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Table S1: Summary of response and categorical candidate prognostic factors (at time of
JAK2 inhibitor therapy initiation) among patients with at least one measured endpoint

MA(n = 53) MI(n = 58) ST(n = 78) PST1(n = 194) PST2(n = 165)
Name n(%) n(%) n(%) n(%) n(%)

Early splenic response
=NA 11 3 3 4 3
=Yes 27(64%) 19(35%) 23(31%) 81(43%) 50(31%)
=No 15(36) 36(65) 52(69) 109(57%) 112(69%)

Late splenic response
=NA 10 4 15 43 56
=Yes 26(60) 27(50) 27(43) 71(47) 39(36)
=No 17(40) 27(50) 36(57) 80(53) 70(64)

Sex
=NA 0 0 0 0 0
=Female 18(34) 22(62) 38(51) 85(44) 74(45)
=Male 35(66) 36(38) 40(49) 109(56) 91(55)

Diagnosis
=PMF 29(55) 27(47) 40(51) 128(66) 115(70)
=PETM 6(11) 14(24) 13(17) 24(12) 17(10)
=PPV 18(34) 17(29) 25(32) 42(22) 33(20)

WBC at initiation, 109/L
=NA 0 3 0 0 0
≤ 5 11(21) 5(9) 3(4) 36(19) 59(36)
∈ (5, 10] 14(26) 7(13) 26(33) 68(35) 35(21)
> 10 28(53) 44(79) 49(63) 90(46) 71(43)

Platelet at initiation, 109/L
=NA 0 3 0 0 3
≤ 50 3(6) 2(4) 2(3) 32(16) 79(49)
∈ (50, 100] 6(11) 13(24) 10(13) 33(17) 55(34)
∈ (100, 150] 8(15) 9(16) 13(17) 20(10) 18(11)
∈ (150, 450] 23(43) 24(44) 41(53) 83(43) 9(6)
> 450 13(25) 7(13) 12(15) 26(13) 1(1)

Bone Marrow
Cellularity

=NA 2 1 17 15 23
=Hypocellular 8(16) 9(16) 4(7) 36(20) 42(30)
=Normocellular 4(8) 0 5(8) 21(12) 19(13)
=Hypercellular 39(77) 48(84) 52(85) 122(68) 81(57)

Fibrosis
=NA 2 4 25 7 13
≤MF-1 12(24) 8(15) 1(2) 28(15) 16(11)
=MF-2 18(35) 20(37) 14(26) 68(36) 45(30)
=MF-3 21(41) 26(48) 38(72) 91(49) 91(60)

% Blasts ≥ 1%
=NA 1 10 24 7 11
=Yes 19(37) 31(65) 38(70) 97(52) 69(45)
=No 33(63) 17(35) 16(30) 90(48) 85(55)

Transfusion Status
=NA 0 2 0 24 42
=Yes 12(23) 17(30) 9(12) 30(18) 30(24)
=No 41(77) 39(70) 69(88) 140(82) 93(76)
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Table S2: Summary of continuous candidate prognostic factors (at time of JAK2 inhibitor therapy initiation) among patients
with at least one measured endpoint

MA(n = 53) MI(n = 58) ST(n = 78) PST1(n = 194) PST2(n = 206)
Name # NA Median # NA Median # NA Median # NA Median # NA Median

(Range) (Range) (Range) (Range) (Range)

Age at initiation 0 69(42,87) 0 68(43,86) 0 70(43,85) 0 67(23,87) 0 68(39,91)
of therapy, years

BMI, kg/m2 0 25(19,35) 20 26(18,37) 7 25(18,42) 3 24(16,37) 6 24(15,46)
Relative init. JAK2 2 100(33,166) 0 66(17,160) 0 100(6,136) 0 100(100,100) 0 100(100,100)

dose, % of RP2D†

Spleen size at 0 12(0,26) 0 15(0,32) 0 16(0,34) 0 12(4,33) 0 12(3,33)
initiation, cm

Time from DX, 0 89.4(1.1,942) 0 103.1(0.4,774) 0 43.4(0.3,1266) 0 57.5(1,1466) 0 114.9(1,1442)
weeks

WBC at 0 12.4(2.1,159.0) 3 21.0(3.2,125.3) 0 15.0(1.5,89.6) 0 9.7(1.2,169.6) 0 8.0(1.2,221)
initiation, 109/L

Platelet at 0 239(16,799) 3 209(25,854) 0 269(20,1520) 0 172(7,1065) 3 52.5(6,947)
initiation, 109/L

Hgb at 0 10.5(7.6,15.2) 1 10.8(6.7,14.6) 0 10.5(7.5,16.6) 0 10.5(4.3,17.3) 0 9.6(5.1,17.1)
initiation, g/dL

†Defined as the ratio of each patient’s prescribed dose over the recommended phase II dose of JAK2 inihibitor
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Table S3: Summary of cross-validated and validated predictive performance of multivariable
logistic models for splenic response after initiation of JAK-inhibitor therapy, described in
Table 1 of the manuscript. AUC measures the probability of correctly ordering the proba-
bilities of a random responder and non-responder. Larger is better, with 0.5 being the null
value and 1.0 being the ideal value.

AUC Trained Cross-Validated Validated
Early 0.789 0.679 0.616
Late (Predicted at Baseline) 0.725 0.641 0.523
Late (Using Early Response) 0.797 0.765 0.792

AUC = Area Under Receiver Operating Characteristic

4



		

	

Assessed for inclusion (n=624) 
• Michigan, Mayo (Scottsdale), 

Stanford (n=203) 
• PERSIST-1 (n=215) 
• PERSIST-2 (n=206) 
 

Excluded, neither early nor late 
endpoint measured (n=76) 
• Michigan, Mayo (Scottsdale), 

Stanford (n=14) 
• PERSIST-1 (n=21) 
• PERSIST-2 (n=41) 

 

Model Building (n=383) 
• Early endpoint measured (n=362) 
• Late endpoint measured (n=311) 
	

Allocated to Training Cohort (n=383) 
• Michigan, Mayo (Scottsdale), Stanford 

(n=189) 
• PERSIST-1 (n=194) 
	

Allocated to Validation Cohort 
(n=165) 
• PERSIST-2 (n=165) 
	

Model Validation (n=165) 
• Early endpoint measured (n=162) 
• Late endpoint measured (n=109) 
	

Training	or	
Validation		

Analysis	

At least one measured endpoint 
(n=548) 
	

Figure S1: Flow chart delineating construction of model training and model building cohorts
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Figure S2: Calibration across the five centers (left-to-right colored bars; MA=red,
MI=yellow, ST=green, PST1=blue, PST2=lavender), grouped by spleen size at initiation
(Spleen < 5; 5 < Spleen ≤ 15; Spleen > 15), for the three models (top panel = Early, middle
panel = Late, bottom panel = Late-Given-Early). The number of patients in each group
is given below each center/splenic group combination. The open square is the expected
proportion of responders for each category. The filled circle is the observed proportion of re-
sponders. The vertical line spans where the observed proportion should fall with probability
95%, if the model was perfectly calibrated.
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Figure S3: Calibration across the five centers (left-to-right colored bars; MA=red,
MI=yellow, ST=green, PST1=blue, PST2=lavender), grouped by platelet counts at ini-
tiation (Platelets < 100; 100 < Platelets < 150; Platelets > 150), for the three models (top
panel = Early, middle panel = Late, bottom panel = Late-Given-Early). The number of
patients in each group is given below each center/platelet group combination. The open
square is the expected proportion of responders for each category. The filled circle is the
observed proportion of responders. The vertical line spans where the observed proportion
should fall with probability 95%, if the model was perfectly calibrated.
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S2 Statistical Methodology

Multiple Imputation Step

To make use of the partial information available in the observations with missing data, we

used multiple imputation (Rubin, 2004), specifically, iterative chained equations (Van Bu-

uren et al., 2006, White et al., 2011) using the R package MI (R Core Team, 2017, Su

et al., 2011). Age and BMI are constrained to be positive during imputations. A separate

Bayesian logistic regression model was fit to each imputed dataset (as described below), with

the results combined across imputations as described in Gelman et al. (2004, p. 520) and

Zhou and Reiter (2010). Zhou and Reiter found that this approach of combining Bayesian

inferences required many more imputations than the standard recommendation of 5–10 com-

pleted datasets necessary for maximum likelihood inference; specifically, we imputed 150

datasets.

Data Processing, Additional Details

To allow for differently changing risk profiles among patients with leukopenia and leukocy-

tosis, we treated WBC count as a mixed discrete-continuous variable. We first mapped each

WBC count into a three-category vector, based upon whether it was below 5, between 5 and

10, or greater than 10. The numeric value of the middle category was always zero and used

as a reference. The numeric value of the extreme categories was only non-zero if the count

fell in that category. In that case, we calculated the absolute value of the log2-ratio of the

count and the boundary value (either 5 or 10). So, for example, a WBC count of 4×109/L

was mapped to the vector (0.322, 0, 0), because log2(5/4) = 0.322, whereas a WBC count of

12 was mapped to (0, 0, 0.263), because log2(12/10)=0.263. We transformed platelet counts

similarly, using 150 and 450 as normal boundaries.

Two other continuous covariates, HGB and time from diagnosis, were log2-transformed.
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Finally, all covariates were centered and scaled by twice the empirical standard deviation,

to allow for relative comparisons of associations across different types of prognostic fac-

tors.

After transforming covariates as described in the main text, there were 33 possible prognos-

tic factors considered. We location-scale transformed each imputed dataset to a common

standard, using as location the observed mean (ignoring missing values) of each covariate.

For scale, we used twice the standard deviation of the observed data. This is recommended

by Gelman (2008) in the presence of a mixture of continuous and binary covariates, because

a change in two standard deviations for a binary predictor with probability 0.5 is interpreted

as the difference in association between 0 and 1.

Model Fitting

For each imputed dataset and for each time point, we fit a multiple Bayesian logistic regres-

sion model, allowing for separate, center-level intercept parameters (one for MI, MA, ST,

or PST1). For the ith patient at the j center, Y
(t)
ij = 0 and Y

(t)
ij = 1 indicate, respectively,

no splenic response or splenic response at time t months (t ∈ {3, 6}), and Xij indicates the

patient’s vector of covariates. Then,

logit Pr(Y
(t)
ij = 1|Xi) = µ

(t)
j +X>

i β
(t), (S1)

where logit(x) = log(x/[1 − x]). The vector β = {βk}33k=1 is the vector of log-odds ratios

(ORs). The reported ORs in Table 1 of the manuscript are un-scaled, i.e. interpreted in

natural units of measurements rather than on the standard deviation.

We used the hierarchical shrinkage “horseshoe” prior for β(t) (Carvalho et al., 2009, 2010,
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Piironen and Vehtari, 2016). Specifically, a priori,

βk
ind∼ N(0, λkτ);λk

iid∼ C+(0, 1); τ ∼ C+(0, 2/
√
n)

Here, N(0, s) is the normal distribution with standard deviation s, C+(0, s) is the half-

Cauchy distribution (with support constrained to the positive real line) with scale parameter

s, and n is the number of observations in the model. This particular prior, specifically our

choice of scale parameter on τ , corresponds to an approximate prior assumption that about

half of the elements of β are non-zero, as derived in Piironen and Vehtari (2016).

For the center-level intercepts, µj, we used the following prior:

µj
ind∼ Logistic(θ, σ); θ ∼ Logistic(0, 1);σ ∼ Logistic+(0, 2.5)

where Logistic(m, s) is the Logistic distribution with locationm and scale s, and Logistic+(m, s)

is the half-Logistic distribution with support constrained to the positive real line.

We fit the models using Hamiltonian Monte Carlo methods (Neal, 2011), using the STAN

software interface in R (R Core Team, 2017, Stan Development Team, 2016). For each of the

150 imputed datasets, we ran the sampler for a warm-up period of 400 iterations, keeping

the subsequent 400 draws of β, and combining these across all 150 imputed datasets, so as

to propagate imputation uncertainty (p. 520, Gelman et al., 2004, Zhou and Reiter, 2010).

This yielded a combined 60,000 draws of β from the posterior distribution, accounting for

the imputation uncertainty.
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Model Selection

The kth predictor was selected if the posterior probability that the association was strictly

positive or strictly negative exceed 2/3. Mathematically, this is written as:

max{Pr(βk < 0),Pr(βk > 0)} > 2/3

We approximated these probabilities by counting the proportion of the 60,000 posterior

draws of each βk falling above or below zero. The maximum of these estimated probabilities

is what we called the relevance percentage in the manuscript. We then re-fit the models

after excluding those predictors that did not satisfy the above criterion to obtain the final

models. Any “main effects” were automatically included if a corresponding interaction was

included, and all baseline spleen size groups were included in a model if any spleen size group

was selected.

Model Assessment

We first cross-validated each model by sequentially leaving out each of the four sites in

the model-building data, repeating the entire imputation-plus-model-building process on

the remaining three sites, and testing against the held-out site. We also validated the

performance of our model on the PST2 data, which was held apart until the predictive

model was finalized.

The final models at each time point were summarized via ORs and relevance percentages

(defined above). We assessed discrimination with the ‘Area Under the receiver-operating

characteristic Curve’ (AUC), a number between 0.5 and 1, with larger values indicating

improved ability to distinguish between high- and low-risk individuals. These are reported

in Table S3. We assessed model calibration, i.e. the ability to correctly estimate probabilities,

by reporting the difference between model-based expected response rate and the observed
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response rate, separately for each endpoint. This is sometimes called the ‘goodness-of-fit’

of the model. All analyses were conducted in the R statistical environment (R Core Team,

2017, Stan Development Team, 2016)

Model Application

Table 1 provides the necessary information to calculate the model-estimated probability

of response for any patient. For a given patient, start with the baseline odds of response

(which is the row labeled ‘Intercept’), multiplicatively adjust these odds up or down based

upon the relevant prognostic factors, then transform the result into a probability using the

transformation Odds/(Odds + 1). To exemplify this, we provide here the details of the

calculation for the ‘Early response probability’ for the hypothetical patient in Figure 1 of

the manuscript, using a baseline spleen size of 8 cm and a baseline WBC count of 35×109/L,

which is plotted in the left-most panel of Figure 1 in the manuscript. The x-axis corresponds

to baseline spleen size, thus the fitted probability for this patient is approximately 0.50.

1. Start with the baseline odds, the Intercept in Table 1, corresponding to all prognostic

factors set to zero: x = 0.03

2. Determine the multiplicative adjustment from the four relevant categorical variables in

the ‘Early’ column (spleen size, transfusion requirement, cellularity, and fibrosis grade)

(a) Patient’s spleen length at baseline is in (5cm,10cm] ⇒ multiply odds by 1.94.

New odds are x = 1.94× 0.03 = 0.0582

(b) Patient is transfusion dependent ⇒ multiply odds by 1.13. New odds are x =

1.13× 0.0582 = 0.0658

(c) Patient is not hypocellular ⇒ odds are unchanged

(d) Patient’s MF has fibrosis grade MF-3 ⇒ multiply odds by 0.80. New odds are
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x = 0.80× 0.0658 = 0.0526

3. Determine the multiplicative adjustment from the three relevant continuous variables

in the ‘Early’ column (HGB, Age, Relative Dose)

(a) HGB is 10.7 g/dL, which is log2(10.7) = 3.42 doublings ⇒ multiply odds by

2.073.42 = 12.04. New odds are x = 12.04× 0.0526 = 0.6334

(b) Patient is 70 yo, which is 14 sets of 5-year increments⇒ multiply odds by 1.0814 =

2.94. New odds are x = 2.94× 0.6334 = 1.861

(c) Patient starts at 100% of RP2D of JAK inhibitor therapy, which is a relative

initial dose of 0 ⇒ odds are unchanged (1.900 = 1)

4. Determine the multiplicative adjustment from the two relevant mixed discrete-continuous

variables in the ‘Early’ column (WBC and Platelets)

(a) Patient’s baseline platelet count is 210×109/L, which does not exceed 450×109/L,

⇒ odds are unchanged

(b) Patient’s baseline WBC is 35 × 109/L, which is log2(35/10) = 1.81 doublings

beyond the high threshold of 10 × 109/L ⇒ multiply odds by 0.721.81 = 0.552.

New odds are x = 0.552× 1.861 = 1.027

5. Determine the multiplicative adjustment from the statistical interactions

(a) Patient starts at 100% of RP2D of JAK inhibitor therapy, which is a relative

initial dose of 0. Patient’s spleen length at baseline is in (5cm,10cm] ⇒ odds are

unchanged (0.990 = 1)

(b) Patient’s baseline WBC is 35 × 109/L, which is log2(35/10) = 1.81 doublings

beyond the high threshold of 10× 109/L. Patient’s spleen length at baseline is in

(5cm,10cm] ⇒ multiply odds by 1.001.81 = 1.00. Odds are unchanged.

6. The patient’s model-based estimate of probability of Early splenic response is x/(x +
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1) = 1.027/(1 + 1.027) = 0.507.

Due to the presence of statistical interactions, the associations between spleen size at baseline,

dose of JAK inhibitor, and WBC must be interpreted with caution. Specifically, the so-called

‘main effects’ corresponding to these predictors represent the associations of the reference

group only. For example, in the Early model, the OR of 1.90 for dose of JAK inhibitor is

the dose-response association among patients with a spleen size of 5cm or less at initiation.

To calculate the dose-response association for patients with a different spleen size, multiply

the main effect for dose by the corresponding interaction term. Thus, from Table 1 in the

manuscript, the dose-response association for patients with a spleen size of 16cm at initiation

is 1.90*1.04=1.98; however, the relevance percentage corresponding to the second term (the

interaction parameter) is less than 66%, suggesting that this is very close to the dose-response

association in the reference spleen size group, i.e. 1.90.

Calibration

Figures S2 and S3 more precisely characterize calibration of the response models. The

difference between model-based expected response rate of each site (an open square) and the

observed response rate (a circle) in that site is plotted for the Early model (top panel), Late

model (middle panel), and Late-given-Early model (lower panel). Within a panel, patients

are stratified based upon their baseline spleen size (Figure S2) or baseline platelet count

(Figure S3). The line segment represents the interval in which the response rate would be

expected to fall in a perfectly calibrated model. From Figure S2, the calibration of our

models improves with larger baseline spleen size. In other words, patients with small (< 5

cm) spleens had better-than-expected response rates (in the case of MA) or worse-than-

expected response rates (PST1 and PST2). In contrast, response rates in patients with large

(> 20 cm) spleens generally agreed with the models’ predictions.
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