Diminished apoptosis in hypoxic porcine retina explant cultures through hypothermia

Ana M. Maliha¹, Sandra Kuehn¹, José Hurst², Fenja Herms^{1,3}, Michael Fehr³, Karl U. Bartz-Schmidt², H. Burkhard Dick¹, Stephanie C. Joachim^{1#}, Sven Schnichels^{2#}

 Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
University Eye Hospital Tübingen, Centre for Ophthalmology Tübingen, Tübingen, Germany

3: Clinic for Small Animals, University of Veterinary Medicine, Hannover, Germany

#: equal contributing authors and corresponding authors:

Dr. Sven Schnichels

University Eye Hospital Tübingen, Centre for Ophthalmology, Elfriede-Aulhorn-Str. 7,

72076 Tübingen, Germany

Phone: +49-7071-2987888, Fax: +49-7071-294935

E-Mail: sven.schnichels@med.uni-tuebingen.de

PD Dr. Stephanie C. Joachim

Experimental Eye Research, University Eye Hospital, Ruhr-University Bochum, In der

Schornau 23-25, 44892 Bochum, Germany

Phone: +49-234-299-3156, Fax: +49-234-299-3157

E-Mail: stephanie.joachim@rub.de

Supplementary Figure S1: Hypothermia protected retinal thickness. **A)** Retinal crosssections were stained with hematoxylin & eosin to evaluate retinal thickness. **B)** CoCl₂ led to a strong reduction of retinal thickness after four and eight days. Hypothermia prevented the reduction due to CoCl₂. Hypothermia treated CoCl₂-stressed retinae had a similar thickness to control retinae. Abbreviations: GCL = ganglion cell layer; IPL = inner plexiform layer; INL = inner nuclear layer; OPL = outer plexiform layer; ONL = outer nuclear layer. n=8-10/group. Statistical differences to control + 37 °C group are marked with * and differences to CoCl₂ + 37 °C group with #. *: p<0.05; ##, **: p<0.01. Scale bar=20µm.

Supplementary Figure S2: Rescue of macroglial response through hypothermia. **A**) mRNA expression of *GFAP* was significantly reduced in both CoCl₂ treated groups compared to the control + 37 °C group at four days as observed in qPCR analyses. After eight days, the *GFAP* expression was not affected in any of the groups compared to the control + 37 °C group. A slightly increased expression was noted between the CoCl₂ + 30 °C and the CoCl₂ + 37 °C group. **B**) Protein levels of GFAP (55 kDa) were normalized against β -III-tubulin (42 kDa) and evaluated via western blot analyses. **C**) Western blot analyses revealed comparable GFAP protein levels in both points in time. **D**) GFAP⁺ area was measured in retinal cross-sections. **E**) Treatment with CoCl₂ led to a significantly reduced GFAP⁺ area. Hypothermia counteracted the harmful effect of CoCl₂ due to macroglia and normalized the GFAP⁺ area in CoCl₂ + 30 °C treated retinae. Abbreviations: GCL = ganglion cell layer; IPL = inner plexiform layer; INL = inner nuclear layer; OPL = outer plexiform layer; ONL = outer nuclear layer. Values are mean±SEM, A: n=6-7/group; C: n=4/group; E: n=10/group. Statistical differences to

control + 37 °C group are marked with * and differences to $CoCl_2$ + 37 °C group with #. *, *: p<0.05; **p<0.01. Scale bar=20µm.

Supplementary Table 1: qPCR primer pairs. The listed primer pairs were used in quantitative real-time PCR experiments.

Supplementary Table 2: Listed primary and matched secondary antibodies were used for immunohistological analyses.

Supplementary Figure S1:

Supplementary Figure S2:

D

Supplementary Table 1:

Gene	Oligonucleotide sequence
Bax	5'GGACCATCGGTATTGGTGTC3'
	3'AGATGAGGGAGAGAGGCACA5'
Bcl-2	5'GCTCGTGCGGGATTGACTACTACA3'
	3'CCAGCGGGTTCTTGCCACAGC5'
Calbindin	5'TGAACCCAAGCTCCAAGAGT3'
	3'AAAAGGTGAAGATGGCGTTG5'
Caspase 8	5'GCCCAGATCTCTGCCTACAG3'
	3'CAGGGCCTTGTTGATTTGTT5'
GFAP	5'CAGGATCTGCTCAACGTCAA3'
	3'ATCTCCACGGTCTTCACCAC5'
Histon H3	5'ACTGGCTACAAAAGCCGCTC3'
	3'ACTTGCCTCCTGCAAAGCAC5'
HSP70	5'ATGTCCGCTGCAAGAGAAGT3'
	3'GGCGTCAAACACGGTATTCT5'
PVALB	5'CAACGCTGAGGACATCAAGA3'
	3'TGACAGGTCTCTGGCATCTG5'
TUBB3	5'CAGATGTTCGATGCCAAGAA3'
	3'GGGATCCACTCCACGAAGTA5'
β-actin	5'CTCTTCCAGCCTTCCTTC3'
	3'GGGCAGTGATCTCTTTCT5'
CD11b	5'AGAAGGAGACACCCAGAGCA3'
	3'GTAGGACAATGGGCGTCACT5'
iNOS	5'TGTTCAGCTGTGCCTTCAAC3'
	3'CAGAACTGGGGGTACATGCT5'
p21	5'GACCCTCAGAAGAGCCACAG3'
,	3'GTCGAAGTTCCATCGCTCTC5'
Calbindin	5'TGAACCCAAGCTCCAAGAGT3'
	3'AAAAGGTGAAGATGGCGTTG5'
HIF1α	5'TTACAGCAGCCAGATGATCG3'
	3'TGGTCAGCTGTGGTAATCCA5'

Supplementary Table 2:

	Primary antibodies				Secondary antibodies			
	Antibody	Company	Catalogue#	Dilution	Antibody	Company	Catalogue#	Dilution
IHC	Anti-Brn-3a	Santa Cruz	SC-31984	1:100	Donkey anti-goat	Dianova	705-545-147	1:500
	Anti-calretinin	Millipore	AB1550	1:2000	Alexa Fluor 488			
	Anti-Chx10	Santa Cruz	SC-21692	1:300				
	Anti-cleaved	Sigma-Aldrich	C8487	1:300	Donkey anti-rabbit	Jackson Immuno-	711-547-003	1:500
	caspase 3				Alexa Fluor 555	Research		
	Anti-Fc _Y -R	BD Bioscience	14-0161	1:100	Donkey anti-rat	Thermo Fischer	A-21208	1:400
	(CD16/32)				Alexa Fluor 488			
	Anti-GFAP	Millipore	AB5541	1:3000	Donkey anti-chicken	Millipore	AP194C	1:500
					Cy3			
	Anti-HIF-1α	BD Bioscience	610959	1:100	Donkey anti-mouse	Abcam	AB150106	1:500
					Alexa Fluor 555			
	Anti-Iba1	WAKO	019-19741	1:400	Donkey anti-rabbit	Jackson Immuno-	711-547-003	1:500
					Alexa Fluor 555	Research		
	Anti-NeuN	Millipore	ABN91	1:400	Donkey anti-chicken	Jackson Immuno-	703-545-155	1:500
					Alexa Fluor 488	Research		
	Anti-PKCa	Santa Cruz	SC-8393	1:300	Donkey anti-mouse	Abcam	AB150106	1:500
		NATU: A A A	405544	4.0000	Alexa Fluor 555	11.000	005 00075	1 00000
WB	Anti-GFAP	willipore	AB5541	1:3000	IRDye donkey anti-	LI-COR	925-68075	1:20000
	Anti-HSP70	Santa Cruz	SC-24	1.200	Donkov anti-mouso	Invitrogen	A10038	1.5000
	Anti-R-III-	P&D Systems	MAB1105	1:10000		Invitrogen	A10030	1.5000
	tubulin	INCO Systems	MADT 195	1.10000				
	Anti-R-actin	Cell Signaling	49705	1.5000	IRDve donkev anti-	Thermo Fischer	SA5-10044	1.20000
	Anti-p-actin	Cell Signaling	43700	1.5000	rabbit DI 800		0/0-10044	1.20000
	Anti-ß-actin	Sigma-Aldrich	S2228	1.6000	IRDve donkev anti-	LI-COR	926-32212	1.20000
					mouse DL800			

Supplementary text

Methods

Measurement of reactive oxygen species (ROS)-level

On day one, right before CoCl₂-treatment, part of the filter inserts with the retinae were cut out, placed in a 12-well plate and cultivated in 500 µl media containing 300 µM CoCl₂. The next day, 18 h after CoCl₂-treatment started, H₂O₂ substrate was added to the medium and placed in the incubator for another 6 h. Then, 50 µl of a ROS-GLO[™] Detection Solution was added to a 96-well plate (Greiner). To detect ROS in cultured retinae, 50 µl media of each retinae was added to the 96-well plate and incubated for 20 minutes at room temperature. ROS-level was measured with GloMax® 96 Microplate Luminometer (Promega) with an exposure time of 0.5 seconds. For the measurement 48 hours after CoCl₂-induction, the same protocol was performed on day three of the cultivation.

Histological analyses of retinal cells

For GFAP measurement, all images were cropped (600x700 pixel). Next, images were transformed into grayscale and for each image, a suitable upper and lower threshold was evaluated. The mean value of all upper and lower thresholds was calculated for the respective point in time and used for the final analyses (4 days: lower threshold: 10.42; upper threshold: 84.41; 8 days: lower threshold: 13.95; upper threshold: 85.05).