Aggregatibacter actinomycetemcomitans mediates protection of Porphyromonas gingivalis from Streptococcus sanguinis hydrogen peroxide production in multi-species biofilms

Bin Zhu¹, Lorna C Macleod¹, Eric Newsome¹, Jinlin Liu² and Ping Xu^{1, 3, 4,*}

Fig. S1 CLSM analysis of Pg biomass in FISH stained 4 day-old biofilms grown under anaerobic and microaerobic conditions. (A) Orthogonal images of Pg biofilm grown in 0% O₂ (left) and 6% O₂ (right). Scale bar shown on left image = 20 μ m. (B) The fluorescent signal from images in Fig. S1A was quantified by COMSTAT analysis. **P ≤ 0.01 , Student's *t*-test. Means and standard deviations from triplicate experiments are shown.

Fig. S2 CLSM analysis of Ss biomass in 4-day old FISH stained biofilms under micro-aerobic conditions. The biomass of Ss in figure 2B was quantified by COMSTAT and shown as a bar chart. Scale bars were indicated on the corresponding images. **P ≤ 0.01 , Student's *t*-test. Means and standard deviations from triplicate experiments are shown.

Fig. S3 Cell density measurements recorded during H_2O_2 concentrations time course experiment shown in Fig. 3B. Cell densities were recorded at intervals of 10 minutes using a Synergy H1 Hybrid Reader (OD₆₀₀).

Fig. S4 Cell density measurements recorded during H_2O_2 concentrations time course experiment shown in Fig. 4A. Cell densities were recorded at intervals of 10 minutes using the Synergy H1 Hybrid Reader (OD₆₀₀).

Fig. S5 The biofilm formation of *Aa AkatA*. *Aa* VT1169 WT and $\Delta katA$ single species biofilms were cultured in CDM for 4 days, stained by STYO 9 and imaged by CLSM. The orthogonal images at the top and the 3D images at the bottom were shown (**A**) and biofilm biomass was quantified by COMSTAT (**B**). Student's *t*-test. Means and standard deviations from triplicate experiments are shown.

Table 51 Strains used in this study.			
Strain	Genotype and/or relevant characteristics	Source or reference	
S. sanguinis SK36	Wild type, Human plaque isolate	1	
P. gingivalis ATCC 33277	Wild type	ATCC	
A. actinomycetemcomitans 652	Wild type	2	
A. actinomycetemcomitans VT1169	Wild type	3	
A. actinomycetemcomitans VT1169	VT1169, <i>katA</i> deletion mutant, Spc ^R	3	
$\Delta katA$	-		

Table S1 Strains used in this study.

Table S2 FISH probes used in the study

Name	Sequence (5'-3')	Fluorescent dye	Application
FISH-Ss	AGAGCAAGCTCCTCTCTCAGCGTTC	ATTO 499	FISH staining of S. sanguinis
	TA/3' atto 488/	ATTO 400	
FISH-Aa	AGTACAAGTACTTACCTGCTACCGTC	ATTO 500	FISH staining of A.
	CGA/3' atto 590/	ATTO 370	actinomycetemcomitans
FISH-Pg	ACCTTAGCAAGCTAAGATCATGCTG	ATTO 647N	FISH staining of P.
	CCCCT/3' atto 647N/	A110 04/N	gingivalis

- 1 Kilian, M. & Holmgren, K. Ecology and nature of immunoglobulin A1 protease-producing streptococci in the human oral cavity and pharynx. *Infection and immunity* **31**, 868-873 (1981).
- 2 Brogan, J. M., Lally, E. T., Poulsen, K., Kilian, M. & Demuth, D. R. Regulation of Actinobacillus actinomycetemcomitans leukotoxin expression: analysis of the promoter regions of leukotoxic and minimally leukotoxic strains. *Infection and immunity* **62**, 501-508 (1994).
- 3 Ramsey, M. M. & Whiteley, M. Polymicrobial interactions stimulate resistance to host innate immunity through metabolite perception. *Proceedings of the National Academy of Sciences of the United States of America* **106**, 1578-1583, doi:10.1073/pnas.0809533106 (2009).