Cell Reports, Volume 26

Supplemental Information

Regulation of Intronic Polyadenylation

by PCF11 Impacts mRNA Expression of Long Genes

Ruijia Wang, Dinghai Zheng, Lu Wei, Qingbao Ding, and Bin Tian

SUPPLEMENTARY MATERIALS

Supplementary Tables

GEO sample ID	Sequencing method	Sample description	
GSM3190450	3'READS	Total RNA, proliferation sample, C2C12 cells, replicate 1	
GSM3190451	3'READS	Total RNA, proliferation sample, C2C12 cells, replicate 2	
GSM3190452	3'READS	Total RNA, differentiation, C2C12 cells, replicate 1	
GSM3190453	3'READS	Total RNA, differentiation, C2C12 cells, replicate 2	
GSM3171721	3'READS	4sU labeled RNA, control sample, C2C12 cells, replicate 1	
GSM3171722	3'READS	4sU labeled RNA, control sample, C2C12 cells, replicate 2	
GSM3171723	3'READS	Total RNA, control sample, C2C12 cells, replicate 1	
GSM3171724	3'READS	Total RNA, control sample, C2C12 cells, replicate 2	
GSM3171725	3'READS	4sU labeled RNA, siPcf11 sample, C2C12 cells, replicate 1	
GSM3171726	3'READS	4sU labeled RNA, siPcf11 sample, C2C12 cells, replicate 2	
GSM3171727	3'READS	Total RNA, siPcf11 sample, C2C12 cells, replicate 1	
GSM3171728	3'READS	Total RNA, siPcf11 sample, C2C12 cells, replicate 2	
GSM3171729	3'READS	Total RNA, 4T1 WT cells, replicate 1	
GSM3171730	3'READS	Total RNA, 4T1 WT cells, replicate 2	
GSM3171731	3'READS	Total RNA, 4T1 IPAPcf11-KO cells, replicate 1	
GSM3171732	3'READS	Total RNA, 4T1 IPAPcf11-KO cells, replicate 2	
GSM3506180	3'READS	Total RNA, control sample, NIH3T3 cells, replicate 1	
GSM3506181	3'READS	Total RNA, control sample, NIH3T3 cells, replicate 2	
GSM3506182	3'READS	Total RNA, siPcf11 sample, NIH3T3 cells, replicate 1	
GSM3506183	3'READS	Total RNA, siPcf11 sample, NIH3T3 cells, replicate 2	
GSM3171746	RNA-seq	Total RNA, control sample, 3T3-L1 cells, replicate 1	
GSM3171747	RNA-seq	Total RNA, siPcf11 sample, 3T3-L1 cells, replicate 1	

Table S1. Sequencing data generated in this study, Related to STAR Metho	ods.
--	------

Gene Name (target region)	Purpose	Sequence
Pcf11 (exon 1 and IPA isoform		Forward: 5'-GCTGACCATTCTAGCCGAGGAGAA
intron 1)	expression	Reverse: 5'-GAAGAATAGGAGGCTGCGGG
Pcf11 (exon 1 –	Splicing of introp 1	Forward: 5'-GGAAGAGAATATCTCACTGCCTT
exon2)	Splicing of Introl 1	Reverse: 5'-TGGAAGCTTCTCTGAGGAAGGA
Pcf11 (exon 2 – Cono expression		Forward: 5'-GGAAGAGAATATCTCACTGCCTT
exon3)	Gene expression	Reverse: 5'-GCAGAGGTTTAATAGGCCAAGC
Pcf11 (exon 12 –	Gono expression	Forward: 5'- GCAAAACAGAACCGAGAAAGA
exon14)	Gene expression	Reverse: 5'- TGTTCTTGACAGATTTCACAACTC
Pcf11(exon 15 –	Gene expression	Forward: 5'-ACCATCCATCATGTTATGAAGATTATCA
exon16)	Oene expression	Reverse: 5'-TGCAATTCGTTTTTGACAATGTT
Eaf2	IPA isoform	Forward: 5'-AAACAGGAACCGGAAGTGCAT
1 912	expression	Reverse: 5'-ATACCCCATCACTGTCCCTTG
Fgf2	TPA isoform	Forward: 5'-CTTCACGGAACTCAGCTGCTA
	expression	Reverse: 5'-TAGGGTAGCATACCTTGGCG
Cetf3	TPA isoform	Forward: 5'-ACAAGTGGATGAGCTGATGGAA
03//3	expression	Reverse: 5'-CTGAATCCTCGTTGGGCCTT
Coff3	IPA isoform	Forward: 5'-ATAGACAAAGCACGGAAGACT
03//3	expression	Reverse: 3'-GTGTAAGCTGTAATTGCCATC
СУРН	Gene expression	Forward: 5'-ATGGTCAACCCCACCGTGT
01111	Oene expression	Reverse: 5'-TTCCTGCTGTCTTTGGAACTTTGTC
GAPDH	Gene expression	Forward: 5'-TCACCACCATGGAGAAGGC
GAPDII		Reverse: 5'-GCTAAGCAGTTGGTGGTGCA

Table S2. Real-time PCR primers used in this study, Related to STAR Methods				
Gene Name (target	_			

Purpose	Sequence			
PCR and Sanger sequencing to	Forward: 5'-GGGTATAGGGAATTGGCCCC			
validate IPA site KO	Reverse: 5'-ACTGTGTGGGGGGCAAACTATT			
sgRNA cloning, upstream of	Forward: 5'-CACCGACCGTCTCTAAACAACATAT			
Pcf11 IPA site	Reverse: 5'-AAACATATGTTGTTTAGAGACGGTC			
sgRNA cloning, downstream of	Forward: 5'-CACCGCTGCTTCACAGGCATTCGAC			
Pcf11 IPA site	Reverse: 5'-AAACGTCGAATGCCTGTGAAGCAGC			
Def11 IDA site strength analysis	Forward: 5'-ATATATCTCGAGGCAGAGTGAACCCCTT			
POINT IPA Sile Silengin analysis	Reverse: 5'-CCGGAATTCCACACAACCACAAAAGT			
Pcf11 proximal 3'UTR PAS	Forward: 5'-ATATATCTCGAGCCTTCAGCTATCATTTGG			
strength analysis	Reverse: 5'-CCGGAATTCATCATGTTAAGATTGCTGTTC			
Pcf11 3'UTR distal PAS strength	Forward: 5'-ATATATCTCGAGGGTTTTGATTGAATTAGATGGG			
analysis	Reverse: 5'-CCGGAATTCCTGGGAGTATGGCTCATAACT			
Control (<i>Pcf11</i> intron 1 sequence)	Forward: 5'-ATATATCTCGAGAGTTTTTGAGCACATGTTTCCT			
for PAS strength analysis	Reverse: 5'-CCGGAATTCCAAGTGAAGTCCTTCCATGTAAT			

Table S3. Other primers used in this study, Related to STAR Methods.

Figure S1, Related to Figure 1.

(A) Heatmap of gene expression changes by various KDs. Only significantly regulated genes in at least one KD sample are shown. Genes and samples were clustered based on Pearson Correlation. Replicates were combined.

(B) Correlation of gene expression changes in KD cells and those in C2C12 differentiation. siPcf11 sample is highlighted.

(C) Distribution of $\log_2(4\text{sU/total})$ difference between siPcf11 and siCtrl samples. The data are based on two replicates. GO terms enriched for the top and bottom 10% of genes are indicated. A high $\Delta \log_2(4\text{sU/total})$ value indicates mRNA destabilization, whereas a low value stabilization. **(D)** Correlation between $\Delta \log_2(4\text{sU/total})$ and expression change by *Pcf11* KD.

(E) Two GO term groups (MAM and CP) associated with regulated genes. For each group, the number of upregulated (MAM group) or downregulated genes (CP group) associated with each GO term is indicated, and number of overlap genes between GO terms is indicated on the edge connecting them. Percentage values indicate percent of genes shared with other GO terms in the group.

3'UTR shortened

В

Figure S2, Related to Figure 2.

(A) Summary of regression analysis of different gene features vs. gene expression changes in *Pcf11* KD cells. Expression data are based on 4sU-labeled RNA. Top features are sorted according to individual R^2 . Cumulative R^2 for a feature is based on the feature and all other features with a better individual R^2 . '+', positive correlation; "-", negative correlation.

(B) Correlations among the size of largest intron, gene size and overall intron size. Pearson correlation coefficient (*r*) is indicated.

(C) 3'UTR APA changes in *Pcf11* KD cells (4sU-labeled RNA). The numbers of genes with significantly lengthened 3'UTRs (red) or shortened 3'UTRs (blue) are indicated.

Distance to the nearest *r* = 0.32 neighbor (nt), log₁₀ 6 5 4 3 2 1 0 2 3 5 4 6 Gene size (nt), log₁₀

В

UP: expression upregulated DN: expression downregulated

С

Figure S3, Related to Figure 3.

(A) Enriched motifs around the PAS for upregulated or downregulated genes in short and long gene groups. The most used PAS in the 3'-most exon of each gene based on 3'READS read count is used for analysis.

(B) Correlation between gene size and distance to the nearest neighbor. Pearson correlation coefficient (*r*) is indicated.

(C) Heatmap showing gene expression change (median log₂Ratio, siPcf11 vs. siCtrl) in gene groups based on gene size and distance to the nearest neighbor.

A

Neurogenesis in vitro (from mESC)

В

Neurogenesis *in vitro* (from mESC)

Differentiation days

Figure S4, Related to Figure 4.

(A) Gene expression changes of different gene sets in neurogenesis (*in vitro* differentiation of mouse embryonic stem cells to mature neurons, based on SRP017778).

(B) *Pcf11* expression levels in neurogenesis as in (A).

Α			B PAS
Human Mouse Rat Chicken Zebrafish	GTTTCTGTCTAGTGTAAAACTTGAGTGGTCTGACTCTAATAAATGGTTT AAGTC-ACTTAAAGACTTTTGTTTAAAACACACAACCACAAAAGTAAAAATTCT AAGTC-ACTTAAAGACTTTGTTTAAAACACACAACCACATAAGTAAAAATTCT GTTTAGTGTAAAACTTGAGTGGTCTGCTTTACGATTTAATAAATGGCTC ATAAAGGGATTGGGGGTTAGATTGCTGAGTAATTTTCTATCCTTGC * * * ** *	49 53 53 49 49	pCMV RFP IRES EGPF PAS pRiG
Human Mouse Rat Chicken Zebrafish	TGAAATGTGTGACTGGTATTATAAAATTTGTGAATAAAACATATAAAATATGTATTTGTC TGGAAACAGATTCTACACCTTACAAAGGTAAATAAAAAAGACAAATACATATTTTATA TGGAAACAGATTCTACACCTTACAAAGGTAAATAAAAAGACAAATACATATTTTATA TGGAAACGGATTCTACACCTTACAAAGGTAAATAAAAAGGCAAATACATATTTTTT TGCAATGTGTGGCACTGGTATTATAAAATGTGTAAAAAAGCCATGTGAAATATGTATTTGTC TGCAATGTTAATAAAAGGTATATAAAAAGGCAGAAAGCCATGTGAAATAGCCTTTTGTC ** ** ** ** ** ** ****** ** *****	109 111 111 109 109	Short isoform: AAA Long isoform: AAA
Human Mouse Rat Chicken Zebrafish	TTTTTTATTTA-CCTTTGTAAGGT-GTAGAATCTGTTTCCAAGACTTATTTTAT TGTTTTATTCACAAATTTTATAATACCAGTCACACATTTCAAAACCATTTATTAGAGTCA TGTTTTATTCACAAATTTTATAATACCAGTCACACATTTCAAAACCATTTATTAGAGTCA TTTTTATTTACCATTGTATAGT-GCAGAATTTGTTTCTGAGACCCATTTTGTG TTTATTTCCTA-GTGTATTTTTTTTCTGGTAATACATTTGCTATG	162 171 171 161 152	jg2(Red/Green)
С	Sanger sequencing:		
WT	AACCACCAATATGTTGTTTAGAGCGGTTTC374 ntTTTCCTGTGGAATGCCTGTGAAGCAGCTGG	T	-5
IPA ^{Pcf11} -KO	AACCACCAATA AATGCCTGTGAAGCAGCTGG	·T	No insert IPAAD CITISED PROTING PASE
D		Ε	Pcf11 last exon PASs
Normalized log ₂ Ratio of IPA isoform expression, IPA ^{Pcf11} -KO vs. WT	$ \begin{array}{c} 0.95 \\ 0.75 \\ 0.55 \\ 0.35 \\ 0.15 \\ -0.05 \\ +1 \\ +2 \\ M \\ -2 \\ -1 \\ Intron location \end{array} $	Migration rate (µm/h)	18 12 6 0 wi PR ^{ovin} XO P
F			6 т ***
	Trans-well invasion assayImage: Strain of the st	Invasion index (a.u.)	$ \begin{array}{c} $

Figure S5, Related to Figure 6.

(A) Sequence alignment of the region around the IPA of *Pcf11* in five vertebrate species. Arrow indicates PAS annotated in PolyA_DB.

(B) Top, schematic of pRiG and two APA isoforms expressed (short and long isoforms). Bottom, PAS strength analyzed by log2(red fluorescence signal/green fluorescence signal) or log2(Red/Green). A high log2(Red/Green) value indicates a strong PAS. No insert is pRiG vector only. *Cstf3* IPA-AD is a mutated *Cstf3* IPA site, which is weak. Ctrl-seq is a random sequence from intron 1 of *Pcf11* inserted into pRiG. *Pcf11* proximal and distal PASs are two 3'UTR APA sites in the last exon of *Pcf11*. This result shows that the strength of IPA site is higher than those of PASs in the last exon.

(C) Sanger sequencing validation of the amplified PCR products from IPA^{*Pcf11*}-KO cells. sgRNA target sequences are highlighted in red.

(D) Intron location vs. IPA regulation. +1, +2, M, -2, -1 are first, second, middle, last but one, and last introns, respectively. Error bar is standard error of mean.

(E) Scratch assay analysis of cell migration.

(F) Trans-well invasion assay. Error bars in (E) & (F) are standard error of mean of ten randomly selected areas. ***, P < 0.01 (Wilcoxon test).

Figure S6, Related to Figure 7.

Top GO terms enriched for genes with large introns (top 10%) in several vertebrates. P-value (Fisher's exact test) is based on comparison with other genes in the genome.

Α

В

Figure S7, Related to Figure 7.

(A) RT-qPCR analysis of IPA and TPA isoform expression during C2C12 differentiation.
(B) RT-qPCR analysis of IPA and TPA expression in C2C12 cells treated with U1D oligo to functionally inhibit U1. Both *Pcf11* and *Cstf3* IPA events were analyzed. mU1D, mutant U1D oligo (used as a control).