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SUPPLEMENTAL METHODS

Sample collection, processing, and biorepository storage

Discovery cohort: Stanford University

Pulmonary arterial hypertension (PAH). PAH plasma samples (n=281) were obtained from the Stanford
Pulmonary Hypertension Biobank (SPHB) (Stanford University, USA), which is a comprehensive tissue bank
that includes plasma, serum, peripheral blood mononuclear cells, exhaled breath condensate, and urine
from patients with all forms of pulmonary hypertension (Stanford University IRB #14083). Initiated in
2007, the SPHB has captured samples from over 600 well-characterized subjects who were recruited at
the time of evaluation in Stanford pulmonary hypertension clinic. Each sample is linked to comprehensive
clinical data captured in the Vera Moulton Wall Center Pulmonary Hypertension database (see below).
After informed consent was obtained, study plasma samples were collected from patients during right
heart catheterization in the fasting state. Peripheral blood was drawn from the antecubital fossa into
EDTA vacutainers under standard sterile precautions. Collection tubes were immediately placed upright
into a rack at room temperature. Within 30 minutes, the sample was inverted several times to mix
components, and subsequently centrifuged at 1300 rpm for 10 minutes. The plasma layer was then
carefully removed by pipette without disturbing the buffy coat, and transferred to Eppendorf tubes in 200
pL aliquots. Aliquoted samples were secured and stored upright at -80°C in the SPHB.

Healthy controls. Control plasma samples (n=88) were acquired from the Stanford Cardiovascular Institute
Biomarker and Phenotype Core Laboratory biorepository (Stanford University IRB #40869). Samples were
collected from healthy volunteers between 2009 and 2013, as part of the Stanford Healthy Aging Study
(Stanford University IRB #20942). Peripheral venous blood was drawn in the fasting state from the
antecubital fossa, and subsequently processed and stored utilizing the same protocol and conditions that
were applied for PAH samples (see above). To establish health in these individuals, initial screening
involved a comprehensive questionnaire and clinical assessment with blood pressure and anthropometric
measurements. Subjects were excluded for any unexplained chronic cardiopulmonary symptoms
(dyspnea, cough, angina, palpitations, orthopnea, lightheadedness), symptomatic atherosclerotic disease,
symptomatic heart failure, history of atrial fibrillation, hypertension, chronic pulmonary disease, diabetes
mellitus requiring therapy, current smoking, hyperlipidemia requiring therapy, body mass index >35
kg/m?, history of atopy, chronic systemic inflammatory disease, recent infectious disease, prior or current
malignancy, and Alzheimer’s disease. Subjects had basic laboratory studies to rule out dyslipidemia,
elevated NT-proBNP (> 300 pg/mL), abnormal liver function tests, and renal dysfunction (stage 3 or
greater). The participants were then screened with vascular ultrasound for abdominal aorta aneurysm (=5
cm) and asymptomatic carotid or femoral atherosclerosis (220% diameter stenosis). Transthoracic
echocardiography was also employed to screen and exclude those with subclinical left ventricular
dysfunction (ejection fraction <50%), subclinical valve disease (categorized as mild or greater), any right
ventricular enlargement or dysfunction, or estimated right ventricular systolic pressure 230 mmHg.

Validation cohort: University of Sheffield

PAH. Plasma samples (n=104) were obtained from the Sheffield Pulmonary Vascular Disease Unit (SPVDU)
pulmonary hypertension biobank (Sheffield Teaching Hospitals Foundation trust, University of Sheffield,
UK). A single-center prospective observational study, the SPVDU pulmonary hypertension biobank
(STH15222) includes samples from more than 600 adult subjects who were recruited with a suspected
diagnosis of pulmonary hypertension. The validation cohort in our study included consecutive patients
who had samples collected for the SPVDU biobank between 2009-2012. All patients met hemodynamic
diagnostic criteria for PAH, which included mean pulmonary arterial pressure 225 mmHg, pulmonary



arterial wedge pressure <15 mmHg, and pulmonary vascular resistance >240 dynes/sec/cm™. Following
consent, blood was drawn from a peripheral upper extremity vein during right heart catheterization into
EDTA vacutainers, mixed thoroughly by inverting several times, and placed onto ice prior to centrifugation
(at 1500 rpm for 15 minutes at 4°C). The plasma layer was then carefully removed, and banked in 250 pl
aliquots at -80°C. Each sample in the Sheffield HTA-approved biorepository was linked to the patient’s
electronic phenotype record in a bespoke MySQL database, which was in turn linked by patient ID to
clinical data in hospital electronic records. All samples were collected, stored and assayed with
appropriate informed consent and approval from North Sheffield Research Ethics Committee
(08/H1308/193+5) via the Sheffield NIHR Clinical Research Facility.

Clinical data collection

Discovery cohort: Stanford University

Demographic, clinical, hemodynamic, and outcomes data was obtained from the Vera Moulton Wall
Center (VMWC) Pulmonary Hypertension Database. Established in 2000, the VMW(C database has enrolled
consecutive patients evaluated at Stanford University with hemodynamically confirmed PAH (Stanford
University IRB#12338). This observational relational database captures 371 unique variables in a
longitudinal manner.

Clinical data was extracted for analysis at the time of proteomic sample collection. Data was omitted if
not available within one month of plasma sampling. Demographic variables included age, sex, and race.
PAH etiologies were categorized according to the World Health Organization classification scheme.! For
each subject, we collected the dates of symptom onset (patient reported) and PAH diagnosis (including
diagnoses that preceded referral to Stanford). We obtained right heart catheterization hemodynamic data
and non-invasive disease markers (New York Heart Association functional class, six-minute walk distance,
NT-proBNP, diffusion capacity of the lung for carbon monoxide, echocardiographic variables, and serum
creatinine). Extracted variables were used to calculate a composite REVEAL risk score,? and patients
missing variables necessary for calculation had data imputed from cohort medians (no subject had more
than 2 variables missing). In addition, we collected background PAH therapies (phosphodiesterase-5
inhibitors, endothelin receptor antagonists, prostanoids, guanylate cyclase stimulators) and adjunct
agents (loop diuretics, aldosterone antagonists, anticoagulants, digoxin, calcium channel blockers).

Certain clinical variables included in our analysis were not available in the VMWC pulmonary hypertension
database, including comorbidities and medications with potential cytokine relevance. These variables
were manually extracted from electronic patient medical records. Comorbidities included coronary artery
disease (prior stent placement or coronary artery bypass grafting), cerebrovascular accident (prior
ischemic stroke), essential hypertension (requiring active anti-hypertensive therapy), chronic kidney
disease (stage 3 or greater, glomerular filtration rate <60 ml/min/1.73 m?3), diabetes mellitus (requiring
active oral glucose lowering therapy or insulin), hyperlipidemia (requiring active lipid-lowering therapy),
history of thyroiditis (Graves’ disease or Hashimoto’s), active tobacco abuse (patient reported),
inflammatory bowel disease (requiring active topical or systemic therapy), specific connective tissue
disease diagnoses (systemic sclerosis, systemic lupus erythematosus, mixed connective tissue disease,
rheumatoid arthritis, sjogren syndrome, dermatomyositis/polymyositis, psoriatic arthritis), obstructive
sleep apnea (formal diagnosis by polysomnography with apnea-hypopnea index >5 events/hour), chronic
obstructive pulmonary disease (compatible clinical history and spirometry with FEV1/FVC <0.70), mild
radiographic interstitial lung disease (reticulation, chronic or recurrent ground glass opacities, absence of
honeycombing, relatively preserved lung function with total lung capacity >60% of predicted), and asthma
(requiring at least rescue inhaler + maintenance therapy). These pulmonary comorbidities were deemed
to not be significant contributors to pulmonary hypertension, given that treating physicians established a



Group 1 PAH diagnosis. Additional background medications were collected including immune modulating
agents (prednisone, mycophenolate mofetil, hydroxychloroquine, leflunomide, azathioprine, tacrolimus,
bortezomib, anakinra, rituximab, or cyclophosphamide), non-steroidal anti-inflammatory drugs (aspirin
or other NSAIDs), and allergy agents (H1 blockers, leukotriene antagonists).

The VMWC database and electronic medical records were also used to identify patients who died from
any cause or underwent lung/heart-lung transplantation prior to database lock (August 2016).

Validation cohort: University of Sheffield

Clinical data were obtained from a bespoke SQL database, which links University of Sheffield hospital
records and survival data from National Health Service (NHS) Digital. Demographic data, PAH etiologies,
and non-invasive PAH clinical markers (WHO functional class, incremental shuttle walk test, diffusion
capacity of the lung for carbon monoxide) were available for nearly all subjects within a week of plasma
collection, as it had been obtained during the index clinical encounter at the University of Sheffield.
Moreover, hemodynamic measurements were acquired on the day of plasma collection. Long-term
survival data was even available for patients lost to follow-up at the University of Sheffield, since NHS
Digital updates were incorporated into the Sheffield pulmonary hypertension database in real-time.
Clinical data was collected with appropriate informed consent and approval from North Sheffield Research
Ethics Committee (08/H1308/193+5) via the Sheffield NIHR Clinical Research Facility.

Proteomic immunoassay measurements

Overview of Bio-Plex® multiplex immunoassay platform. The Bio-Plex® multiplex immunoassay is a
magnetic bead-based flow cytometric platform that is built on Luminex® xMAP™ technology. A magnetic
bead mixture provides the substrate for numerous parallel sandwich immunoassays within each sample.
Individual beads are each coupled to an analyte-specific capture antibody and have a unique fluorescent
spectral address. After a protein of interest is captured in sample, labeled detection antibody binds a
different epitope to sandwich the analyte. Beads are flown single-file through a dual-laser instrument,
which (i) identifies an analyte according to the spectral address of the bead and (ii) quantifies bound
analyte by measuring fluorescence intensity from the detection antibody reporter label. Hundreds of
beads specific to each measured protein are in each given sample, thus median fluorescence intensity
(MFI) is determined from single-bead measurements to quantify abundance of a protein. The MFI of
reporter signal is proportional to the concentration of an analyte in sample.

Study protocol for Bio-Plex® immunoassay. Prior to setting up our assays, the Luminex 200™ plate reader
instrument was calibrated according to manufacturer instructions. This process employed Bio-Plex
calibration beads to standardize fluorescent signal detection. To prepare experimental samples, frozen
biobanked plasma aliquots were passively thawed to room temperature and diluted four-fold in assay
buffer (1 volume plasma to 3 volumes buffer). These plasma samples were assayed within 30 minutes of
reaching room temperature, as described below. To prepare a magnetic capture bead mixture, bead stock
solution (20x) was vortexed at medium speed for 30 seconds and then diluted 20-fold in assay buffer. The
preparation of standards involved first adding 500pL of standard diluent to each stock vial of lyophilized
standard, which contained known concentrations of analytes measured by our assay. The reconstituted
standard was vortexed and incubated on ice for 30 minutes. Thereafter, we performed four-fold serial
dilution to prepare a series of eight total standards.

After preparation of the samples, capture bead mixture, and standards, the immunoassay was carried out
on a 96-well plate. First, we added 75 uL of standard to eight wells (one standard dilution per well), 75 pL
of assay buffer to one well (‘blank’ well without sample later used to measure background fluorescence



from non-specific binding), and a 75 uL pre-diluted experimental sample to the remaining wells. Next, we
added 25 pL of capture bead mixture to all plate wells. The plate was sealed, placed on a shaker for two
hours (800 rpm), and incubated at 4°C overnight. After passive re-warming the next day, solution was
removed and the plate was washed by magnetic separation with the Bio-Plex Pro™ wash station (200 uL
buffer, 3 cycles). Biotinylated detection antibody stock solution (10x) was diluted 10-fold in assay buffer
and added to each well (25 pL), followed by two-hour incubation on a shaker (800 rpm), solution removal,
and three magnetic separation washes. Next, streptavidin-phycoerythrin stock solution (100x) was diluted
100-fold, incubated in each well (50 uL) for 40 minutes on a shaker (500 rpm), removed, and the plate
was washed again. Finally, after addition of reading buffer (100 pL) and ten-minute incubation on a shaker
(800 rpm), the plate was read by a Luminex 200™ dual-laser detection instrument. Data acquisition was
set to a 50 bead count minimum per analyte per well. Data was processed and presented with Bio-plex
Manager™ software.

Adjustment for non-biological variation with empirical Bayes methodology

Discovery cohort PAH samples were run across nine assay plates in two experimental batches, which were
balanced with respect to patient demographics and underlying WHO Group 1 subtypes. Principal
components analysis (PCA) was applied to visualize non-biological variation due to batch effects. PCAis a
dimensionality reduction technique that allows visualization of high-dimensional data, as numerous
measured variables are represented by one point in space for each sample. We then implemented
empirical Bayes methodology to adjust for plate and batch effects (‘ComBat’ parametric algorithm, ‘sva’
R software package).> * This batch correction approach is robust to outliers, well-validated, and used
widely for high-dimensional molecular datasets ®. After ‘ComBat’ adjustment, PCA was repeated to
confirm improved proteomic homogeneity across plates and batches. Validation cohort samples were
assayed in a separate batch from the discovery cohort runs, thus the ‘ComBat’ algorithm was also applied
to correct for non-biological variation between cohorts. The impact of these adjustments on batch effects
is shown in Figure S1.

Discovery of proteomic-based PAH subgroups with unsupervised machine learning

Overview of unsupervised consensus clustering. Consensus clustering is not a standalone method, but
rather a resampling-based analysis approach used in conjunction with various clustering algorithms.® The
method involves iterative runs of a specified algorithm on multiple subsamples from the original dataset.
Across clustering iterations, the stability of cluster assignments is analyzed with quantitative and graphical
tools. Consensus clustering is well-suited for unsupervised classification, as it offers objective criteria to
determine the number of clusters and define cluster boundaries. Conversely, when clustering algorithms
are applied in isolation, there may be a subjective component to defining cluster boundaries (hierarchal
clustering), or the number of clusters must be known or decided a priori (k-means, k-medoids, self-
organizing maps, and others). While many algorithms are sensitive to the algorithm search starting point
within data, consensus clustering sidesteps this with random re-sampling runs.

Consensus clustering implementation. To sort our PAH patients into clusters based on circulating
proteomic immune profiles, we carried out consensus clustering with the ConsensusClusterPlus R
software package (version 1.38).” Consensus clustering was executed with 1,000 random patient
resampling iterations. Patient subsamples were sized at 95% of the original cohort, and all measured
proteins were resampled in each iteration. Analysis occurred over a cluster number (k) range from k=2-
20. For each k assessed, cluster boundaries resulting in the best cluster assignment agreement across
resampling runs were determined. In other words, a set of 19 possible consensus clustering schemes was
generated (one per k from k=2-20). A symmetrical consensus matrix was also constructed for each k, which




was an n x n matrix (n=281 PAH patients in our case) of pairwise consensus index values. Each consensus
index value quantified the proportion of resampling runs that two patients clustered together (of the runs
in which both were subsampled), and could range from 0 (never clustered together) to 1 (always clustered
together).

Identifying the ‘true’ number of dataset clusters by consensus clustering. Consensus matrices were
leveraged to objectively evaluate the stability of cluster assignments across resampling runs for each k,
and this provided the basis for identifying the ‘true’ cluster number (k optima) and ultimate cluster
boundaries. We measured cluster consensus and determined the k optima by way of consensus matrix
heatmaps (Online Figure 11A), cumulative consensus distribution functions (Online Figure 1IB), average
consensus index values by cluster (Online Figure IIC), and the proportion of ambiguously clustered pairs
(PAC) metric (Online Table Il). Each of these graphical and quantitative tools are further detailed in the
corresponding supplemental figure and table legends.

Determining the optimal clustering algorithm and distance metric. Consensus clustering can be
implemented with a variety of specific clustering algorithms and distance metrics. We therefore sought
to objectively determine which algorithm-distance combination produced the most valid consensus
clusters in our PAH proteomic dataset. Evaluation of external validity was not possible, as (i) clustering
was unsupervised without a priori knowledge of group membership and (ii) the circulating proteomic
immune milieu had not been previously investigated as multi-parameter biological system in PAH. We
instead used internal validity statistics to appraise the consensus clusters generated by various algorithm-
distance combinations. Measures of internal cluster validity do not require any prior knowledge about the
data or clusters, as they are solely based on information intrinsic to the data. In the discovery cohort, our
consensus clustering approach was carried out 15 times in total, as three common clustering algorithms
(k-medoids, k-means, agglomerative hierarchical) were each executed with five different distance metrics
(Euclidean, Canberra, Pearson correlation, Spearman correlation, and Manhattan). We then determined
which algorithm-distance permutation yielded consensus clusters with the best measures of internal
validity, as calculated with the “fpc’ R software package (‘cluster.stats’ function).® For certain statistics,
low numerical values reflected better clustering validity— average distance within clusters, average sum
of squares within clusters, G3 coefficient,” average within-cluster to between-cluster distance ratio,
widest within-cluster gap, connectivity,'® and the proportion of ambiguously clustered pairs.!! In contrast,
higher values indicated better cluster validity for other metrics— average distance between clusters,
average silhouette width,'? G2 coefficient,’®* Dunn index,'* Dunn index 2,** normalized Pearson gamma,**
Calinski and Harabasz index,'> !¢ and the separation index,'® Ultimately, internal validity measures were
the best for clusters resulting from the k-medoids algorithm with Euclidean distance (as detailed in Online
Table ll1), and this combination defined our final proteomic-based PAH clusters. These input parameters
were also used for clustering in the validation cohort. The k-medoids algorithm partitions a multi-
dimensional dataset in space, by identifying boundaries that minimize the sum of distances between
samples in each cluster and their respective cluster centers.’

Proteomic network analysis by machine learned PAH immune cluster (discovery cohort only)

To investigate our immune-relevant proteomic panel as a multivariable system and explore protein-
protein relationships within each machine learned PAH cluster, we constructed undirected weighted
partial correlation networks with force-directed graphical modeling. Partial correlation networks, which
are also known as Gaussian graphical models and belong to a more general class of statistical models
termed pairwise Markov random fields,'® *° have been used to infer biological relationships in several
‘omics domains.2®?° The overall approach, which was carried out separately for each proteomic-based PAH
cluster discovered by unsupervised consensus clustering, involved: (i) obtaining partial correlations



between all possible protein-protein pairs, (ii) construction of a saturated partial correlation network with
force-directed graphical modeling (all pairwise protein-protein relationships retained), (iii) identification
of proteins with high measures of network centrality, and (iv) sparse core immune network selection with
removal of the more likely false positive ‘spurious’ protein-protein connections by regularization.

Obtaining partial correlations between all protein-protein pairs. A simple correlation coefficient quantifies
the strength of linear relationship between two variables, but does not consider the influence of other
variables on this relationship. Conversely, partial correlation measures the degree of association between
two variables with the effect of other controlling variables removed. In other words, partial correlation is
a measure of conditional dependence and is equivalent to how well two variables predict each other in
multiple regression.

To obtain the partial correlation coefficients for all possible pairwise protein-protein interactions in our
proteomic panel (48 measured proteins= 1,128 pairwise partial correlations per PAH cluster), we applied
node-wise regression.?® 2 Each pairwise partial correlation coefficient was the result of conditioning on
all other measured proteins (we controlled for interactions with all covariates). Multiple regression was
performed, in which y; is predicted from all other variables:

Y1 =Piot P2V + Bizys + ot &,
Followed by a similar regression model for y,:

Y2 = PBaot Baiy1 + Bazyz + o+ &,
And then so on for y3, ¥4, Vs . . .to y, (n = 48, the number of variables in our proteomic panel)
The partial correlation coefficient between y; and y; was proportional to the regression slope predicting
y; from y;, or the regression slope predicting y; from y;:

. ﬁij Var (5j) _ .Bji Var (¢;)
Cor (yl‘:Yj |y—(i,j)) T Var(g)  Var (£)

We utilized these pairwise partial correlation coefficients to create a symmetric weighted adjacency
matrix for each cluster, with measured proteins as rows and columns. Matrix cell values were the signed
partial correlation coefficients of each protein-protein pair. This weighted adjacency matrix served as the
basis for construction of network models.

Visualization of saturated partial correlation network with force-directed graphical modeling. Visualizing
partial correlations in a network structure highlights the unique variance between variables, and provides
the ability to map out multicollinearity and predictive mediation. After we obtained partial correlation
coefficients, force-directed graphical modeling was employed to construct a saturated network of all
1,128 possible pairwise protein-protein interactions. Each measured immune-relevant protein was
represented by a network node, and undirected edges connected nodes to indicate partial correlations
between all protein pairs. Network edges were weighted according to the magnitude of each partial
correlation coefficient.

To construct these force-directed network graphs for each machine learned PAH cluster, we applied the
Fruchterman-Reingold algorithm 28. The ‘gqgraph’ R software package (version 1.43) was utilized for
implementation, and the aforementioned adjacency matrices served as input.?® This force-directed
graphical modeling approach treated partial correlation networks as physical systems, in which both
attractive and repulsive ‘forces’ acted on each node. The aim of the Fruchterman-Reingold algorithm was
to find the graphical configuration that achieved physical equilibrium, such that the net force acting on
each node was zero or near zero (the configuration with minimal energy). Nodes behaved like atomic
charged particles that naturally repulsed each other, while network edges were spring-like forces that
attracted nodes according to partial correlation weights. The Fruchterman-Reingold algorithm modeled



forces on each node with the following equations (analogous to Coulomb’s and Hooke’s laws)?:
2
E.(d) =— rFk where F, is the repulsive force, d is distance between nodes,

and [ is the optimal distance between nodes based on overall graph area
2

F,(d) = T where F, is the attractive force

The algorithm iteratively moved nodes until reaching the configuration with minimal energy. All force
vectors acting on nodes were summed to determine the direction and distance that a node moved at each
iteration. The distance moved was limited to a maximum value, and this limit (termed ‘temperature’)
decreased with successive algorithm iterations (‘cooling’) until no further movement occurred.

Identifying proteins with high measures of network centrality. In network analysis and force-directed
graphical theory, centrality measures are used to quantify how central or ‘important’ nodes are within
the overall structure of network interactions. To identify the central nodes in each PAH cluster network,
we calculated strength, closeness, and betweenness centralities for all nodes. These three well-established
indices, which have been used in biological networks to detect nodes that most affect network topology,*
were defined and calculated as follows:

Strength (or degree) centrality is the sum of absolute partial correlation weights for all edge linkages of a

node. Nodes involved in a large number of strong network interactions are more central according to the
31

measure’":

S =Cy@) = Z?’ w;;, where i is the focal node, j represents all other nodes, N is the total
number of nodes, w is the weighted adjacency matrix, and cell w;
is defined by the partial correlation weight

Closeness centrality is the reciprocal of the average shortest path length between the node and all other
nodes in a graph, thus a node with high closeness centrality is spatially close to other nodes in the network
model3% 33

Cre() = [Z?’zl ave (i,j)]_l, where d"“(i, ) is shortest path length between node i and nodes j:

ave(i,j =min( ! +...+
) Wi« Wrj)“

) ,where h is the intermediary nodes on paths between

node i and j,and a is a positive tuning parameter set = 1
Betweenness centrality quantifies how often a node bridges the shortest path between nodes®* 33:
O]

wa
jk

Cy*() = where gj;" is number of weighted shortest paths (tuned at « = 1) between

a

two nodes, and gj;* (i) is the number of these paths that go through node i

Centrality indices were calculated for each protein node in all four PAH cluster networks, and measures
were z-score standardized relative to other nodes in the same network. Proteins were then grouped in
each cluster according to their pattern of network centrality and plasma expression, as either high
centrality-high expression, high centrality-low expression, high expression-low centrality, or low
centrality-low expression. Proteins were considered to have high network centrality if at least 2 of 3
centrality indices were above the cluster mean (z-score >0). High plasma expression was defined as a
mean cluster level greater than the overall PAH cohort.

Selection of sparse core immune networks by regularization. Estimating parameters from data is always
associated with some degree of noise, thus partial correlation coefficients are never exactly zero even if
two variables are conditionally independent. In the context of a weighted partial correlation network,
these ‘spurious’ or ‘false positive’ partial correlations would be represented by weak edges in a saturated
model. To reduce the number of false positive proteomic relationships and construct more interpretable




force-directed network models for each PAH cluster (which we termed ‘sparse core networks’), graphical
least absolute shrinkage and selection operator (LASSO) regularization was applied.?* In the context of
weighted partial correlation network modeling, the graphical LASSO algorithm achieves regularization by
limiting (or ‘penalizing’) partial correlation coefficients so that their absolute sum is below a certain
value.®® In turn, all estimated coefficients shrink and some become exactly zero. The LASSO aims to set
spurious partial correlation weights to zero and generate a sparse adjacency matrix, which results in a
force-directed graphical model that is no longer fully saturated. The LASSO algorithm involves a tuning
parameter A (lambda) that controls the sparsity of the regularized network (how many edges are
removed). When A is set to a low value, fewer edges are removed at the cost of retaining more spurious
edges. Conversely, a high A value often removes more spurious edges, but can lead to a larger number of
false negatives.

To select sparse core immune network models for each proteomic-based PAH cluster, graphical LASSO
regularization was implemented with the ‘glasso’ (version 1.8) and ‘qgraph’ (‘EBICglasso’ function, version
1.43) software packages in R.2% 3¢ A collection of 100 possible sparse networks was estimated for each
cluster, as LASSO regularization was carried out over 100 different A values. The tested range spanned
from a maximum A, equaling the largest correlation weight (corresponding network with no retained
edges), to a minimum A that was 0.01* maximum A. In order to choose the A value that produced the
optimal sparse network, we applied the Extended Bayesian Information Criterion (EBIC).3” LASSO
regularization with EBIC model selection has been shown to perform with high specificity (rarely estimates
edges that are not in the ‘true’ network).*® The EBIC includes a manually specified hyperparameter y
(gamma) that controls whether simpler or more complex models are preferred. The y is usually set
between 0 (more edges) and 0.5 (fewer edges).*® Even when y=0 (reduces to standard BIC), the selected
network is significantly more sparse than a partial correlation network that is not regularized. To select a
core immune network model for each machine learned PAH cluster, we set y=0.1 to err on the side of
discovery.



SUPPLEMENTAL TABLES

Table I. Measured cytokines, chemokines, and growth factors (with aliases)

IL-1a
IL-1p
IL-1RA
IL-2
IL-2RA
IL-3
IL-4
IL-5
IL-6
IL-7
IL-8
IL-9
IL-10
IL-12 (p40)
IL-12 (p70)
IL-13
IL-15
IL-16
IL-17
IL-18
IFN-0.2
IFN-y
TNF-a
TNF-B
ccL2
ccL3
ccLa
ccLs
ccL?
ccLil
ccL27
cxcLl
CXCL9
CXCL10
CXCL12
G-CSF
GM-CSF
M-CSF
FGF
PDGF-
VEGF
HGF

LIF
B-NGF
SCF
SCGF-B
TRAIL
MIF

Interleukin 1 alpha (hematopoetin 1, 1L1F1)

Interleukin 1 beta (leukocytic pyrogen/endogenous mediator, mononuclear cell factor, lymphocyte activating factor,
Interleukin 1 receptor antagonist (ILLRN, DIRA, ICIL-1RA, IL1F3, IRAP, MVCD4)

Interleukin 2 (TCGF, lymphokine)

Interleukin 2 receptor alpha (CD25, IDDM10, IL2R, TCGFR, p55, IMD41)

Interleukin 3 (MCGF, MULTI-CSF)

Interleukin 4 (BCGF-1, BSF-1)

Interleukin 5 (EDF, TRF)

Interleukin 6 (BSF2, HSF, IFNB2, BSF-2, CDF, IFN-beta2)

Interleukin 7

Interleukin 8 (CXCL8, GCP-1, LECT, LUCT, LYNAP, MDNCF, MONAP, NAF, NAP-1)

Interleukin 9 (HP40, P40)

Interleukin 10 (human cytokine synthesis inhibitory factor, CSIF, GVHDS, TGIF)

Interleukin 12 subunit p40 (IL-12 beta, CLMF, CLMF2, IMD28, NKSF, NKSF2, IMD29)
Interleukin 12 subunit p70 (IL-12 alpha)

Interleukin 13 (P600)

Interleukin 15

Interleukin 16 (LCF, NPRprIL-16)

Interleukin 17

Interleukin 18 (interferon gamma inducing factor, IGIF, IL-1g, IL1F4)

Interferon alpha 2 (LelF A)

Interferon gamma (IFl, IFG)

Tumor necrosis factor alpha (cachexin, cachetin, DIF, TNFSF2)

Tumor necrosis factor beta (lymphotoxin alpha, LTA, TNFSF1, TNLG1E)

Monocyte chemotactic protein 1 (MCP-1, GDCF-2, HC11, HSMCR30, MCAF, SCYA2, SMC-CF)
Macrophage inflammatory protein 1-alpha (MIP1a, GOS19-1, LD78ALPHA, SCYA3)
Macrophage inflammatory protein 1-beta (MIP1f3, ACT2, HC21, LAG-1, SCYA2, SCYA4)
Regulated on Activation Normal T-cell Expressed and Secreted (RANTES, D17S136E, SCYAS, SIS-delta, TCP228, eoCP)
Monocyte chemotactic protein 3 (MCP-3, FIC, MARC, NC28, SCYA6, SCYA7)

Eotaxin (eotaxin-1, eosinophilic chemotactic protein, SCYA11)

Cutaneous T cell attracting cytokine (CTACK, SCYA27, ALP, ILC, skinkine, Eskine, PESKY)

GRO alpha oncogene (GROa, FSP, MGSA, MGSA-a, NAP-3, SCYB1)

Monokine induced by gamma interferon (MIG, CMK, Humig, SCYB9, crg-10)

Interferon gamma-induced protein 10 (IP10, C7, IFI10, INP10, SCYB10, crg-2, glP-10, mob-1)
Stromal cell-derived factor 1 alpha (SDF1a, IRH, PBSF, SCYB12, SDF1, TLSF, TPAR1)
Granulocyte colony stimulating factor (colony stimulating factor 3, CSF3, C170rf33, CSF30S)
Granulocyte macrophage colony stimulating factor (colony stimulating factor 2, CSF2)
Macrophage colony stimulating factor (colony stimulating factor 1, CSF1)

Basic fibroblast growth factor (bFGF, FGF2, FGF-beta)

Platelet derived growth factor beta-beta homodimer

Vascular endothelial growth factor (VEGF-A, vascular permeability factor, VPF, MVCD1)
Hepatocyte growth factor (scatter factor, DFNB39, F-TCF, HGFB, HPTA, SF)

Leukemia inhibitory factor (CDF, DIA, HILDA, MLPL1)

Beta nerve growth factor (NGFB, Beta-HSAN5S)

Stem cell factor (Kit-ligand, steel factor, FPH2, FPHH, KL-1, MGF, SF, SHEP7, DCUA, DFNA69)
Stem cell growth factor beta (C-type lectin domain family 11, CLEC11A, LSLCL, CLECSF3, P47)
TNF-related apoptosis-inducing ligand (TNFSF10, APO2L, CD253, TL2, TNLG6A)

Macrophage migration inhibitory factor (glycosolation-inhibiting factor, MMIF, GIF, GLIF)




Table Il. Discovery cohort consensus clustering: determining the cluster number that optimizes consensus (k
optima) via the proportion of ambiguously clustered pairs metric. As introduced in the supplemental methods
section, the proportion of ambiguously clustered pairs (PAC) is a simple objective measure used to infer the k optima
(in addition to the tools detailed in Online Figure 1I). The PAC metric has been shown to outperform other methods,*!
and is defined as the fraction of sample pairs with consensus index values falling between 0.1 and 0.9. Because the
consensus index is the proportion of resampling runs in which two patients are assigned to the same cluster (0=
never cluster together, 1= always cluster together), the PAC range of interest (0.1-0.9) corresponds to pairs of
samples that had ambiguous clustering across runs (sometimes clustered together and sometimes did not cluster
together). These ambiguously clustered pairs contribute to the mid-portion of the consensus cumulative distribution
function curve (see Figure IIB) — a higher PAC translates to a consensus CDF curve with a sloped middle segment,
whereas a low PAC results in a flat mid-portion. In turn, the k optima is the k with the lowest PAC value. As shown
below, evaluation of PAC values across k inferred a four-cluster structure in our dataset (k=4 optima).

Cluster number Proportion of ambiguously
(k) clustered pairs (PAC)
k=2 0.189
k=3 0.286
k=4 0.079
k=5 0.209
k=6 0.224
k=7 0.208
k=8 0.217
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Table IV. Discovery cohort: proteomic immune cluster membership by PAH etiology subtype. The number and
percentage of patients with each underlying PAH etiology is shown by proteomic-based cluster. There was no
significant difference in the overall distribution of etiologies within clusters (p=0.110 by Fisher’s exact test). Across-
cluster comparisons for each etiology are also shown. Idiopathic PAH and congenital heart disease-associated PAH
are somewhat overrepresented in cluster 3 and cluster 1, respectively.

Overall Cluster 1 Cluster 2 Cluster 3 Cluster 4

(n=281) (n=58) (n=109) (n=77) (n=37) p-value *
WHO etiologic subtype, n (%)
Connective tissue disease-APAH 87 (31.0) 20 (34.5) 31(28.4) 24 (31.2) 12 (32.4) 0.873
Idiopathic PAH 84 (29.9) 11 (19.0) 31(28.4) 31 (40.2) 11 (29.7) 0.061
Drugs and toxins-APAH 49 (17.4) 11 (19.0) 18 (16.5) 11 (14.3) 9(24.3) 0.592
Congenital heart disease-APAH 38 (13.5) 6(10.3) 23 (21.1) 6(7.8) 3(8.1) 0.031
Portopulmonary hypertension 19 (6.8) 8(13.7) 5 (4.6) 4(5.2) 2 (5.4) 0.167
Heritable PAH 4(1.4) 2(3.4) 1(0.9) 1(1.3) - -

* Comparison across clusters by Pearson’s chi-square test, or Fisher’s exact test when chi-square assumptions were not met.

Table V. Discovery cohort: timing of plasma sampling by proteomic immune cluster, relative to PAH diagnosis and
symptom onset. Tabular comparison of the time intervals from PAH diagnosis to plasma collection, symptom onset
(patient reported) to plasma collection, and symptom onset to PAH diagnosis.

Overall Cluster 1 Cluster 2 Cluster 3 Cluster 4 value *
(n=281) (n=58) (n=109) (n=77) (n=37) P
PAH diagnosis to pl l
fagnosis to plasma sampling, | 4 500,47 | 1.1(00,54  13(00,53)  09(00,35  0.0/(0.0,4.6) 0.193
years, median (IQR)
Interval < 1 year, n (%) 137 (48.8) 25 (43.1) 60 (45.0) 40 (51.9) 23(62.2) 0.226
Interval < 2 years, n (%) 167 (59.4) 32 (55.2) 63 (57.8) 48 (62.3) 24 (64.9) 0.734
Symptom onset to plasma sampling, 5, ) 5g) | 33(1.1,64)  3.4(1564)  21(10,49)  23(0.5,5.0) 0.067
years, median (IQR)
Interval < 2 years, n (%) 106 (37.7) 22 (37.9) 33(30.3) 33 (42.9) 18 (48.6) 0.150
Interval < 5 years, n (%) 194 (69.0) 37 (63.8) 70 (64.2) 60 (77.9) 27 (73.0) 0.169
Symptom onset to PAH diagnosis, 0.8(0.4,1.7) | 07(03,1.5)  09(04,20)  09(0.4,15  0.6(0.4,1.2) 0.343
years, median (IQR)
Interval < 1 year, n (%) 159 (56.6) 34 (58.6) 56 (51.2) 43 (55.8) 26 (70.3) 0.247

* The Kruskal-Wallis test was used to compare continuous time interval variables (each had a skewed distribution), and the chi-square test
was applied for binary variables.
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Table VI. Discovery cohort: prognostic clinical biomarkers by protemic immune cluster at the time of plasma
sampling. New York Heart Association (NYHA) functional class, six-minute walk distance (6MWD), N-terminal
prohormone of B-type natriuretic peptide (NT-proBNP), diffusion capacity of the lung for carbon monoxide (DLCO),
and the multi-parameter REVEAL risk score are compared across clusters.

Cluster 1 Cluster 2
(n=58) (n=109)

NYHA functional class, n (%)
Class lor I 18 (31.0) 44 (40.4)
Class IV 13 (22.4) 11 (10.1)

6MWD %, meters, median (IQR)
>440 meters, n (%)
<165 meters, n (%)

NT-proBNP, pg/ml, median (IQR)
<300 pg/ml, n (%)
>1500 pg/ml, n (%)

DLCO %, % predicted, median (IQR)
>80% of predicted, n (%)
<40% of predicted, n (%)

REVEAL risk score, n (%)
Low-average risk (score 1-8)

High-very high risk (score >10)

378 (305, 443)
15 (26.3)
3(5.3)
746 (98, 2540)
22(37.9)
23(39.7)
57 (48, 70)
9(17.0)
6(11.3)

32(55.2)
21(36.2)

390 (306, 485)
37(35.9)
4(3.9)
312 (96, 1499)
53 (48.6)
27 (24.8)
67 (47, 81)
29 (27.6)
16 (15.2)

75 (68.8)
25 (22.9)

Cluster 3
(n=77)

31(40.3)
4(5.2)
446 (340, 534)
37 (51.4)
8(11.1)
254 (80, 850)
47 (61.0)
11 (14.3)
66 (56, 90)
21(30.4)
7(10.1)

61(79.2)
10 (13.0)

Cluster 4 value *
(n=37) P
13 (35.1) 0.627
3(8.1) 0.020 t
404 (268, 449) 0.247
15 (44.1) 0.026 t
3(8.8) 0.251
415 (112, 1187) 0.041 t
17 (45.9) 0.050 t
8(21.6) 0.008 +
79 (64, 86) 0.072
16 (45.7) 0.033 t
4(11.4) 0.795
25 (67.6) 0.030 t
10 (27.0) 0.017 t

* Comparison across clusters with the Kruskal-Wallis test (continuous variables) or chi-square test (categorical variables)

T Post-hoc pairwise cluster comparisons were performed (Dunn’s test for continuous variables, and independent two-cluster chi-
square tests for categorical data), with Benjamini-Hochberg (BH) adjustment of p-values for multiple testing.
Cluster differences that achieved statistical significance (p<0.05) after BH adjustment:
NYHA FC IV (Cluster 1 vs 3 p=0.022)

6MWD >440 meters (Cluster 1 vs 3 p=0.039)
NT-proBNP median (Cluster 1 vs 3 p=0.046)
NT-proBNP <300 pg/ml (Cluster 1 vs 3 p=0.046)
NT-proBNP >1500 pg/ml (Cluster 1 vs 3 p=0.007)
DLCO >80% of predicted (Cluster 1 vs 4 p=0.043)

REVEAL score low-average risk (Cluster 1 vs 3 p=0.027)
REVEAL score high-very high risk (Cluster 1 vs 3 p=0.012)

2 Missing data: 6MWD (Cluster 1 [n=1], Cluster 2 [n=6], Cluster 3 [n=5], Cluster 4 [n=3])
DLCO (Cluster 1 [n=5], Cluster 2 [n=4], Cluster 3 [n=8], Cluster 4 [n=2])

Abbreviations: NYHA= New York Heart Association, 6MWD= six-minute walk distance, NT-proBNP= N-terminal pro b-type natriuretic peptide,
DLCO= diffusion capacity of lung for carbon dioxide.
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Table VII. Discovery cohort: echocardiographic findings by proteomic immune cluster. Data shown is captured
from transthoracic echocardiograms performed within 3 months of plasma sample collection (available for all
patients).

Cluster 1 Cluster 2 Cluster 3 Cluster 4

(n=58) (n=109) (n=77) (n=37) R
Pericardial effusion, n (%) 12 (20.7) 15 (13.8) 7(9.1) 7 (18.9) 0.239
RVSP #, mmHg, median (IQR) 82 (64, 94) 71 (54, 84) 65 (47, 80) 75 (49, 92) 0.009 t
RV FAC1, %, median (IQR) 24.0 (21.2, 28.4) 26.7 (22.1,31.7) 29.1(24.8,33.5) 26.1(22.7,30.4) 0.032
TAPSE £, cm, median (IQR) 1.5(1.2,1.8) 1.8(1.5,2.1) 1.9 (1.5, 2.1) 1.6 (1.3, 1.9) 0.134
<1.6 cm, n (%) 28 (53.8) 28 (32.2) 18 (30.0) 17 (53.1) 0.011+

* Comparison across clusters with the Kruskal-Wallis test (continuous variables) or chi-square test (categorical variables)

T Post-hoc pairwise cluster comparisons were performed (Dunn’s test for continuous variables, and independent two-cluster chi-square tests
for categorical data), with Benjamini-Hochberg (BH) adjustment of p-values for multiple testing.
Cluster differences that achieved statistical significance (p<0.05) after BH adjustment:
RVSP (Cluster 1 vs 2 p=0.032, Cluster 1 vs 3 p=0.001)
RVFAC (Cluster 1 vs 3 p=0.021)
TAPSE <1.6 cm (Cluster 1 vs 2 p=0.040, Cluster 1 vs 3 p=0.040)

2 Missing data: RVSP (Cluster 1 [n=2], Cluster 2 [n=12], Cluster 3 [n=1], Cluster 4 [n=3]),
RV FAC and TAPSE (Cluster 1 [n=6], Cluster 2 [n=22], Cluster 3 [n=17], Cluster 4 [n=5])

Abbreviations: RVSP= estimated right ventricular systolic pressure, RV FAC= right ventricular fractional area change,
TAPSE= tricuspid annular plane systolic excursion.

Table VIII. Discovery cohort: hemodynamic disease severity by proteomic immune cluster. Hemodynamic
measurements obtained on the day of plasma sample collection are indicated for each cluster (median and
interquartile range for all data).

Cluster 1 Cluster 2 Cluster 3 Cluster 4

(n=58) (n=109) (n=77) (n=37) p-value *

mPAR, mmite 521(45,60) 46 (34, 60) 45 (35, 54) 49 (32, 59) 0.043 1
PVR¥, dynessec/cm® 824 (584, 1216) 704 (424, 1160) 648 (408, 960) 664 (400, 1168) 0.284
Cardiac index , ml/min/m? 2.2(1.9,2.5) 2.1(1.7,2.4) 2.0(1.8,2.4) 2.2(1.7,2.3) 0.549

Right atrial pressure ¥, mmHg 11 (5, 14) 8(5,11) 7 (5, 10) 6 (4, 8) 0.023 +
PAWP, mmHg 12 (9, 14) 10 (8, 14) 11 (8, 14) 10 (8, 14) 0.515

RVEDP, mmHg 14 (8, 20) 12 (8, 15) 11 (8, 14) 10(7,13) 0.044 t
Heart rate, beats/min 80 (72, 95) 76 (69, 86) 76 (68, 86) 74 (66, 87) 0.104
Systolic BP, mmHg 118 (107, 131) 120 (111, 135) 124 (109, 144) 119 (111, 130) 0.521

* The Kruskal-Wallis test was used to compare hemodynamic indices across clusters, as each variable had a skewed distribution.

T Post-hoc pairwise cluster comparisons were performed by applying Dunn’s test, with Benjamini-Hochberg (BH) adjustment of p-values for
multiple testing. Cluster differences that achieved statistical significance (p<0.05) after BH adjustment:
mPAP (Cluster 1 vs 3 p=0.005, Cluster 1 vs 2 p=0.045)
Right atrial pressure (cluster 1 vs 4 p=0.002, cluster 1 vs 3 p=0.030, cluster 1 vs 2 p=0.041)
RVEDP (Cluster 1 vs 4 p=0.030)

2 Missing data: PVR and right atrial pressure (Cluster 1 [n=1], Cluster 2 [n=1]), cardiac index (Cluster 1 [n=2], Cluster 2 [n=2])

Abbreviations: mPAP= mean pulmonary arterial pressure, PVR= pulmonary vascular resistance, PAWP= pulmonary arterial
wedge pressure, RVEDP= right ventricular end diastolic pressure, BP= systemic blood pressure
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Table IX. Discovery cohort: immunoassay plates and experimental batches by PAH proteomic immune cluster.
PAH samples were run on nine assay pates across two experimental batches. As shown in the table below, machine
learned clusters had comparable sample percentages from each immunoassay plate and experimental batch. This
finding suggests that cluster assignments were not driven by residual plate or batch effects, and provides additional
evidence (beyond the principal component analyses shown in Online Figure I) that batch adjustments carried out in
the data pre-processing stage were effective.

Overall Cluster 1 Cluster 2 Cluster 3 Cluster 4
(n=281) (n=58) (n=109) (n=77) (n=37)
Batch A
Plate 1, n (%) 14 (5.0) 2 (3.4) 4(3.7) 4(5.2) 4(10.8)
Plate 2 16 (5.7) 4(6.9) 6 (5.5) 4(6.5) 1(2.7)
Plate 3 39 (13.9) 10(17.2) 15 (13.8) 10 (13.0) 4(10.8)
Plate 4 43 (15.3) 9 (15.5) 17 (15.6) 9(11.7) 8(21.6)
Plate 5 28 (10.0) 9 (15.5) 9(8.3) 6(7.8) 4(10.8)
Total 140 (49.8) 34 (58.6) 51 (46.8) 34 (44.2) 21 (56.8)
Batch B
Plate 6 42 (14.9) 6(10.3) 20 (18.3) 12 (15.6) 4(10.8)
Plate 7 35 (12.5) 6(10.3) 16 (14.7) 9(11.7) 4(10.8)
Plate 8 42 (14.9) 7(12.1) 15 (13.8) 14 (18.2) 6(16.2)
Plate 9 22 (7.8) 5(8.6) 7 (6.4) 8(10.4) 2 (5.4)
Total 141 (50.2) 24 (41.4) 58 (53.2) 43 (55.8) 16 (43.2)
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Table X. Comparison of discovery and validation cohort patient characteristics. Demographics, PAH subtype,
treatment status, non-invasive disease metrics, and hemodynamics were captured at the time of proteomic
sampling (within one month).

Discovery cohort: Validation cohort:
Stanford (n=281) Sheffield (n=104) PrED

Demographics
Age, years, median (IQR) 52 (41-63) 60 (51-66) <0.001
Female sex, n (%) 206 (73.3) 65 (62.5) 0.039
Race, n (%)

White 155 (55.2) 98 (94.2)

Asian 49 (17.4) 6 (5.8)

Hispanic 43 (15.3) 0(0.0) <0.001

Black 19 (6.8) 0(0.0)

Other 15 (5.3) 0(0.0)
PAH subtypes and treatment status
PAH etiology, n (%)

Connective tissue disease-APAH 87 (31.0) 37 (35.6)

Idiopathic PAH 84 (29.9) 53 (51.0)

Drugs and toxins-APAH 49 (17.4) 0(0.0)

Congenital heart disease-APAH 38 (13.5) 7 (6.7) <0.001

Portopulmonary hypertension 19 (6.8) 7 (6.7)

Hereditary PAH 4(1.4) 0(0.0)
Treatment naive, n (%) 123 (43.8) 104 (100.0) <0.001
Non-invasive disease metrics
NYHA/WHO functional classification T, n (%)

Class| 17 (6.0) 2(2.0)

Class Il 89 (31.7) 18 (18.2)

Class Il 141 (50.2) 68 (68.7) 0:008

Class IV 34 (12.1) 11(11.1)
DLCO, % of predicted +, median (IQR) 69 (50-84) 46 (35-56) <0.001
Hemodynamics
Mean PAP, mmHg, median (IQR) 47 (36-59) 50 (40-60) 0.333
PVR *, dynes-sec/cms, median (IQR) 720 (424-1104) 688 (376-872) 0.028
Right atrial pressure T, mmHg, median (IQR) 8 (5-12) 10 (7-15) <0.001
PAWP, mmHg, median (IQR) 10 (8-14) 11 (8 -14) 0.649
Outcome events during follow-up
Deaths, n (%) 62 (22.1) 52 (50.0) -
Transplantation (lung or heart-lung), n (%) 17 (6.0) - -
Events per 100 patient-years of follow-up 8.67 14.36 -

* Two-group comparison by t-test (continuous dependent variables, normal), Mann-Whitney U test (continuous
dependent variables, non-normal), chi-square test (categorical dependent variable), or Fisher’s exact test (chi-square
assumptions not met).

+ Missing data: functional class (validation n=5), six-minute walk, DLCO (discovery n=19, validation n=16),

PVR (discovery n=2, validation n=3), right atrial pressure (discovery n=2).
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Table XI. Validation cohort: Clinical comparison of PAH proteomic immune clusters at plasma sampling.

Cluster 1 Cluster 2
(n=26) (n=33)
Age, years, median (IQR) 61 (57-69) 59 (49-62)
Female sex, n (%) 15 (57.8) 20 (60.6)
PAH etiology, n (%)
Idiopathic PAH 11 (42.3) 21 (63.6)
CTD-APAH 10 (38.5) 7(21.2)
PoPH 2(7.7) 4(12.1)
CHD-APAH 3(11.5) 1(3.0)
NYHA functional classt, n (%)
Class | 0(0.0) 0(0.0)
Class Il 2(8.3) 4(12.1)
Class Il 17 (70.8) 27 (81.8)
Class IV 5(20.8) 2(6.1)
'”ﬁ::t’zre:t;'es dhi::’t'ﬁ(;’:f;'k distance™, 150 (80-210) 180 (75-330)
DLCOt, % predicted, median (IQR) 41 (27-48) 49 (41-58)
>80% of predicted, n (%) 0(0.0) 1(3.4)
<40% of predicted, n (%) 9 (41.0) 7(24.1)
Hemodynamics, median (IQR)
Mean PAP, mmHg 49 (40-55) 53 (44-63)
PVRt, dynes-sec/cm® 608 (392-856) 664 (392-920)
Cardiac indext, L/min/m? 2.7 (2.2-3.1) 2.7 (2.3-3.4)
RAP, mmHg 12 (9-16) 10 (7-14)
PAWP, mmHg 12 (9-15) 11 (8-13)

Cluster 3
(n=36)

62 (49-68)
26 (72.2)

15 (41.7)
18 (50.0)
1(2.8)
2(5.6)

1(3.0)
11 (33.3)
19 (57.6)

2(6.1)

170 (110-290)

46 (37-58)
2(6.7)
11 (36.7)

45 (32-61)
568 (328-888)
2.9 (2.4-3.3)
9 (5-14)
10 (7-13)

Cluster 4
(n=9) p-value *
56 (42-60) 0.074
4 (44.4) 0.390
6 (66.7)
2(22.2)
0.188
0(0.0)
1(11.1)
1(11.1)
1(11.1)
0.035
5 (55.6)
2(22.2)
230 (148-323) 0.338
45 (29-47) 0.126
0(0.0) 0.826
3 (42.9) 0.540
48 (41-58) 0.385
544 (360-872) 0.747
3.1(2.5-3.7) 0.774
7 (5-9) 0.045
11 (10-13) 0.224

* Comparison across clusters with the Kruskal-Wallis test (continuous variables), chi-square test (categorical variables), or Fisher’s exact test

(categorical variables when chi-square assumptions not met)

+ Missing data: NYHA functional class (cluster 1 [n=2], cluster 3 [n=3]), incremental shuttle walk distance (cluster 1 [n=5], cluster 2 [n=2], cluster
3 [n=5], cluster 4 [n=1]), DLCO (cluster 1 [n=4], cluster 2 [n=3], cluster 3 [n=6], cluster 4 [n=2]), PVR (cluster 1 [n=1], cluster 3 [n=1], cluster 4

[n=1]), cardiac index (cluster 3 [n=2], cluster 4 [n=1])
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Table XII. Cox proportional hazards modeling of survival in pooled discovery and validation cohort (n=385).

[A] Univariate analysis. The five-year risk of death (hazard ratio and 95% confidence interval) associated with the
following variables is shown: immune cluster status (each cluster vs. remainder of cohort), age, sex, PAH etiology
(CTD-APAH or PoPH), treatment status (incident vs prevalent PAH), functional class (Il or 1V), and hemodynamic
metrics. Multivariable models were constructed to evaluate risk associated with [B] immune cluster 1 and [C]
immune cluster 3, after adjustment for covariates that were selected a priori (age, sex, PAH etiology) or significant
in univariate analysis (incident PAH, functional class, and right atrial pressure had p<0.05). P-values shown reflect
the Wald test statistic. Cox regression was applied with the Efron estimator to handle ties,* and the proportional
hazards assumption was tested by evaluating relationships between Schoenfeld residuals and time for each variable.

[A] Univariate analysis

Hazard Ratio (95% CI) p-value
Immune cluster (vs. rest of cohort)
Cluster 1 2.52 (1.76 - 3.63) <0.0001
Cluster 2 0.91 (0.63-1.31) 0.601
Cluster 3 0.42 (0.27 - 0.67) 0.0002
Cluster 4 1.02 (0.60—-1.72) 0.944
Age (per year older) 1.02 (1.00 - 1.03) 0.032
Male sex 1.18 (0.81-1.70) 0.392
CTD-APAH or PoPH 1.64 (1.25-2.16) 0.024
Incident PAH (treatment naive) 1.32(1.02-1.75) 0.046
NYHA functional class Il or IV 2.18 (1.42-3.36) <0.0001
mPAP (per 1 mmHg increase) 1.01 (0.99-1.02) 0.167
RAP (per 1 mmHg increase) 1.05 (1.02 —1.08) 0.0005
PVR (per 80 dynes-sec/cm? increase) 1.01 (0.98 —1.04) 0.408

[B] Multivariable analysis of immune cluster 1 risk.

Hazard Ratio (95% CI) p-value
Immune Cluster 1 (vs. rest of cohort) 2.19 (1.51-3.18) < 0.0001
Age (per year older) 1.01 (0.99 -1.02) 0.139
Male sex 1.23(0.83 -1.83) 0.297
CTD-APAH or PoPH 1.41(1.05-2.14) 0.040
Incident PAH (treatment naive) 1.40 (0.95 - 2.06) 0.089
NYHA functional class Il or IV 2.01(1.27-3.19) 0.003
RAP (per 1 mmHg increase) 1.04 (1.01-1.08) 0.010

[C] Multivariable analysis of immune cluster 3 risk

Hazard Ratio (95% CI) p-value
Immune Cluster 3 (vs. rest of cohort) 0.39 (0.25-0.63) 0.0001
Age (per year older) 1.01(0.99 -1.02) 0.134
Male sex 1.23(0.83 -1.81) 0.299
CTD-APAH or PoPH 1.38 (1.02-2.02) 0.047
Incident PAH (treatment naive) 1.36 (0.93 -2.01) 0.111
NYHA functional class Il or IV 2.12 (1.34-3.36) 0.001
RAP (per 1 mmHg increase) 1.05 (1.02 - 1.09) 0.003
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Table Xlll. Standard curve-derived cytokine concentrations by PAH immune cluster. Median analyte
concentrations (with 25-75% IQR) are displayed in pg/mL for PAH patients overall (pooled discovery and validation
cohorts), healthy controls, and immune clusters identified in each cohort. Colored asterisks indicate cytokines that
had central network importance in clusters (according to the proteomic network analysis detailed elsewhere).
Concentration levels were determined by incorporating a standard dilution series on each assay plate (contained
known analyte concentrations), plotting detected MFI vs known concentration for standards, and deriving a five-
parameter logistic regression model to predict concentrations from detected MFI for experimental samples. Relative
to standard curve-derived concentration values, MFI immunoassay data does not require detection limit censoring,
more accurately quantifies analytes with low abundance, is less susceptible to non-biological variation, and has
greater statistical power in downstream analysis.*® Therefore, all other study analyses we report are based on MFI.
This table is not intended to provide a differential statistical analysis of analyte levels across PAH clusters, but instead
presented to offer a general reference of standard curve-derived protein concentrations.

Cytokine Cluster 1 Cluster 2 Cluster 3 Cluster 4 PAH overall Healthy controls
pg/mL, Discovery (n=58) Discovery (n=109) Discovery (n=77) Discovery (n=37)  Discovery + validation (n=88)

median (IQR) Validation (n=26) Validation (n=33) Validation (n=36) Validation (n=9) (n=385)
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Table XIlIl (continued). Standard curve-derived cytokine concentrations by PAH immune cluster.

Cytokine Cluster 1 Cluster 2
pg/mL, Discovery (n=58) Discovery (n=109)
median (IQR) Validation (n=26) Validation (n=33)
. 86 (58-123) 62 (26-101)
ccLil 103 (55-184) 53 (8-105)
I 14 (9.0-23) 14 (8.9-25)
16 (12-18) 15 (8.5-17)
253 (44-519) 265 (54-529)
IL-1Ra 270 (18-645) 42 (0-439)
. 0(0.0-2.9) 0.0 (0.0-2.3)
IL-15 3(0.0-3.8) 0.0 (0.0-0.0)
. 28 (18-40) 25 (17-35)
IL-6 31 (18-43) 19 (12-24)
21 (12-32) 22 (14-30)
IL-10 25 (22-28) 22 (18-25)
. 42 (36-61) 44 (33-59)
IL-8 42 (29-66) 29 (20-42)
N 253 (155-358) 272 (193-366)
= 221 (163-329) 163 (124-254)
" 10.6 (7.2-13.2) 11.1(8.1-13.9)
IL-4 10.0 (7.7-12.9) 7.4 (5.6-9.9)
6.3 (4.5-8.4) 6.6 (5.2-9.1)
IL-1B 6.1(5.2-7.3) 4.8(4.0-6.1)
s 10.5 (7.6-14.5) 11.2 (8.2-14.9)
10.7 (8.2-12.0) 8.4 (7.4-10.9)
" 335 (259-406) 321 (253-378)
G-CSF 321 (131-426) 218 (202-305)
. 31(21-43) 32 (20-46)
IL=7 34 (24-39) 21 (18-34)
17.3 (10.3-23.2) 14.5 (8.3-20.5)
IL-13 14.7 (13.0-17.0) 13.1 (10.7-16.6)
9.1 (4.1-11.4) 8.5 (5.2-10.9)
ccL3 9.3 (8.6-10.0) 8.4 (7.5-8.9)
. 119 (75-138) 108 (82-142)
FGFb 101 (90-121) 87 (76-99)
64 (15-104) 60 (12-99)
IL-17 75 (63-84) 20 (0.0-49)
93 (48-137) 88 (56-131)
TNF-a 90 (78-115) 76 (65-96)
" 48 (20-81) 53 (29-85)
IL-12(p70) 68 (42-73) 33 (15-54)
" 22 (10-40) 18 (8-35)
IL-9 24 (13-37) 13 (7-18)
. 90 (65-120) 69 (57-96)
ccLa 94 (80-101) 75 (66-81)
. 1168 (741-1978) 880 (565-1309)
CXCL10 1661 (1180-2293) 787 (391-1771)
" 715 (598-917) 534 (451-644)
MIF 640 (531-816) 467 (354-622)
50 (32-92) 30 (3-76)
CACLT 41(18-53) 27 (0.0-51)
47 (34-62) 40 (25-60)
VEGF 44 (31-54) 25 (18-34)
" 466 (210-878) 430 (253-866)
PDGF-B 456 (382-591) 416 (365-474)
N 6147 (1881-7702) 6394 (3993-8916)
ccLs

4862 (3086-5822)

4162 (2612-5949)

Cluster 3
Discovery (n=77)
Validation (n=36)

93 (71-142)
98 (57-156)

34 (18-45)
25 (16-33)
894 (326-1530)
1422 (1065-1797)
15 (8.4-34)
10 (5.4-24)
43 (26-55)
38 (34-46)
43 (26-52)
34 (28-38)
71 (51-87)
82 (71-95)
426 (304-510)
494 (457-573)

16.5 (12.3-19.3)
18.5 (15.6-20.7)

10.2 (7.3-12.3)
11.7 (9.8-13.0)

18.2 (13.2-21.7)
18.1(15.8-19.7)

397 (307-453)
430 (367-492)
47 (33-61)
47 (38-55)
22.0 (14.4-29.8)
18.5 (16.9-22.2)

12.9 (9.1-17.4)
11.1 (9.4-12.6)

162 (122-191)
150 (133-173)

124 (67-194)
117 (66-199)

152 (94-200)
155 (138-212)

109 (80-145)
81 (72-96)
48 (30-64)
55 (40-63)
77 (60-100)
87 (68-97)

741 (546-1316)

707 (438-996)

565 (517-687)
732 (575-832)
43 (19-71)
58 (50-89)
65 (40-94)
71 (59-85)
754 (350-1090)
704 (560-927)

6911 (4736-8942)
8011 (6476-10104)

Cluster 4 PAH overall Healthy controls
Discovery (n=37)  Discovery + validation (n=88)
Validation (n=9) (n=385)

149 (80-188) B
213 (191-461) 85 (50-142) 28 (16-40)

61 (14-73)

77 (67-84) 16 (14-36) 0.0 (0.0-3.9)
1886 (300-3062)

2515 (2323-3774) 449 (44-1185) 284 (180-403)

43 (34-52)

49 (42-52) 3.3(0.0-12) 0.0 (0.0-0.0)

65 (32-85)

61 (54-93) 31 (20-49) 20 (16-30)

67 (24-95)

59 (39-67) 271(20243) 17 (12-20)

) 52 (37-80) 32 (26-46)

125 (114-151)

635 (353-837)
968 (748-1030)

21.8 (12.9-26.0)
26.9 (20.1-30.9)

15.8 (6.8-19.3)
16.6 (14.2-19.9)

26.3 (14.3-35.9)
25.0 (20.2-31.5)

504 (410-576)
599 (526-675)

70 (32-84)
67 (61-87)

27.4 (16.6-35.5)
20.8 (18.4-28.2)
(

20.7 (10.6-27.3)
15.8 (12.5-19.8)

223 (127-270)
214 (206-314)

210 (84-352)
179 (138-326)

209 (114-381)
277 (205-427)

195 (137-257)
185 (168-227)

92 (32-114)
77 (74-154)

102 (75-130)
101 (87-128)

1026 (730-1631)
1483 (558-2448)

599 (502-714)
733 (620-931)

52 (24-76)
137 (110-243)

84 (50-108)
116 (103-245)

910 (505-1223)
1210 (876-1600)

6259 (5107-7811)

12032 (9331-15010)

321 (209-486)

12.6 (8.6-18.0)

7.8 (5.5-11.7)

13.2 (9.1-19.3)

362 (272-452)

37 (24-55)

16.6 (12.4-24.2)

9.6 (7.6-13.5)

124 (91-172)

78 (39-161)

114 (73-174)

73 (38-117)

31 (12-56)

81 (63-102)

950 (559-1513)

593 (489-733)

44 (18-78)

50 (30-77)

571 (353-928)

6176 (3772-8707)

202 (153-262)

6.2 (4.8-8.2)

5.1(3.7-6.9)

10.2 (7.7-13.6)

205 (149-266)

27 (21-35)

10.6 (7.4-13.1)

7.5 (6.0-9.6)

101 (81-133)

24 (3.2-51)

77 (50-111)

58 (44-86)

13 (10-21)

45 (33-59)

429 (312-563)

504 (496-555)

18 (8.7-30)

30 (20-39)

258 (164-364)

2863 (2380-3543)
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SUPPLEMENTAL FIGURES

Figure I. Adjustment for plate and batch effects. Principal component analysis (PCA) plots show the impact of
‘ComBat’ algorithm adjustment on [A] plate effect in discovery cohort batch A (five plates), [B] plate effect in
discovery cohort batch B (four plates), and [C] batch effect in discovery cohort (two batches), and [D] batch effect
between the discovery and validation cohort. Both before and after ComBat adjustment, scatter plots of the first
two principal components are displayed (PC1 vs PC2). In these plots, individual patient samples are represented by
dots and color-coded according to their assay plate or batch of origin. Ellipses surrounding each colored group
indicate 68% confidence regions (one standard deviation assuming a normal distribution). In addition, boxplots show
distributions of the first three principal components (PC1, PC2, PC3) for each assay plate/batch before and after
adjustment. Post-ComBat adjustment the plates and batches demonstrated more proteomic homogeneity, as
evidenced by increased overlap in PCA scatter plots and similar distributions across the PC1-PC3 boxplots.
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Figure Il. Discovery cohort consensus clustering: measuring consensus and determining the number of clusters (k
optima) (k-medoids algorithm, Euclidean distance). [A] Heatmaps of consensus matrices for k=3 to k=8. Each
heatmap represents the symmetric consensus matrix for a given k, with the same patients as rows and columns.
Patients are grouped by consensus cluster membership, which is specified by horizontal colored bars atop each
heatmap. The heatmaps show pairwise consensus index values over a spectrum from O (white= never clustered
together across resampling runs) to 1 (dark blue= always clustered together). Perfect cluster assignment consensus
across runs would appear as solid cluster-specific dark blue blocks along the diagonal on a white-only background.
Thus, the highest degree of cluster stability was observed for k=4. [B] Consensus cumulative distribution functions
(CDFs) for each k (from k=2 to k=8). Each consensus CDF is estimated by a histogram containing 100 bins and visually
represents how entries in the respective consensus matrix are cumulatively distributed within the 0-1 range. The
plot provides graphically represents the clustering stability across resampling runs for each k, and can be utilized to
determine the k optima. If perfect clustering consensus were achieved at a given k (consensus matrix only containing
0’s and 1’s), the consensus CDF would be purely bimodal with a flat horizontal mid-portion between modes at 0 and
1 (a step at O, flat line between 0 and 1, and another step at 1). The area under CDFs will increase across values of k
until the k optima is reached, while beyond k optima the area under CDFs will not markedly increase. Based on the
CDF plot shown, our PAH proteomic dataset appears to have a k=4 optima. The consensus CDF at k=4 has the most
bimodal appearance, and from k=4 to k=5 the area under CDFs do not increase significantly. [C] Average intra-cluster
consensus index values. For the consensus clusters generated at each k, a bar plot shows the mean consensus index
value between all pairs of patients within each cluster. Each colored bar represents a cluster. Clusters at the k=4
optima had the highest average consensus values.
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Figure lll. Discovery cohort: saturated proteomic networks by PAH cluster. Protein-protein relationships are
displayed for each PAH cluster with weighted partial correlation networks constructed as force-directed graphs.
While the ‘sparse core networks’ highlighted in Figure 3A of the main manuscript reflected removal of ‘spurious’
false positive edges by regularization, each saturated network below retains all possible protein-protein interactions
(1128 edges). Network nodes correspond to individual proteins, and their size is proportional to the mean plasma
expression level in the cluster. Protein-protein network edges have weights that are proportional to the magnitude
of partial correlation (red= positive, blue= negative).

Cluster 1 Node size: proportional to the mean cluster plasma level
(standard deviations above or below overall PAH mean)
—+—0—0—@—

-18D PAH mean +1 8D +2 8D

Edge thickness: proportional to partial correlation
Positive lati
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Figure IV. Discovery cohort: network node centrality measures and plasma expression within each PAH cluster. Paneled dot plots show calculated indices of
network centrality (strength, closeness, and betweenness as defined in supplemental methods) and plasma expression levels for individual proteins in the
proteomic partial correlation networks of [A] cluster 1, [B] cluster 2, [C] cluster 3, and [D] cluster 4. Centrality indices for each protein node are displayed as z-
scores relative to other nodes in the cluster network. The mean plasma expression levels for each protein by cluster are z-scored relative to the overall PAH
cohort. Proteins are grouped in each cluster according to the pattern of network centrality and plasma expression (see inset legend). Nodes highlighted in red
have high network centrality measures (at least 2 of 3 indices above the cluster mean) and are upregulated (greater than overall PAH cohort mean).
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Figure IV (continued). Discovery cohort: network node centrality measures and plasma expression within each PAH cluster.
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Figure V. Discovery cohort: pairwise protein-protein relationships within each PAH cluster. Partial correlation heatmaps are shown for [A] cluster 1, [B] cluster
2, [C] cluster 3, and [D] cluster 4. Each individual matrix cell represents the partial correlation coefficient between two specified proteins (their direct interaction
conditioned on all other measured variables). The heatmaps are accompanied by tables that indicate the protein pairs with the strongest positive and negative
correlations by cluster. For each cluster, these protein-protein relationships provided the basis for construction of partial correlation networks as force-directed
graphs (Online Figure lll, Figure 3A). Proteins with network centrality (as determined in Online Figure IV) are highlighted (see inset legend).
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Figure V (continued). Discovery cohort: pairwise protein-protein relationships within machine learned PAH clusters.
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Figure VI. Discovery cohort: comparison of circulating total white blood cell (WBC) count and differential cell subsets by PAH immune cluster. Boxplots
compare circulating total white blood cell count and both the percent and absolute count of each cell subset. Patient-level measurements are shown by dots,
boxes are colored according to immune cluster and represent the 25-75% interquartile range (IQR), bold horizontal lines indicate cluster medians, and whiskers
delineate data within the 1.5 x IQR range. The Kruskal-Wallis test was used to test for differences across clusters and p-values are shown. Analysis included
patients who had WBC measurements within one month of proteomic sampling [n=270/281 (96.1%), where WBC and proteomic data sampling occurred on the

same day for 219 (81.1%) and within 3 days for 234 (86.3%)]. WBC/differential data was missing for n=4, 2, 4, and 1 subject(s) in clusters 1-4, respectively.
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Figure VII. Discovery cohort: standardized patient-level proteomic measurements by PAH etiology. Heatmap
panels show patients grouped by PAH etiology. Each column is a patient, and rows are individual measured proteins
(displayed in the same order as that specified in Figure 2A). Standardized protein MFI measurements are color-coded
according to z-score. Within each etiology panel, patients are sorted by assigned proteomic-based cluster (from
cluster 1 at left to cluster 4 at right). Abbreviations: APAH= associated pulmonary arterial hypertension, CHD=
congenital heart disease, CTD= connective tissue disease, D&T= drugs and toxins, HPAH= hereditary PAH, IPAH=
idiopathic PAH, PoPH= portopulmonary hypertension.
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Figure VIII. Discovery cohort: timing of proteomic sample collection in proteomic clusters relative to PAH diagnosis
and symptom onset. Boxplots display the patient distribution within each cluster for [A] time from PAH diagnosis
to plasma sample collection and [B] time from patient-reported symptom onset to plasma sample collection.
Patient-level data is shown by dots, boxes represent the 25-75% interquartile range (IQR), bold vertical lines indicate
medians, and whiskers delineate data within 1.5 x IQR bounds.
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Figure IX. Discovery cohort: principal component analysis of proteomic immune profiles according to background
PAH-guided therapy. In scatter plots of the first and second principal components (PC1 vs. PC2), the multi-
dimensional proteomic profile of each PAH patient is reduced to a single point and colored according to: [A] PAH
therapy status (treatment naive vs. any background pulmonary vasodilator agent), and class of therapies including
[B] phosphodiesterase-5 inhibitors, [C] endothelin receptor antagonists, and [D] prostanoids. Patient proteomic
profiles do not appear to separate on the basis of treatment status or any class of PAH therapy.
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Figure X. Discovery cohort: subgroup analysis according to immune modulating therapy (IMT) status.

[A] Principal component analysis of
proteomic immune profiles by IMT status. In
a scatter plot of the first two principal
components (PC1 vs PC2), the proteomic
profile of each PAH patient is reduced to a
single point (purple= background IMT, gray=
no IMT). Patient proteomic profiles do not
appear to separate on the basis of IMT
status, as subjects on IMT are
homogeneously distributed amidst those
not on IMT. [B] Re-application of consensus
clustering to partition the subgroup of
patients not on IMT (n=219) into 4 clusters
(k=4) using the k-medoids algorithm,
Euclidean distance metric, and 1000
resampling iterations (95% of subgroup per
resampling run). All 219 patients partitioned
into the same clusters as they were assigned
when analysis was conducted for the entire
cohort irrespective of IMT status. The
heatmap shows standardized patient-level
proteomic measurements by PAH cluster for
this IMT-free subgroup analysis. Heatmap
columns represent individual patients
(grouped according to consensus clusters),
and each row an assayed protein. Measured
protein MFI is displayed as a color-coded z-
score. Healthy control samples are shown for
reference. [C] Principal component analysis
of PAH cluster proteomic profiles (PC1 vs PC2
scatter plot) that derived from consensus
clustering in the no IMT subgroup.
Subfigures B and C demonstrate that IMT-
free cluster profiles appear similar to those
that were observed in total cohort analysis.

[A]

PC2 (14.6% explained varlanca)

[B]

[C]

@ No immune modulator (n=219)

. Background immune modulator(s) (n=82)

PC1 (36.8% explained variance)

PAH no IMT subgroup (4 proleomic clusters)

Healthy controls

PC2 (15.4% explained variance)

I\ IJIL[III i 'Iil[lp“!l; '.'. | mlm_ﬂl
| |:|||1'l ‘Itli 11;;”" "11'] ol "!: _ .
H“‘ TR f ¥ il 4
.I'Jl'ii.'.'* l. i L A R
ul.m.i A
i T el 1| e I.
.rru I*IIIF 1||['1'H l"||'|!'|I ‘ :.II i | |I |
‘I. -J‘ | Iil'. r‘l il i |
.. | I I L 1| (4] i' '| | !
'H; ”'qHJL | .|. |||‘||Iu| ! l' |I
lJi |J" Wi I||| ‘ ‘! :I -|k-
U o e "‘u dalffha o Mkadd 058 1
Hl it '| LT |
” IJII‘}u 'II!" |'i V'II" ‘Ilnbllluie!l_;_
PAH @ custer1  @cChusterz @ Clusters (@ Clusters Healthy controls ()
.r'.. :: :.: . y

PC1 (36.2% explained variance)

31



Figure XI. Discovery cohort: right heart catheterization hemodynamic profiles by proteomic immune cluster.
Boxplots compare hemodynamic measurements across PAH clusters: [A] mean pulmonary arterial pressure, [B]
pulmonary vascular resistance, [C] cardiac index, and [D] right atrial pressure. Patient-level data is shown by dots,
boxes represent the 25-75% interquartile range (IQR), a bold horizontal line indicates the median, and whiskers
delineate data within 1.5 x IQR bounds. The Kruskal-Wallis test was used to compare each variable across clusters,
and the Dunn’s test was applied for post-hoc pairwise comparisons.
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Figure XII. Discovery cohort: sensitivity analysis of cluster survival accounting for treatment status. Kaplan-Meier
estimates of transplant-free survival are displayed by proteomic immune cluster for treatment naive subjects
(n=123). Cross-tags on survival curves indicate censoring, and the number of patients remaining at risk at each time
point is shown. Transplant-free survival distributions are compared by log-rank test across clusters.
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Figure XIlll. Validation cohort consensus clustering: measuring consensus and determining the optimal number of
clusters (k optima) (k-medoids algorithm, Euclidean distance). [A] Consensus cumulative distribution functions
(CDFs) for each k (from k=2 to k=10). Refer to Online Figure 1IB legend for general overview of CDF plots. Based on
the CDF plot shown, a k=4 optima was identified. The consensus CDF at k=4 has a bimodal appearance, and from
k=4 to k=5 the area under CDF curves does not increase significantly. [B] Heatmap of the consensus matrix for k=4.
The heatmap represents the symmetric consensus matrix, with the same patients as rows and columns. Patients are
grouped by consensus cluster membership, which is specified by the horizontal colored bar above the heatmap.
Pairwise consensus index values are shown and color-coded over a spectrum from 0 (white= never clustered together
across resampling runs) to 1 (dark blue= always clustered together). Perfect cluster assignment consensus across
runs would appear as solid dark blue blocks along the diagonal on a white-only background.
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Figure XIV. Pooled discovery and validation cohort survival analysis. [A] Kaplan-Meier estimates of five-year
survival are displayed by proteomic immune clusters for the combined pool of PAH patients (n=385). [B] Kaplan-
Meier sensitivity analysis according to treatment status in the pooled cohort, where cluster survival estimates are
limited to treatment naive subjects (n=227). Cross-tags on survival curves indicate censoring, and the number of
patients remaining at risk at each time point is shown. Survival distributions are compared across clusters by log-
rank test.
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Figure XV. Discovery cohort: plasma expression of individual cytokines, chemokines, and growth factors for PAH
patients versus healthy controls. Boxplots show the log-transformed batch-adjusted median fluorescence intensity
(MFI) detected for each protein, among PAH patients (red, n=281) and healthy controls (blue, n=88). Horizontal
dashed lines indicate theoretical lower detection limits (two standard deviations above background MFI means).
Patient-level data is shown by dots, boxes represent the 25-75% interquartile range (IQR), bold hortizontal lines
indicate medians, and whiskers delineate data within 1.5 x IQR bounds. The Wilcoxon-ranked sum test was applied
to compare PAH vs controls (displayed p-values are Bonferroni-adjusted to account for multiple testing).
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Figure XV (continued). Discovery cohort: plasma expression of individual cytokines, chemokines, and growth
factors for PAH patients versus healthy controls.
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Figure XV (continued). Discovery cohort: plasma expression of individual cytokines, chemokines, and growth
factors for PAH patients versus healthy controls.
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