning

of the forces experienced by the TCR are likely to result from

changes in the dynamics of the actin cytoskeleton. To investi-

gate whether regulating the dynamics of the actin cytoskeleton

provides this mechanism, we next sought to systematically mea-

sure the actin flow velocity in response to antigens of varying

kinetics.

To address this, Jurkat T cells expressing the 1G4-TCR were

stimulated on glass surfaces functionalized with one of the four

antigens used in the previously described TFM measurements,

namely with two pMHCs (HLA-9V and HLA-4D) and two anti-

CD3 antibodies (OKT3 and UCHT1), each differing in their koff
(Aleksic et al., 2010; Kjer-Nielsen et al., 2004; Salmerón et al.,

1991). For each cell, the actin flow velocity was quantified. The

gel used in the TFM experiments deform under an applied

load, as was apparent from the load-fail data presented in Fig-

ure 1. Conversely, glass is a non-compliant substrate, and any

forces generated by the cell are not efficiently transferred to

the substrate. Therefore, to accurately measure the antigen

dependence of actin retrograde flow, we performed the quanti-

fication of actin flow velocity on glass, removing any effects

induced by the deformation of the substrate. Because of the

complexity in the actin flow field outlined in Figure 2, actin flow

quantification was carried out using a photobleaching approach.

A circular region at the leading edge of the T cell lamellipodium

was photobleached (Figure 3A; Video S7), and continued actin

polymerization at the leading edge of the lamellipodium resulted

in the displacement of the bleached region in the direction

of actin polymerization. By tracking this bleached region, the

absolute value of the actin flow velocity could be reliably ex-

tracted by applying a linear fit to the region displacement (Fig-

ures 3B and 3C).

The response of the activating cells fell into two distinct cate-

gories. Once activated, all of the cells were seen to spread; how-

ever, the stability of the leading edge of the cells differed greatly,

as was previously evident from the optical flow analysis. In some

cells, the leading edge remained stationary (Figure 3D), but in

other cells this would either expand, increasing the cell contract

area, or contract (Figure 3E). The retrograde flow of actin is a
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Figure 3. Actin Flow Velocity at the IS Is Antigen Dependent

(A) Time-lapse imaging for actin bleach region and temporal projection. Top: time-lapse shows a representative cell with a stable leading edge. Bottom: time-

lapse shows a representative cell in which the leading edge expands over time. Scale bar, 1 mm.

(B) Tracking of segmented bleached region in the T cell lamellipodium.

(C) Displacement of segmented bleached region with corresponding linear fit.

(D) Left: model of actin bleach region dynamics in the presence of a stable leading edge. Right: kymograph of stable leading edge, showing the bleach region edge

(red dotted line) and the leading edge (blue dotted line).

(legend continued on next page)
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consequence of the actin filament polymerization rate and the

tension of the plasma membrane (Mueller et al., 2017). In

T cells in which the leading edge expands, the force of polymer-

ization exceeds the membrane tension, and the converse is true

in contracting cells. Because of this imbalance, the retrograde

flow velocity in each of these cases would be affected. This

observation is highlighted in Figures 3D and 3E; Figure 3D shows

a kymograph of a stable leading edge and Figure 3E an expand-

ing leading edge. Where the leading edge is stationary, the

bleach region moves at a constant velocity, but conversely,

when the leading edge expands, the bleach region decreases

in velocity, suggesting a shift in balance betweenmembrane ten-

sion and the force induced by actin polymerization (Mueller et al.,

2017). By quantifying the actin flow velocity for cells exhibiting a

stable leading edge for each antigen, it was possible to observe a

distinct trend that reflected the koff of the antigens (Figures 3F

and 3G). The pMHC with the fastest koff, HLA-4D, showed the

highest rate of actin flow, with a mean of 95.5 ± 23.3 nm/s, while

the more strongly binding HLA-9V exhibited a significantly

slower mean velocity of 77.12 ± 17.9 nm/s (p < 0.05, NR 12 cells

per condition). The anti-CD3 antibodies consistently show a

similar trend, with stimulation via the more strongly binding

UCHT1 (66.73 ± 26.58 nm/s) resulting in a slower actin velocity

compared to OKT3 (83.69 ± 21.14 nm/s) (p < 0.05, N R 8 cells

per condition). If cells showing a non-stable leading edge were

included in the quantification, then the trend was less distinct

(Figure 3H), supporting the notion that changes in the membrane

tension and the force induced by actin polymerization can alter

the actin flow rate. This important result demonstrates that the

kinetics of the antigen can affect the actin dynamics during acti-

vation, providing evidence in support of active feedback be-

tween antigen kinetics and actin dynamics.

DISCUSSION

Using a combination of biophysical tools, we have shown that

cytoskeletal actin dynamics contributes to the control of T cell

activation in an antigen-dependent manner. By adapting the

velocity of actin retrograde flow, we speculate that the peak

force experienced by the TCR is normalized across all antigens,

suggesting a mechanism by which T cells may orchestrate the

dynamics of the TCR during signaling at the IS. This result shows

how the kinetic parameters of the antigen can influence the

mechanics of the synapse, providing an important insight into

how cells control their physiological function.

TFM using PAA gels functionalized with both pMHC and anti-

CD3 antibodies exhibited highly localized and distinct force pat-

terns, referred to as load-fail events. The peak mechanical force

recorded in the presence of each of the four antigens was not

significantly different, suggesting that T cells were able to adapt
(E) Left: model of actin bleach region dynamics in the presence of an expanding le

dotted lines) and the bleached region edge, showing a corresponding slowdown

(F) Antigen kinetics as shown by their solution koff for the four stimulating antigen

(G) Distribution of actin velocity as measured by bleach region tracking for each an

SDs; N R 8 cells per condition.

(H) Distribution of actin velocity as measured by bleach region tracking for each

edges). Error bars show means and SDs; N R 14 cells per condition.
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the level of force generation to each specific antigen. Mechanis-

tically, load-fail forces were a consequence of actin retrograde

flow, as highlighted by perturbation experiments, which is

consistent with previous work (Hui et al., 2015). Stabilizing actin

filaments pharmacologically resulted in the arrest of actin retro-

grade flow and a dramatic loss of force generation. Inhibition of

myosin-II contractility, while affecting the overall actin organiza-

tion, did not perturb the actin retrograde flow and had no signif-

icant effect on the observed force generation.

The invariance of force generation to antigens of differing ki-

netics is contrary to expectation, as strongly binding antigens

would be expected to exhibit higher forces, owing to the

increased lifetime of the TCR-pMHC interactions (Liu et al.,

2016). However, this model relies on the assumption that the

actin cytoskeleton provides a consistent level of mechanical

force to induce TCR cluster migration, resulting from a constant

actin flow velocity. The invariance of the peak force was there-

fore an indication that feedback between the antigen kinetics

and the actin flow rate influenced the level of mechanical force

generation. It is important to note that the mechanical forces

measured here are unlikely to result from single TCR-antigen

binding events, but rather clusters of molecules. Dissecting the

effects of single TCR binding events from their collective binding

remains challenging and could account for differences between

our observations and previous work, in which an antigen depen-

dence of forcewasmeasured (Liu et al., 2016). TFM revealed that

the lengthscale and timescale of the load-fail events were

approximately 150 nm and 10 s, respectively, indicating that

the TCRwould undergomultiple cycles of binding and unbinding

during its transport across the IS. This indicates that TCR

signaling is not continuous at any location and time at the lamel-

lipodium, but rather that the actin cytoskeleton defines a spatial

length- and timescale at which signaling is maintained at the cell

surface. This highlights the importance of monitoring the cyto-

skeletal dynamics of actin in response to different antigens

(Hong et al., 2017; Murugesan et al., 2016).

Load-fail force patterns like those observed here have previ-

ously been reported in neuronal growth cones and were inter-

preted as being as a result of mechanical forces generated by

the actin cytoskeleton and transferred to the compliant substrate

by temporary adhesions formed between the cell and the gel

beneath (Chan and Odde, 2008). On forming an adhesion, the

persistent flow of the actin cytoskeleton generates a force

opposing the adhesive contact. As the force opposing the adhe-

sion increases, the elastic substrate is gradually displaced. This

increases up to a threshold where the force generated by the

actin cytoskeleton outweighs the strength of the adhesive con-

tact, at which point, the receptor-ligand interaction maintaining

the adhesive contact will abruptly fail. This failing event is

interpreted here as a passive process, but it could be actively
ading edge. Right: kymograph of the expanding leading edge (blue and green

as the leading edge expands (red and yellow dotted lines).

s.

tigen for cells exhibiting a stationary leading edge. Error bars showmeans and

antigen for all activating cells (expanding, stationary, and contracting leading



controlled by myosin motors (Feng et al., 2017). Higher spatial-

temporal studies would be required to fully elucidate the nature

of a fail event as an active or a passive process. This failing event

could also emerge as a consequence of a rupture in the linkage

between the receptor-ligand interaction maintaining the cell

contact and the actin cytoskeleton. However, such a model in

T cells requires either a specific interaction between actin and

the TCR (e.g., via an adaptor protein) or a non-specific interaction

(e.g., a frictional coupling) to transfer the forces generated by the

cytoskeleton to the TCR on the membrane. While the force mea-

surements presented here do not favor a specific or non-specific

mechanism for this force transmission, the actin perturbation ex-

periments indicate that actin flow is responsible for the observed

forces. Furthermore, these measurements highlight the potential

of TFM to provide an important readout that will likely be crucial in

uncovering the full mechanism by which force transmission

occurs between actin and the TCR (Ditlev et al., 2018). In addition,

co-labeling of the TCRand actin during force generationwould be

beneficial in uncovering such a mechanism via a combination

with advanced dynamic techniques; however, localization of

TCR micro-clusters using confocal microscopy in combination

with TFM would result in a large amount of intracellular TCR

fluorescence signal, precluding the localization of TCR micro-

clusters on the membrane (Schneider et al., 2018).

Finally, careful analysis of the actin retrograde flow velocity un-

der varying antigen conditions showed a velocity dependence.

This result builds upon previous work, in which it has been shown

that the nano-scale organization and dynamics of the actin

cytoskeleton changes between the resting and activated T cell

(Fritzsche et al., 2017). Moreover, this result confirms a coupling

between actin and the motion of the TCR, demonstrating feed-

back between the two systems. Notably, if the changes in actin

velocity were a consequence of downstream signaling alone,

onemay expect that weak peptides would induce less actin poly-

merization, and hence a lower actin velocity, as the level of Ca2+

influx during activation has been shown to influence the retro-

grade flow rate (Hartzell et al., 2016). This is contrary to our

observations, suggesting that a more complex and—crucially—

physical feedback mechanism is at work. In support of this

view, a recent study has shown that the elongation rate of actin

filaments can be directly altered by the mechanical load applied

to the filament, as could be the case in T cells, in which more

strongly binding pMHC leads to an increased mechanical load

and a slowdown in actin (Mueller et al., 2017). Given the invari-

ance of the peak load force to the antigen kinetics, we speculate

that feedback to the actin cytoskeleton via a direct coupling to the

TCR serves to normalize this force. This result highlights a key

mechanism by which the T cell could maintain robust signaling

in response to a wide range of antigen stimulation by controlling

the level of force experienced by the TCR micro-clusters, result-

ing in a constant length- and timescale of signaling via the TCR at

the IS. Previous work has shown that the proportion of T cells

showing a calcium response when stimulated by the same range

of antigens as used here did not change, suggesting a robust

signaling response (Lee et al., 2017). Despite this, differences

were observed in the qualitative nature of the calcium flux, with

weakly binding antigens tending to exhibit oscillatory responses

compared to single peaked responses (Lee et al., 2017).
Our findings, while not directly in support, are consistent with a

model that forces generated at the IS facilitate antigen discrimina-

tion via catch and slip bondbehavior (Liu et al., 2014), whereby the

apparent kinetics of the antigensmeasured in solution is modified

by themechanical forcesgeneratedat the IS.Moreover, ourobser-

vations support a view that the generationof force that ismost crit-

ical is the outer regions on the IS, correlating with the area of most

active TCR signaling. To build upon this conclusion, future work

should focus on uncovering the molecular details of the coupling

between actin dynamics and the motion of the TCR micro-clus-

ters—specifically, how actin is coupled to the TCR and whether

the feedback observed here results from a passive or an active

mechanism. In addition, the influence of other molecules that are

key tosynapse formationon themechanical loadgeneratedduring

activation should be investigated. This insight will be critical in

developing a complete understanding of how T cells are able to

orchestrate events at the IS in response to differing antigens.
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APTMS Sigma-Aldrich Cat#281778
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N,N’-Methylenebisacrylamide solution (2%) Sigma-Aldrich Cat#M1533

Acrylamide solution (40%) Sigma-Aldrich Cat#A4058
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Experimental Models: Cell Lines

Jurkat 1G4-TCR T cell Lee et al., 2017 N/A

Recombinant DNA

Lifeact-mCitrine Addgene 54733

Software and Algorithms

ABAQUS 6.124-3 ABAQUS, Inc. N/A

MATLAB 2018a MathWorks, Inc. N/A

Trackpy N/A https://soft-matter.github.io/trackpy/v0.3.2/)

PicoQuant SymPhoTime PicoQuant N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to and will be fulfilled by the Lead Contact, Marco Fritzsche (marco.

fritzsche@rdm.ox.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

A Jurkat T cell line stably expressing exclusively the 1G4 TCRwas generating via viral transduction of a Jurkat T cell line containing no

endogenous TCR, as described in Lee et al. (2017). 1G4 Jurkat T cells were cultured at 37�C in 5%CO2 in RPMI-1640 (Sigma Aldrich,

UK) containing 10% FBS (Sigma Aldrich), 1% Penicillin Streptomycin (Sigma Aldrich), 1% L-glutamine (GIBCO, UK), 10mM HEPES

(Sigma Aldrich) and 1mM Sodium Pyruvate (GIBCO). Cells were split every two days at a volume ratio of 1:5.

METHOD DETAILS

pMHC Production
HLA-A2molecules were synthesized as previously described (Aleksic et al., 2010). Two variants of theNY-ESO-1157–165 peptide were

presented on the HLA-A2molecule; one with a mutation to valine at position 165 (referred to as 9V) and one with a mutation to aspar-

tate at position 160 (referred to as 4D). Peptides were synthesized by Generon (UK).

Protein Biotinylation
Protein biotinylation was required to specifically functionalize glass, gel and bilayer surfaces. Biotylination of both antibodies and

HLA-A2 molecules was achieved via amine reactive chemistry (EZ-Link Sulfo-NHS-LC-Biotin, ThermoFisher). All proteins to be bio-

tinylated were first passed through a desalting column (7K Zeba Spin, ThermoFisher, UK). Sulfo-NHS-LC-Biotin was added to the

1mg/ml protein solution at a molar ratio of 10:1 and incubated for 1 h at 37�C. Following incubation, the solution was passed through

a further desalting column to remove any unbound biotin.

Bilayer Preparation
Bilayers were prepared using previously described protocols (Choudhuri et al., 2014; Grakoui et al., 1999). Briefly, for coupling of

polyhistidine tagged ICAM-1 (Abcam, UK) and biotinylated anti-CD3 (OKT3), equal volumes of DOPC (Avanti, USA) liposomes

(0.4 mM), and liposomes containing 12.5 mol% Ni2
+-NTA-DGS (Avanti), 0.05 mol% cap biotin PE (Avanti) and 75 mol% DOPC

(0.4 mM) were mixed and deposited onto multi-well flow-chambers (Ibidi, UK). Chambers were then washed with supplemented

HEPES buffered saline (20mMHEPES, 140mMNaCl, 5mMKCl, 6 mMglucose, 1mMCaCl2, 2 mMMgCl2, 1% human serum albumin

(HSA), pH 7.2. Following blocking for 30min with 5%casein supplemented with 100 mMNiCl2, bilayers were incubated for 30min with

polyhistidine tagged ICAM-1 and streptavidin. Following extensive washing, bilayers were incubated with biotinylated OKT3.

PAA GEL PREPARATION

PAA gel preparation has been adapted from Tse et al. (2010) and described in detail in Colin-York et al. (2017). Specifically, 40%

acrylamide (Sigma Aldrich) and 2% bis-acrylamide (Sigma Aldrich) solutions were combined at 1% and 0.1% respectively to

make a 1 kPa gel and 4% and 0.3% to make a 3 kPa gel. Polymerization was initiated by adding ammonium persulfate (APS) (Sigma

Aldrich) and tetramethylethylenediamine (TEMED) (Sigma Aldrich) at volume ratios of 1:100 and 1:250, respectively. Once initiated,

the gel solution was quickly pipetted between two coverslips, forming a sandwich. Prior to forming the sandwich, the upper coverslip
Cell Reports 26, 3369–3379.e1–e5, March 19, 2019 e2
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was coatedwith a high density of fluorescent beads. To achieve a good coverage of fluorescent beads on the coverslip, the glasswas

first acid cleaned and then coatedwith poly-L-lysine 0.01% (SigmaAldrich) for 10min. After washing and drying, a solution containing

a high concentration of 40nm red (594/620) fluorescent beads (Invitrogen) was placed onto the coverslip for 10 min, followed by

washing and drying. The top coverslip was treated with 0.5% (3-aminopropyl)trimethoxysilane (APTMS) (Sigma Aldrich) followed

by treatment with 0.5% glutaraldehyde (Sigma Aldrich) solution. This results in the silanisation of the glass surface which forms a

covalent link with the polymerizing gel, assuring firm attachment of the underside of the gel to the coverslip. Once the sandwich

was formed, the PAA gel was allowed to polymerize for 30 min at room temperature. Once complete, the upper coverslip was peeled

off the gel, leaving a thin layer of gel on the activated surface. The PAA gel was then washed extensively in 100x vol/vol Phosphate-

buffered saline (PBS) and stored at 4�C for no longer than 2 weeks. Gel stiffness was validated for each nominal stiffness using AFM

indentation (Denisin and Pruitt, 2016) (Figure S1).

PAA Gel Functionalisation
PAA gel functionalisation was achieved by two different methods. One based on a biotin streptavidin interaction and the other on the

bi-functional cross-linker Sulfo-SANPAH ((sulfosuccinimidyl 6-(4’-azido-20-nitrophenylamino)hexanoate) (Thermo Fisher) in combi-

nation with 365 nm ultraviolet (UV) light. For the first method, gels were fabricated using the previously described method, with

the addition of streptavidin-acrylamide (Thermo Fisher) to the gel solution at a final concentration of 750 mg mL�1. As the gel poly-

merizes on addition of TEMED and APS the streptavidin-acrylamide is covalently incorporated into themeshwork of the gel leading to

a distribution of biotin binding sites throughout the gel layer. After washing in PBS, the gel was placed on a drop of biotinylated protein

solution, for example OKT3-biotin at a concentration of 100 mg mL�1. Following 2 h incubation at room temperature, the gel was

washed again in PBS and was then ready to use. Antigen concentration on the top surface of the gel was validated using the binding

of the Streptavidin-488 to ensure the degree of coating was the same across all antigens (Figure S1). Alternatively, gels were func-

tionalised using Sulfo-SANPAH. Gels were again fabricated as previously described. Once polymerized, the gels were coated with a

5mgmL�1 solution of Sulfo-SANPAH and exposed to UV light at 365 nm for 10min. Following this, the gel was extensively washed in

PBS, ensuring all unbound cross-linker was removed. The gel was then placed on a drop of poly-L-lysine at a concentration of 1 mg

mL�1 and incubated at 4�C for 12 h. Following incubation, the gel was washed in PBS. At this point the gel was incubated with a

solution of OKT3 at a concentration of 100 mg mL�1.

Coverslip Preparation
Glass coverslips functionalised with both anti-CD3 antibodies and NY-ESO pMHCs were required for actin velocity quantification.

18 mm, #1.5 coverslips (Scientific Laboratory Supplies, UK) were first sterilized by extensive washing in ethanol. After drying, cov-

erslips were coated with 20 mL of a 1:4 mix of biotinylated Bovine Serum Albumin (BSA) (Sigma Aldrich) and standard BSA (Sigma

Aldrich) at concentrations of 200 mg mL�1 and 800 mg mL�1 respectively, followed by incubation at room temperature for 2 h. After

washing 3 times in PBS, coverslips were coated with 20 mL of a 10 mg mL�1 solution of streptavidin (Sigma Aldrich) followed by a

further 2 h incubation. After washing, 20 mL of a 10 mg mL�1 solution containing either the biotinylated anti-CD3 antibodies, OKT3

or UCHT1, or the biotinylated NY-ESO pMHC, HLA-9V and HLA-4D was placed on each coverslip as required, followed by a further

incubation 2 h and washing.

TFM data acquisition
TFM experiments were conducted using a Leica SP8 (LeicaMicrosystemsGmbH,Mannheim, Germany) confocal microscope equip-

ped with a Leica HC PL APO 63 3 /1.20 NA water motCORR CS2, a white-light-laser (WLL, NKT Photonics) for flexible choice of

excitation wavelengths, and environmental control maintaining a temperature of 37�C in an atmosphere of 5%CO2. 1G4-TCR Jurkat

T cell expressing actin-SNAP and labeled with SNAP-Cell-505 were allowed to interact with PAA gels functionalised with anti-CD3

antibodies or NY-ESO pMHCs as described previously. Bead displacements were recorded via time-lapse imaging at a laser power

of 488 nm – 36 mW and 594 nm – 55 mW and a frame rate of 2 s-1 for 2-3 mins per cell.

TFM analysis
Bead displacement data was extracted from the confocal time-lapse imaging using a custom written MATLAB routine. For each

tracked bead, in order to estimate forces transmitted to the PAA gel by cells, ABAQUS 6.124-3, a commercial software package

for Finite Element (FE) analysis, was used to solve the boundary value problem. The PAA gel was simulated as a cube and displace-

ments generated by cells were applied to the top surface of the cube.

Generally, three sets of equations are required to solve the boundary value problem:

1 The dynamic equilibrium equation which can be written as:
vsij

vxj
+ rfi = r €ui (1)
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in which, sij = stress tensor, xj = right-handed Cartesian coordinates (i,j = 1,2,3), r = density of material, fi = external body forces per

unit volume and €u is the acceleration of the element. Since the force generation of the cells is dynamic in nature, a dynamic explicit

formulation was used in our computation.

2 The constitutive relationship:
sij =
E y

ð1+ nÞð1� 2nÞεkkdij +
E

1+ y
εij (2)

where E = Young’s modulus, y = Poison’s ratio, dij = Kroneker delta and εij = strain tensor. The gel was assumed to have an isotropic

linear elastic behavior, with E = 3 kPa, and n = 0.3.

3 The strain-deformation equation:
εij =
1

2

�
vui

vxj
+
vuj

vxi

�
(3)

where u = displacement vector. In the definition of strain tensor, second order derivatives are ignored, and hence strains are assumed

to be small. However, it is possible to simulate large displacements in ABAQUS by activating geometry non-linearity. In such an

approach, the node coordinates are updated after each time increment. Stability of the solution was ensured by choosing a suffi-

ciently small time increment.

The boundary conditions on the displacement and stress are as follows: (1) ui = u�i at top face of gel, where u�i is the displacement

obtained from microscopy, (2) ui = 0 at the bottom surface of the gel and (3)sijnj = 0at side faces of the gel, where nj is unit vector

which is normal to the faces.

Equations (1), (2), (3) and the boundary conditions are combined using FE to obtain the following relationship:

M €u+C _u+K u=F (4)

in which, M, C, and K are mass, damping, and stiffness matrices, respectively. u and F are nodal displacement and external forces

vectors, respectively. The over dot indicates the derivative with respect to time. This equation is solved by the software, and displace-

ment vector field is calculated. Next, using Equations (3) and (2), strains and stresses are determined at Gauss integration points,

respectively. Forces can then be calculated using Equation (4). For FE analysis, the hexahedron (brick) type element was used,

with 8 corner nodes and eight inner Gauss integration points. Dimensions of the gel were sufficiently large such that no displacements

were observed at the edges of the computational space.

Once the evolution of force was calculated for each beads position, the individual load-fail events were quantified in terms of the

duration of the loading phase, distance traveled during the loading phase and the peak force generated before the failing event.

eTIRF-SIM microscopy
eTIRF-SIM microscopy of F-actin and TCR dynamics was achieved using a custom build system which has previously been

described in detail in Li et al. (2015). 1G4-TCR Jurkat T cell expressing Life-Act Citrine were allowed to interact with and SLB func-

tionalised with labeled anti-CD3 (OKT3) as described previously. Imaging was conducted at a temperature of 37�C in an atmosphere

of 5% CO2.

Optical flow analysis
Optical flow is technique commonly used in computer vision to establish themovement between video frames. Here, we apply optical

flow to measure to velocity displacement of actin between frames of time-lapse imaging. To establish the flow velocity for each cell,

we first find the optical flow between each frame using a pre-implemented MATLAB algorithm (Liu, 2009). This results in a displace-

ment map linking the position of each pixel between frames. By dividing the displacement by the frame acquisition time, we achieve

the actin flow velocity between each frame. This was done for all frames of the time-lapse and the results plotted in a histogram. To

understand the complex flowof actin at the IS, the optical flow vector fieldwas transformed fromCartesian to polar co-ordinates, with

the origin at the center of the cell contact, allowing the radial and azimuthal velocity components to be independently analyzed.

TCR cluster tracking
TCR cluster tracking was performed using customwritten code written in Python and based on the tracking library known as Trackpy

(https://soft-matter.github.io/trackpy/v0.3.2/). Briefly, the algorithm first located circular features of a user defined size and intensity

range in each frame of the time-lapse (tp.batch). Defining aminimum displacement between frames, and aminimum track length, the

code linked individual localizations into tracks allowing the TCR velocity to be calculated (tp.link_df and tp.filter_stubs).
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FRAP and bleach region tracking
FRAP experiments were conducted using a Leica SP8 confocal microscope equippedwith aHCPLAPO 1003 / 1.40 NA oil objective

and environmental control maintaining a temperature of 37�C in and an atmosphere of 5% CO2. For each FRAP acquisition, a 1 mm

diameter circular bleach region was defined and following an initial bleach period at 100% laser intensity in both the actin (488 nm)

and CellMask Deep Red (633 nm, Invitrogen) channel, the fluorescence recovery was monitored for a further 40 s at a frame rate of

2.2 s-1. Further details for the optimization of FRAP experiments are presented in Fritzsche and Charras (2015).

Bleach region tracking was achieved using the same Leica SP8 confocal microscope. Again, a circular bleach region of 1 mm

diameter was defined in the periphery of the lamellipodium. Following bleaching with 100% 488 nm laser light, the wider region sur-

rounding the bleach region was imaged for 15 s at frame rate of 4.4 s-1. Tracking of the bleach region was achieved via level set seg-

mentation in MATLAB (Li et al., 2010) and the velocity of the bleach region was extracted by applying a linear fit to the displacement.

Fluorescence correlation spectroscopy
Confocal FCS measurements were acquired on a Leica SP8 confocal microscope equipped with a HC PL APO 100 3 /1.40 NA oil

objective. Prior to the FCS measurement, 1G4 TCR Jurkat T cells were loaded with either CellMask Deep Red, or Cholestorol-PEG-

KK114 (Honigmann et al., 2014) at a concentration of 1 mg mL-1. FCS recordings were directly controlled by the Leica LAS AF

software, which communicates with the PicoQuant SymPhoTime (PicoQuant, Berlin, Germany) software and hardware as a

pre-integrated FCS package in LAS AF. Fluorescent light was collected onto a single-photon-counting avalanche photo-diode

(APD; Micro Photon Devices, PicoQuant) in the external port of the microscope. The APD signal was recorded with a time-correlated

single-photon-counting (TCSPC) detection unit (Picoharp 300, PicoQuant). FCS data were fit with a two-dimensional (2D) diffusion

model using the FoCuS-point fitting software (Waithe et al., 2016).

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification
Quantification procedures are given in the Method Details.

GENERAL STATISTICAL METHODS

For normally distributed data, the geometric mean and standard deviation was calculated, as denoted in the results and in the figure

legends of Figures 1, 2, and 3. Statistical comparison of normally distributed data was carried out using an unpaired t test or one-way

ANOVA and significance was denoted as p < 0.05 (*), p < 0.01 (**), p < 0.001 (***), and p < 0.0001 (****). Outliers outside the normally

distributed data were not considered in the significance tests but are included in all plots. All statistical tests were calculated using

GraphPad Prism 7.
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Supplementary Figures 

 

 

Figure S1 – PAA Gel characterisation, Related to Figure 1 - a) Stiffness of 1 kPa and 3 kPa PAA gel as 
measured by AFM indentation. b) Antigen coating on the PAA gel labelled by streptavidin 488. Scale bar is 10 
µm. c) Quantification of antigen coating on the top surface of the gel. Scale bar is 5 µm. 

 

 



 

Figure S2 - Force generation in the presence of OKT3 and PLL, Related to Figure 1 - a) Upper - 1G4 TCR 
Jurkat T-cell interacting with 1 kPa PAA gel functionalised with PLL and OKT3. Scale bar is 5 µm. Lower – 
kymograph showing the gradual bead displacement during synapse maturation. Scale bar is 2 µm. b) Cumulative 
traction magnitude during the interaction, showing the gradual increase in force as the synapse matures in the 
presence of PLL and OKT3. Scale bar is 5 µm. c) Plot displays the integrated force over the whole contact area 
and again illustrates the gradual increase in the forces over the course of 600 seconds. d) Distribution of fluorescent 
actin during the early (cyan) and late (magenta) stage of synapse formation. Scale bar is 5 µm. e) Fluorescent bead 
distribution under the cell during the early (cyan) and late (magenta) stage of synapse formation. Inset dotted 
regions are shown on the right, and the lateral displacement of the beads is evident, showing the generation of 
force by the cell. Scale bar is 2 µm. f) Traction magnitude overlay with a traction vector field for the 1G4 TCR 
Jurkat T-cell interacting with 1 kPa PAA gel functionalised with PLL and OKT3. g) Upper - 1G4 TCR Jurkat T-



cell interacting with 1 kPa PAA gel functionalised with PLL only. Scale bar is 5 µm. Lower - kymograph showing 
minimal bead displacement during cell contact. Scale bar is 2 µm. h) Cumulative traction magnitude during the 
interaction, showing no force generation of the duration of the contact. Scale bar is 5 µm. i) Plot displays the 
integrated force over the whole contact area and again illustrates the lack of force generation over the course of 
600 seconds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S3 - Actin dynamics imaged by eTIRF-SIM, Related to Figure 2 – eTIRF-SIM timelapse imaging of 
1G4-TCR Jurkat T-cells expressing Lifeact-Citrine interacting with antigen coated coverslips together with 
temporal projection (TP). Scale bar is 5 μm. Lower shows actin architecture in the central, lamellum and 
lamellipodial region of the cell. Scale bar is 1 μm. 

 

 

 

 



 

Figure S4 – TCR cluster and membrane dynamics during T-cell activation, Related to Figure 3 - a) Schematic 
outlining the functionalisation of SLB coated coverslips allowing stimulation via anti-CD3 antibodies. b) eTIRF-
SIM fluorescent imaging time-lapse of 1G4-TCR Jurkat T-cell expressing Lifeact-citrine (green) interacting with 



an SLB coated coverslips coated with anti-CD3-Alexa647 (red) and temporal projection (TP). Scale bar is 5 µm. 
c) Zoom in of dashed region in b) showing the movement of TCR micro-cluster as shown by the white arrow. 
Scale bar is 2 µm. d) Far left - Dual-colour kymograph showing the correlated motion of the actin cytoskeleton 
and TCR micro-clusters. Scale bar is 2 µm. Middle left – Single particle tracking of TCR micro-clusters during 
activation. Middle right – Quantification of TCR micro-cluster displacement. Far right - the distribution of TCR 
micro-cluster velocity with a mean of 85.5 ± 31.9 nm/s. e) Dual colour FRAP of actin (green) and plasma 
membrane (red) as labelled by SNAP-Cell-505 and CellMask Deep Red respectively during T-cell activation. 
Right – time-lapse imaging showing the recovery of the bleach region of actin (green) and plasma membrane 
(red). Scale bar is 2 µm. f) Quantification of the FRAP intensity recovery for actin and plasma membrane, 
highlighting the contrasting dynamics. g) Diffusion coefficient of the plasma membrane in the lamellipodium of 
an activating T-cell for the membrane dye CellMask Deep Red and labelled cholesterol (Chol-PEG-KK114) as 
measured by FCS. h) Kymograph analysis of actin and membrane dynamics showing correlative dynamics. Scale 
bar is 1 µm.  
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