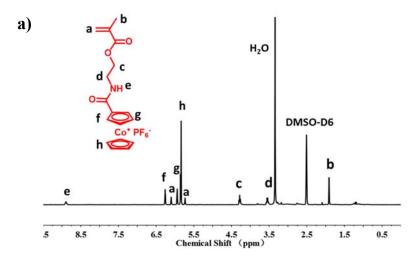
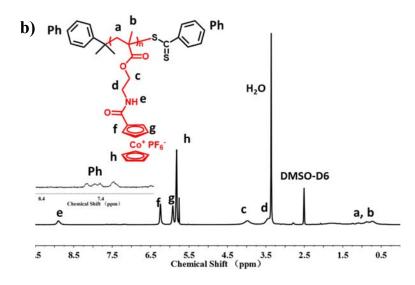
Gold Nanoparticles with Antibiotic-Metallopolymers toward Broad-Spectrum Antibacterial Effect


Peng Yang, [†]¶ Parasmani Pageni,[†]¶ Md Anisur Rahman,[†] Marpe Bam,[‡] Tianyu Zhu,[†] Yung Pin Chen,[§] Mitzi Nagarkatti,[‡] Alan W. Decho[§] and Chuanbing Tang*[†]


[†]Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States

[‡]Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, South Carolina 29209, United States [§]Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina 29208, United States

* Corresponding author. E-mail: tang4@mailbox.sc.edu.

Supplementary Information

Figure S1. ¹H NMR spectra of (a) cobaltocenium monomer CoAEMA and (b) cobaltocenium polymer PCoAEMA via RAFT polymerization.

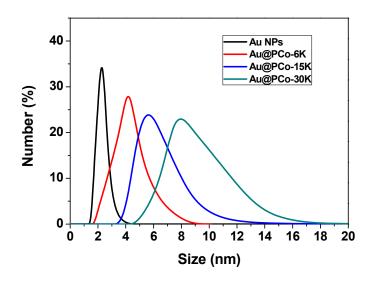


Figure S2. Size distribution of Au NPs, and Au@PCo NPs with different cobaltocenium polymer molecular weights tested by DLS.

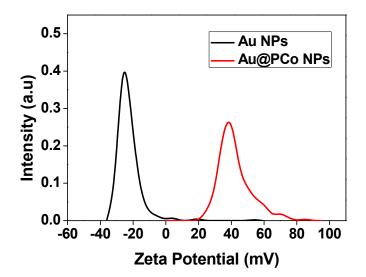


Figure S3. Zeta potential data of Au NPs and Au@ PCo NPs.

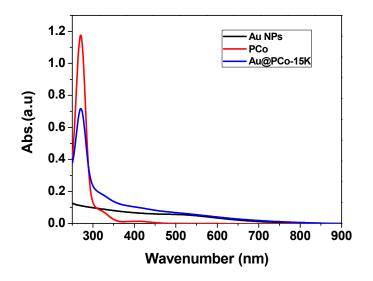


Figure S4. UV-vis absorption spectra of Au NPs, PCo homopolymers and Au@PCo

NPs.

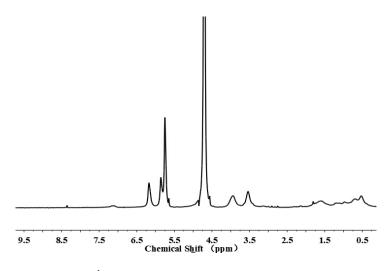


Figure S5. ¹H NMR spectrum of Au@PCo NPs in D₂O.

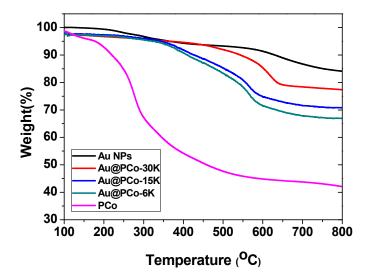


Figure S6. TGA data of Au NPs, PCo homopolymers and Au@PCo NPs with different

cobaltocenium polymer molecular weights.

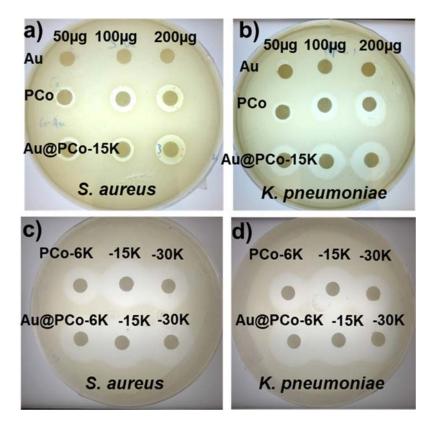


Figure S7. Antimicrobial effect of Au NPs, PCo homopolymers and Au@PCo NPs with different molecular weight of cobaltocenium polymers against Gram-positive bacteria using disk-diffusion assays. All compounds with different amount (50,100 and 200 μ g for a) and b); 300 μ g for c) and d) in 30 μ L water (DMSO for Au NPs) was added to disks, and the plates were incubated at 28 °C for 18 h.

Bacteria	Minimum Inhibitory Concentration					
	(MIC, µg/mL)					
	PCo-	PCo-	PCo-	Au@PCo-	Au@PCo-	Au@PCo-
	6K	15K	30K	6K	15K	30K
S. aureus	136	100	121	95	54	76
K. pneumonia	125	87	120	53	49	61

Table S1. The Minimum Inhibitory Concentrations of different cationic cobaltoceniumpolymers and Au@PCo NPs against Gram-positive and Gram-negative strains.

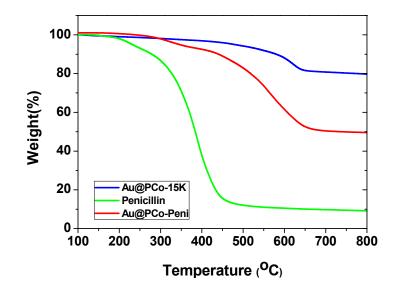
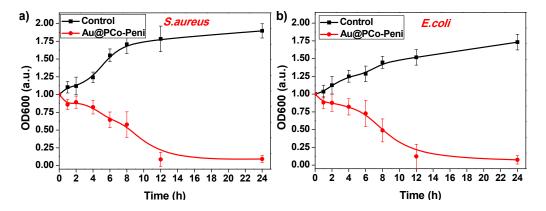



Figure S8. TGA data of Au@PCo-15K NPs, penicillin-G and Au@PCo-Peni.

Figure S9. Time-kill curves of Au@PCo-Peni NPs against *S. aureus* and *E. coli*. Bactericidal activities were monitored for 24 h. The bacterial TSB solution without conjugates was used as the control.

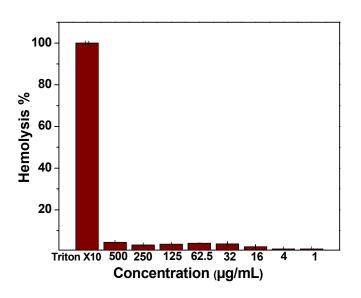


Figure S10. The toxicity test of Au@PCo-15K NPs at different concentrations on red

blood cells (RBCs) by evaluating whether they could lead to hemolysis of RBCs.