Manuscript Title: Benefits of a *Bacillus* probiotic to larval fish survival and transport stress resistance

Authors: Andrea M. Tarnecki, Marzie Wafapoor, Remy N. Phillips, Nicole R. Rhody

Supplemental Information

	Trial 1						Trial 2							
Source	df	SS	MS	Pseudo-F	P(perm)	Unique permutations	df	SS	MS	Pseudo-F	P(perm)	Unique permutations		
Sample type	1	43,427.0	43,427.0	41.644	0.001	998	1	38,419.0	38,419.0	32.655	0.001	997		
Day	2	43,692.0	21,846.0	20.949	0.001	998	2	32,349.0	16,174.0	13.748	0.001	996		
Treatment	2	20,659.0	10,330.0	9.9053	0.001	998	3	9,984.1	3,328.0	2.8287	0.001	996		
Sample type x Day	2	41,960.0	20,980.0	20.118	0.001	994	2	23,703.0	11,851.0	10.073	0.001	998		
Sample type x Treatment	2	8,619.4	4,309.7	4.1327	0.001	999	2	3,730.9	1,865.5	1.5856	0.006	996		
Day x Treatment	6	30,785.0	5,130.9	4.9201	0.001	998	6	18,967.0	3,161.2	2.6869	0.001	998		
Sample type x Day x Treatment	4	15,674.0	3,918.5	3.7575	0.001	997	4	10,867.0	2,716.7	2.3091	0.001	996		
Residuals	103	1.07E+05	1,042.8				109	1.28E+05	1,176.5					
Total	125	4.17E+05					133	3.99E+05						

Supplementary Table S1. Permutational analysis of variance (PERMANOVA) results for microbiota structure between sample types (water versus larvae), sampling day, and treatment.

Supplementary Table S2. Permutational analysis of variance (PERMANOVA) pair-wise comparison results for microbiota structure between treatments within each sampling type (water versus larvae) and sampling day. dph, days post hatch. Significant (P < 0.05) comparisons are shown in bold type.

			Trial 1			Trial 2	
		CONT	CONT	PBWO	CONT	CONT	PBWO
Sample		VS	VS	VS	VS	VS	VS
Туре	Day	PBWO	PBWF	PBWF	PBWO	PBWF	PBWF
Fish	7 dph	0.007	0.028	0.003	0.200	0.031	0.474
	14 dph	0.008	0.003	0.119	0.157	0.339	0.053
	28/26 dph	0.028	0.145	0.017	0.181	0.615	0.078
Water	Day 0	0.005	0.003	0.006	0.080	0.004	0.003
	Day 7	0.002	0.002	0.003	0.007	0.016	0.004
	Day 14	0.036	0.002	0.005	0.774	0.003	0.010
	Day 28/26	0.004	0.006	0.009	0.072	0.009	0.011

Supplementary Table S3. Number of consistently discriminative OTUs (as determined by linear discriminant analysis effect size, LEfSe²⁴) among treatments within the fish microbiota during two probiotic trials. Red indicates higher abundances in control larvae; green indicates higher abundances in probiotic-treated larvae.

	Day 7					Day	y 14		Day 28/26				
	PBWO		PBWF		PB	PBWO		PBWF		PBWO		WF	
Taxon	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2							
Domain Bacteria	1	3	0	0	0	0	0	0	0	0	0	0	
Genus Tenacibaculum	1	1	0	0	0	0	0	0	0	0	0	0	
Family Bacillaceae	1	1	1	1	1	2	1	2	0	0	0	0	
Phylum Proteobacteria	0	0	0	0	0	0	0	0	0	0	1	1	
Order Alphaproteobacteria Incertae Sedis	1	5	1	7	0	0	0	0	0	0	0	0	
Family Rhodobacteraceae	0	0	1	8	0	0	3	1	4	1	0	0	
Genus Erythrobacter	0	0	1	2	0	0	0	0	0	0	0	0	
Class Deltaproteobacteria	0	0	0	0	0	0	0	0	0	0	1	1	
Class Gammaproteobacteria	2	8	3	8	0	0	0	0	1	2	2	4	
Family Colwelliaceae	0	0	0	0	0	0	0	0	0	0	1	1	
Family Halieaceae	0	0	0	0	0	0	0	0	0	0	1	1	
Phylum TM6 (Dependentiae)	0	0	1	1	0	0	0	0	0	0	0	0	

Supplementary Table S4. Number of consistently discriminative OTUs (as determined by linear discriminant analysis effect size, LEfSe²⁴) among treatments within the water microbiota during two probiotic trials. Red indicates higher abundances in control larvae; green indicates higher abundances in probiotic-treated larvae. Where some OTUs were higher in control larvae and other OTUs within the same taxon were higher in treatment larvae, the cell is split appropriately.

	Day 0		Day 7				Day 14				Day 28/26					
_	PB	WO	PI	BWF	PB	wo	PB	SWF	PBV	NO	PB	WF	PB	WO	PB	WF
Taxon	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2								
Domain Bacteria	1	6	1	7	0	0	0	2	3	5	2	2	7	3	8	4
Order Flavobacteriales	1	1	2	0	0	0	0	0	0	0	1	0	0	0	0	0
Family Flavobacteriaceae	2	0	2	1	0	1	0	0	0	0	1	1	0	0	0	0
Genus Tenacibaculum	0	0	1	0	2	1	0	0	0	0	0	0	0	0	0	0
Family NS11-12 marine group	3	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
Order Chlamydiales	1	4	1	10	0	0	0	0	0	0	0	0	0	0	0	0
Family Bacillaceae	1	1	1	1	1	1	1	1	0	0	0	0	1	1	1	1
Genus Fusibacter	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
Phylum Gracilibacteria	1	1	1	1 2	0	0	0	0	1	1	1	2	4	2	7	2
Class Pacebacteria	0	0	0	0	0	0	0	0	0	0	2	1	0	0	1	1
Phylum Parcubacteria	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	5
Phylum Peregrinibacteria	0	0	0	0	0	0	4	3	0	0	0	0	5	2	2	2
Genus Planctomyces	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Phylum Proteobacteria	1	3 3	0	0	1	3	1	2 3	0	0	4	2	1 8	2 1	1 2	1 2
Class Alphaproteobacteria	4	5	2 3	4 4	0	0	1	2	1	1	5	2	0	0	4	1
Order 4-Org1-14	1	3	0	0	0	0	1	1	0	0	0	0	0	0	0	0
Order Alphaproteobacteria Incertae Sedis	3	3 4	1	2	1	3	2	5	3	1	18	4	15	1	1 15	4
Family Erythrobacteraceae	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Order Rhizobiales	0	0	1 2	1	0	0	0	0	0	0	0	0	0	0	0	0
Genus Hyphomicrobium	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
Genus Maritalea	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0
Family OCS116 clade	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
Family Rhodobacteraceae	5	4 7	7 4	7 5	5	5	1 5	2	0	0	2 2	2 3	2 3	4 2	3 3	3 1
Genus Epibacterium	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
Family Rhodospirillaceae	2	1	1	3	0	0	0	0	0	0	0	0	0	0	0	0
Order Rickettsiales	0	0	1	2	0	0	0	0	0	0	0	0	0	0	2	1
Class Deltaproteobacteria	0	0	0	0	0	0	0	0	0	0	0	0	2	1	0	0
Genus Arcobacter	0	0	0	0	0	0	0	0	0	0	0	0	1	1	2	1
Class Gammaproteobacteria	11 5	13	6 7	15 9	3	2	3 5	1 5	9	4	11	3	4 1	7 3	13	4 3
Genus Marinobacter	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0
Genus Idiomarina	2	2	3	2	0	0	0	0	0	0	0	0	0	0	0	0
Genus Coxiella	2	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
Family Legionellaceae	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Genus Legionella	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0
Genus Alcanivorar	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
Genus Kanaialla	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
Gonus Halomoras	1	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0
Family Vibrianagaa	0	0	0	0	0	0	0	0	0	0	1	3	0	0	0	0
Phylum CDD 1002	0	0	2	1	0	0	0	0	Ő	õ	0	0	0	0	0	0 0
Phylum TM6 (Dependenties)	3 1	4 3	1	4 3	0	0	0	0	0	0	5	1	0	0	0	0

Supplementary Table S5. Consistent differences in predicted metagenome function (as determined by phylogenetic investigation of communities by reconstruction of unobserved states, PICRUSt²³) among treatments within the fish and water microbiota during two probiotic trials. The treatment with the highest level of function is listed for each Trial. Functions increased in control are highlighted in gray. Functions increased in probiotic-treatments are highlighted in green. N/A indicates no significant difference within a KEGG pathway in a Trial.

Sample Type	Level 1	Level 2	Level 3	Day	Trial 1	Trial 2
Fish	Cellular Processes	Sporulation	unclassified	14	PBWF	PBWF
	Metabolism	Xenobiotics biodegradation and metabolism	Dioxin degradation	7	PBWO/PBWF	N/A
	Metabolism	Xenobiotics biodegradation and metabolism	Ethylbenzene degradation	7	N/A	PBWO
	Metabolism	Xenobiotics biodegradation and metabolism	Styrene degradation	7	N/A	PBWO
	Metabolism	Xenobiotics biodegradation and metabolism	Xylene degradation	7	PBWF	N/A
Water	Cellular Processes	Cell motility	Bacterial chemotaxis	0	CONT	N/A
	Cellular Processes	Transport and catabolism	Peroxisome	7	PBWO/PBWF	PBWF
	Genetic Information Processing	Folding, sorting and degradation	Sulfur relay system	0	CONT	CONT
	Genetic Information Processing	Translation	Aminoacyl-tRNA biosynthesis	7	PBWO/PBWF	PBWO > CONT
	Metabolism	Amino acid metabolism	Lysine degradation	0	PBWO/PBWF	PBWO/PBWF
	Metabolism	Biosynthesis of other secondary metabolites	Isoflavonoid biosynthesis	0	PBWO/PBWF	PBWO/PBWF
	Metabolism	Biosynthesis of other secondary metabolites	Isoflavonoid biosynthesis	28/26	PBWO/PBWF	PBWO/PBWF
	Metabolism	Carbohydrate Metabolism	Butanoate metabolism	0	PBWO/PBWF	PBWO/PBWF
	Metabolism	Carbohydrate Metabolism	Propanoate metabolism	0	PBWO/PBWF	PBWO/PBWF
	Metabolism	Carbohydrate Metabolism	Pyruvate metabolism	7	PBWF	PBWF
	Metabolism	Energy metabolism	Sulfur metabolism	0	CONT	CONT
	Metabolism	Lipid metabolism	Synthesis and degradation of ketone bodies	0	PBWO/PBWF	PBWO/PBWF
	Metabolism	Metabolism of cofactors and vitamins	Pathothenate and CoA biosynthesis	7	PBWO/PBWF	PBWF
	Metabolism	Metabolism of cofactors and vitamins	Porphyrin and chlorophyll metabolism	0	CONT	N/A
	Metabolism	Metabolism of cofactors and vitamins	Vitamin B6 metabolism	0	CONT	CONT
	Metabolism	Metabolism of other amino acids	Phosphonate and phosphinate metabolism	28/26	PBWF	PBWF
	Metabolism	Metabolism of terpenoids and polyketides	Geraniol degradation	0	PBWO/PBWF	PBWO/PBWF
	Metabolism	Metabolism of terpenoids and polyketides	Geraniol degradation	7	PBWF	PBWF
	Metabolism	Metabolism of terpenoids and polyketides	Terpenoid backbone biosynthesis	7	PBWF	PBWO/PBWF
	Metabolism	Xenobiotics biodegradation and metabolism	Naphthalene degradation	0	PBWO/PBWF	PBWO/PBWF