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1 Contents

This document provides details on the mathematical and numerical methods: model (Sec.
2), data (Sec. 3), merging the phenotype and death data (Sec. 4), system identification with
preliminary analysis (Sec. 5), model testing (Sec. 6), and uncertainty analysis (Sec. 7).

2 Mathematical Model

The mathematical model represents how x ∈ R5, the cell type vector, evolves over time
in response to drug treatment. x1 is the number of K14hi live cells, x2 is the number of
VIMhiK14low live cells, x3 is the number of K19hiVIMlowK14low live cells, x4 is the number
of K19lowVIMlowK14low live cells, and x5 is the number of dead or dying cells. The model
assumes that a live cell can do one of three mutually exclusive actions—divide, transition,
or die—during any 12h interval. The dynamics matrix Aδ ∈ R5×5 dictates the evolution
of the cell type vector x and encodes how often division, transition, and death occur on
average in a cancer cell population following treatment with drug δ. Recall from the main
manuscript that ρi is the division parameter of phenotypic state i, ρij is the transition gain
from phenotypic state i to phenotypic state j, and ρiD is the death gain of phenotypic state i.
The division parameters, transition gains, and death gains are called dynamics parameters.
Each dynamics parameter depends on drug δ. For example, ρ1 = ρ1(δ), ρ34 = ρ34(δ), and
ρ2D = ρ2D(δ). The dynamics matrix Aδ takes the form,

Aδ =


α1 ρ21 ρ31 ρ41 0
ρ12 α2 ρ32 ρ42 0
ρ13 ρ23 α3 ρ43 0
ρ14 ρ24 ρ34 α4 0
ρ1D ρ2D ρ3D ρ4D 1


αi = ρi − ρiD −

∑4
s=1,s 6=i ρis i = 1, . . . , 4.

(1)

For example, α2 = ρ2 − ρ2D − ρ21 − ρ23 − ρ24. Aδ is subject to a set of constraints called A,
which are provided in Table 1. Eq. (1) is derived in [1].

Definition 2.1. The seven constraints listed in Table 1 are denoted A ⊂ R5×5.

Remark. The dynamics matrix Aδ ∈ A has 14 parameters.

Definition 2.2. The first six constraints listed in Table 1 are denoted Apre ⊂ R5×5.
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3 Data for Estimating Aδ

A sample measured at time k of the cell population in well w consists of the number of cells
in each phenotypic state, the number of dying cells, and the number of live or dying cells in
total. The set of numbers of cells in each phenotypic state is the phenotype time series, and
the set of numbers of dying cells and numbers of live or dying cells in total is the death time
series. These data do not readily fit the form of the cell type vector x. The cell type vector
contains the number of live cells in each phenotypic state. The data do not provide the
number of live cells in each phenotypic state or the number of dying cells in each phenotypic
state. The phenotypic state of a given cell and whether that cell is alive or dying could not
be observed simultaneously.

Table 2 provides the number of samples used to estimate the 20 drug-specific dynamics
parameters encoded in Aδ. If instrument errors had not occurred, then 105 samples would
have been available to estimate each Aδ.

4 Merging the Phenotype and Death Data

This section presents how we partitioned the number of cells in a given phenotypic state into
the number of live cells and the number of dying cells in that state for modelling purposes.
We merged the phenotype time series and the death time series in different ways based on
how death could be allocated between two phenotypes, K14hi and K14low. (K14low is the
union of VIMhiK14low, K19hiVIMlowK14low, and K19lowVIMlowK14low.) A small number of
death options were examined to ensure a parsimonious model.

Table 1: Constraints on Aδ (1)

Constraint Rationale
1 Each entry of Aδ is nonnegative. All entries of the cell type vector x are non-

negative for all time.
2 ρi ≥ 1; i ∈ {1, . . . , 4} ρi · xi(k) − xi(k) is the increase in the number of

live cells in phenotypic state i due to replication
on [k, k + 1).

3 ρij ≤ 1; (i, j) ∈ {1, . . . , 4}2, i 6= j Only a portion of live cells in phenotypic state i
at time k can transition to phenotypic state j by
time k + 1.

4 ρiD ≤ 1; i ∈ {1, . . . , 4} Only a portion of live cells in phenotypic state i at
time k can die, or begin to die, by time k + 1.

5 Last column of Aδ is
[0, ..., 0, 1]T ∈ R5

Dead or dying cells accumulate over time and can-
not come back to life.

6 ρi = ρ1; i ∈ {2, . . . , 4} Observations of EdU-positivity suggest similar
rates of cell division for the phenotypic states [2].

7 ρiD = ρ1D; i ∈ {2, . . . , 4} Motivated by preliminary analyses (Sec. 5).
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Table 2: Numbers of available and unavailable samples
Drug DMSO Trametinib BEZ235 Trametinib+BEZ235
Available samples 99 90 93 93
Unavailable samples 6 15 12 12

A (time k, well w)-sample is said to be unavailable if the images of the phenotypic states,
the live or dying cells in total, or the dying cells taken at time k of well w are illegible.

Definition 4.1. Death option 1. Minimal death is allocated to K14hi; maximal death is
allocated to K14low.

Definition 4.2. Death option 2. Death is allocated equally between K14hi and K14low.

Definition 4.3. Death option 3. Minimal death is allocated to K14low; maximal death is
allocated to K14hi.

The cell type vector x = x(k, w; o) for the sample observed at time k in well w under
death option o was computed from the data,

x =


y1(1− φ · γhi)
y2(1− φ · γlow)
y3(1− φ · γlow)
y4(1− φ · γlow)

φ ·
∑4

i=1 yi

 , (2)

where yi = yi(k, w) is the number of cells in phenotypic state i observed from the phenotype
time series, φ = φ(k, w) is the dying fraction observed from the death time series, and
γhi = γhi(k, w; o) and γlow = γlow(k, w; o) are death allocation hyper-parameters (Table 3,
Sec. 4.1).

Definition 4.4. The phenotype time series data and the death time series data merged
together via (2) is called composite data.

4.1 Death Allocation Hyper-parameters

The death allocation hyper-parameters, γhi = γhi(k, w; o) and γlow = γlow(k, w; o), allocate
the death observed at time k in well w among the phenotypic states according to death
option o. The death allocation hyper-parameters are defined implicitly,

dhi = γhi · φ · y1
dlow = γlow · φ ·

∑4
i=2 yi,

(3)

in terms of the number of K14hi dead or dying cells estimated in silico
(
dhi = dhi(k, w)

)
,

the number of K14low dead or dying cells estimated in silico
(
dlow = dlow(k, w)

)
, and the

empirical data
(
yi = yi(k, w) and φ = φ(k, w)

)
; refer to Table 3.
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Next, we state and prove three theoretical results needed to compute the values of γhi

and γlow for a given sample.

Remark. The dying fraction, φ, and the number of cells in phenotypic state i, yi, are positive
for all available samples.

Lemma 4.1. The death allocation hyper-parameters, γhi and γlow, satisfy the equality,∑4
i=1 yi = γhi · y1 + γlow ·

∑4
i=2 yi. (4)

Proof. The number of dead or dying cells can be expressed in two equivalent ways,

# dead or dying cells = φ ·
∑4

i=1 yi

# dead or dying cells = dhi + dlow.
(5)

The first line of (5) comes from the cell type vector (2). The second line of (5) holds because
any dying cell is either in K14hi or K14low but not both.

Using (5) and (3), we have

φ ·
∑4

i=1 yi = dhi + dlow

φ ·
∑4

i=1 yi = γhi · φ · y1 + γlow · φ ·
∑4

i=2 yi.
(6)

Divide the second line of (6) by φ > 0 to obtain (4).

Lemma 4.2. γhi and γlow satisfy the inequalites,

0 ≤ γhi ≤ 1

φ

0 ≤ γlow ≤ 1

φ
.

(7)

Table 3: Notation for Sec. 4

Symbol Definition
yi; i = 1, . . . , 4 yi = yi(k, w) is the number of cells in phenotypic state i observed at time

k in well w from the phenotype time series data.
φ φ = φ(k, w) is the number of dying cells divided by the number of live or

dying cells in total observed at time k in well w from the death time series
data.

γhi γhi = γhi(k, w; o) is the K14hi death allocation hyper-parameter for the
sample observed at time k in well w assuming death option o.

γlow γlow = γlow(k, w; o) is the K14low death allocation hyper-parameter for the
sample observed at time k in well w assuming death option o.

dhi dhi = dhi(k, w; o) is the number of dead or dying cells in K14hi estimated
in silico from the (time k, well w)-sample assuming death option o.

dlow dlow = dlow(k, w; o) is the number of dead or dying cells in K14low estimated
in silico from the (time k, well w)-sample assuming death option o.
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Proof. The number of dead or dying cells in phenotypic state K14low is nonnegative and at
most equal to the total number of cells in K14low,

0 ≤ dlow ≤
∑4

i=2 yi. (8)

Combining (3) and (8) yields,

0 ≤ γlow · φ ·
∑4

i=2 yi ≤
∑4

i=2 yi. (9)

Divide (9) by φ ·
∑4

i=2 yi > 0 to obtain,

0 ≤ γlow ≤ 1

φ
. (10)

Deriving 0 ≤ γhi ≤ 1
φ

is analogous.

The values of the death allocation hyper-parameters were determined for each death
option o and data sample by minimizing the cost function, Jo = Jo(γ

hi, γlow), subject to the
constraints, (4) and (7). The cost functions are,

J1 = γhi − γlow

J2 = |γhi − γlow|
J3 = γlow − γhi.

(11)

We chose (11) because γhi and γlow are proportional to the amount of dead or dying cells in
the phenotypic states, K14hi and K14low, respectively (3). If o = 1, the optimization program
should minimize the amount of death allocated to K14hi and maximize the amount of death
allocated to K14low. So, γhi should be made as small as possible, while γlow should be made
as large as possible, yielding the form of J1 in (11). The logic underlying the form of J3 is
analogous. If o = 2, the optimization program should evenly distribute the amount of death
across the phenotypic states. Thus, the deviation between γhi and γlow should be made as
small as possible, which justifies the form of J2 in (11).

The values of the death allocation hyper-parameters can be determined analytically, as
stated in the following lemma.

Lemma 4.3. The optimal arguments (γ∗hi, γ∗low) of the program,

minimize
γhi,γlow

Jo(γ
hi, γlow) (11)

subject to
∑4

i=1 yi = γhi · y1 + γlow ·
∑4

i=2 yi (4)

0 ≤ γhi ≤ 1

φ
, 0 ≤ γlow ≤ 1

φ
(7)

(12)

are given below.
If o = 1,

γ∗low = min
( y1∑4

i=2 yi
+ 1,

1

φ

)
γ∗hi =

∑4
i=2 yi
y1

(1− γ∗low) + 1.

(13)
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If o = 2,
γ∗low = γ∗hi = 1. (14)

If o = 3,

γ∗hi = min
(∑4

i=2 yi
y1

+ 1,
1

φ

)
γ∗low =

y1∑4
i=2 yi

(1− γ∗hi) + 1.
(15)

The notation above is defined in Table 3, and “min(a, b)” is the minimum of a and b.

Proof. For o = 1, the optimization program (12) aims to minimize γhi and maximize γlow.
The optimal arguments (γ∗hi, γ∗low) reside on the line (4) and within the box (7) in the γhi-
γlow coordinate plane. Line (4) passes through the following two points: a)

(
0, y1∑4

i=2 yi
+ 1
)

and b)
(∑4

i=2 yi
y1
· (1 − 1

φ
) + 1, 1

φ

)
. Point a achieves the lower bound of γhi. Thus, point a is

optimal if its γlow value satisfies (7), namely if y1∑4
i=2 yi

+ 1 ≤ 1
φ
. Otherwise, the optimal value

of γhi is slightly greater than zero, and the optimal value of γlow is its upper bound, 1
φ
; in

other words, point b is optimal. This result is stated concisely in (13). The logic for o = 3
is analogous to that for o = 1. For o = 2, γ∗hi = γ∗low = 1 satisfies the constraints, (4) and
(7), and achieves the minimum cost function value, J2 = 0.

Remark. Eq. (12) is a linear program for o = 1 and o = 3 and has a natural geometric
interpretation (Fig. 1). See [3] for general reference on optimization.

5 System Identification

In the previous section, we showed how to partition the number of cells in a given phenotypic
state into the number of live cells and the number of dying cells in that state. We explained
how this partition can be done in different ways. Next, we will describe how to identify a
dynamics matrix Aδ that fits the data sufficiently well and in the process how to select an
appropriate partition.

We used a numerical system identification approach because Aδ is constrained and be-
cause some samples are missing (Table 1, Table 2). For each drug δ, the system identification
problem is to solve the optimization program,

minimize
A,X

J (A,X;λ, µ, o)

subject to A ∈ A, X ∈ R5×m
+ ,

(16)

for dynamics matrix Aδ ∈ A and optimized data Xδ ∈ R5×m
+ , a 5×m matrix with nonnegative

entries. J is a cost function parametrized by weights (λ, µ) and death option o; m is the
number of samples used in the optimization. Once the values of (λ, µ, o) are chosen, m is

6



γhi

γlow
1

1

1/φ

1/φ

Figure 1: Geometric interpretation of Lemma 4.3. Let (y′1, y
′
2, y
′
3, y
′
4, φ
′) be a data

sample. For illustration purposes, suppose
y′1∑4
i=2 y

′
i

+ 1 > 1
φ′

and
∑4

i=2 y
′
i

y′1
+ 1 < 1

φ′
. The optimal

arguments (γ∗hi, γ∗low) for this sample are marked in the γhi-γlow coordinate plane with a
distinct shape for each death option o: square (o = 1), circle (o = 2), and star (o = 3).

105, the product of the number of time points (7) and the number of wells per time point
(15).

The composite data and the optimized data are distinct. The composite data is com-
puted directly from empirical measurements assuming death option o (2), has holes due to
unavailable samples (Table 2), and is an input to the optimization program (16). The opti-
mized data is an output of the program (16), has less measurement noise than the composite
data, and includes estimates for the unavailable samples.

The cost function J in (16) was designed to accomplish three aims: a) to penalize
process error and measurement error, b) to allow the covariance matrix of process error and
the covariance matrix of measurement error to have unequal magnitudes, and c) to encourage
the identified dynamics parameters to be close to their true (unknown) values. The above
aims, if feasible, would facilitate learning a dynamics matrix, Aδ, that fits the composite
data sufficiently well, where J measures how good the fit is.

The cost function in (16) takes the form,

J (A,X;λ, µ, o) = |A|+ λ · |ProcessError(A,X)|+ µ · |MeasurementError(X; o)|, (17)

such that λ ∈ (0, 1] and µ ∈ (0, 1]. ProcessError(A,X) is a process error metric and depends
on the variables A and X. MeasurementError(X; o) is a measurement error metric, depends
on the variable X, and is parametrized by death option o. |P | denotes the average size of
an entry of the matrix P ; see definition below.

Definition 5.1. If P ∈ Rp×q, then |P | =
√

1
pq

∑
i,j |Pij|2, where Pij is the (i, j)-entry of P .

7



Specifying λ ∈ (0, 1] and µ ∈ (0, 1] in (17) ensures that the size of A is penalized at least
as much as the size of the process error and the size of the measurement error, respectively.
The particular use of λ and µ in (17) induces element-wise shrinkage of A to zero, thereby
reducing estimation error of the dynamics parameters [4][5].

Each column of ProcessError(A,X) in (17) takes the form,

xk+1,w − A · xk,w ∈ R5, (18)

where xk,w ∈ R5
+ is the column of variable X associated with time k and well w.

Remark. The variables A and X are coupled in the cost function (17) because they are
coupled in ProcessError(A,X). Consequently, standard convex optimization methods cannot
be used to solve (16). Instead, the system identification problem will be solved using a
heuristic that approximates (16).

Each column of MeasurementError(X; o) takes the form,

x(k, w; o)− xk,w ∈ R5, (19)

where x(k, w; o) ∈ R5
+ is the composite data sample computed from the (time k, well w)-

observation assuming death option o (2), and xk,w ∈ R5
+ is the (time k, well w)-column of

variable X.

Remark. x(k, w; o) is known and computed using (2), while xk,w is a variable to be optimized
using a program that approximates (16).

To solve (16) approximately, we used a standard algorithm called alternating minimiza-
tion (AM). The algorithm reduces the value of the cost (17) in an iterative fashion by
alternating the role of the optimization variable between A and X. Please see the references
in the methods section of the main manuscript for examples of AM in the literature.

5.1 Preliminary Analysis

The values of (λ, µ, o) in (17) need to be chosen for each drug δ. In preliminary analysis, we
examined many possible values, (λ, µ, o) ∈ S2

pre × {1, 2, 3}, where

Spre = {1, 1

2
,

1

10
,

1

20
,

1

102
,

1

200
,

1

103
,

1

104
,

1

105
}, (20)

and allowed the death gains to be unequal. See Apre ⊂ R5×5 in Def. 2.2.
The data for each drug was split into a training set (∼2/3) and a test set (∼1/3).

The test set contained only available samples to facilitate the calculation of cross-validation
error. Composite training data for each death option o and composite test data for each
death option o were computed (Sec. 4). For each (λ, µ, o) ∈ S2

pre × {1, 2, 3}, a dynamics
matrix Atr

λ,µ,o ∈ Apre was identified on the composite training data for death option o via
alternating minimization with the cost (17) and the weights (λ, µ). Cross-validation error
was computed to determine how well Atr

λ,µ,o fit the composite test data for death option o.

Remark. The cross-validation error metric is |ProcessError(Atr
λ,µ,o, X

te
o )|. Xte

o is the (known)
composite test data matrix for death option o. See (18) and Definition 5.1.
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Cross-validation error versus (λ, µ) for each death option o is provided for each drug in
Fig. 2-Fig. 5. Interestingly, the error changes substantially as λ varies but not as µ or o vary.
In particular, each surface is relatively constant along the µ-axis at any fixed (λ, o). Further,
at any fixed (λ, µ), the cross-validation error is similar among the three death options. So, λ
is more important than µ or o, and the terms affected by λ in the cost function (17) depend
on the dynamics matrix variable A, namely |A| and |ProcessError(A,X)|, not on the death
option o. The majority of terms in the dynamics matrix variable involve transition (1).
Taken together, the results suggest that the data is generally insensitive to the distribution
of death across the phenotypic states due to the more prominent role of phenotypic state
transition.
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Figure 2: DMSO, Cross-validation error versus (λ, µ, o) ∈ S2
pre × {1, 2, 3}.
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Figure 3: Trametinib, Cross-validation error versus (λ, µ, o) ∈ S2
pre × {1, 2, 3}.

5.2 Using the Preliminary Analysis

Our approach to system identification appreciated the insights from the preliminary analysis
to reduce computational cost and overfitting. We set the death option to evenly distributed
death across the phenotypic states (o = 2) because the data did not display a strong pref-
erence for the more restrictive options. λ could take on several values associated with lower
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Figure 4: BEZ235, Cross-validation error versus (λ, µ, o) ∈ S2
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cross-validation error,

S = {1, 1
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}. (21)

The value of µ was set to the value of λ because µ displayed a much lower degree of importance
than λ. Assuming a close relationship between death rates and death distributions, we set
the death gains equal among the phenotypic states; see Def. 2.1.

For each drug δ, cross-validation was performed for λ ∈ S, µ = λ, and o = 2, yield-
ing the chosen weight λ∗δ . Then, the optimized drug-specific dynamics and data matrices
(A∗δ , X

∗
δ ) ∈ A × R5×105

+ were found via alternating minimization with the cost (17) and
(λ, µ, o) = (λ∗δ , λ

∗
δ , 2).

6 Model Testing

For each drug δ, we examined how well the dynamics matrix A∗δ fit to another data set. This
test set consists of a phenotype time series and a death time series with measurements from
4 replicate wells every 12h over 6 time points. The two time series were merged together
assuming evenly distributed death (o = 2), yielding a composite test data set. These test
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samples were fitted to A∗δ ,

x̂(k + 1, w; δ) = A∗δ · x(k, w; δ), (22)

where x is the (time k, well w)-test sample and x̂ is the prediction at the next time step.
Shared initial conditions for x and x̂ were assumed.

7 Uncertainty Analysis

For each drug δ, we studied the variation of the dynamics matrix A∗δ in the presence of
measurement error using the resampling residuals bootstrap proposed by Wu [6], a well-
established algorithm for statistical inference. We present it briefly here. For each sample j,
specify the value s†j of a discrete random variable,

S† =

{
1 with probability 1/2

−1 with probability 1/2
. (23)

Using the value s†j, compute the resample j,

x†j = x̂j + (xj − x̂j) · s†j, (24)

where x̂j ∈ R is the fitted sample and xj ∈ R is the measured sample. The resampling
method (23) was proposed by Davidson and Flachaire [7]. The fitted sample is the entry
of the optimized data X∗δ ∈ R5×105 for cell type i, time k, and well w. The measured
sample is element i of the cell type vector (2) computed with the (time k, well w)-sample
under death option o = 2. The data-generating process (24) assumes that the measurement
errors are homoskedastic (i.e., have constant variance) and are independent across cell types
conditioned on time point and well index.

For each bootstrap iteration b, the residuals were resampled with the optimized data
as the fitted samples and the composite data under death option o = 2 as the measured
samples. The system identification problem was solved on the resampled data, yielding a
bootstrapped model Abδ ∈ A. 95% confidence intervals were computed using the collection
of bootstrapped models {Abδ}120b=1. The procedure was completed for every drug δ.
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