
Reviewers' comments:

Reviewer #1 (Remarks to the Author):

In the manuscript “Origins of fractional control in regulated cell death”, the authors describe an 
elegant statistical model relating cell-to-cell variability to observed survival curves. The proposed 
method allows the authors to assess the importance of individual measured factors, e.g. protein 
abundances, on the observed variability in the binary phenotype. The approach is employed to 
study the response to TRAIL in two cell lines.

The problem of relating molecular and phenotypic data is very important. I congratulate the 
authors to a great contribution to the field. The method, DEPICTIVE, is novel and appealing, 
amongst others, due to its simplicity. The authors present a simulation study as well as a study 
using real experimental data that indicate the robustness of the approach. As fractional data are 
very common in the testing of drug responses, I think that the proposed analysis approach will 
become very valuable. In addition to a statistical assessment, the authors show that it can provide 
mechanistic insights.

Overall, the manuscript is well written and mostly easy to follow. I have only a few minor 
questions and suggestions that should be very easy to address:

1) There are some studies describing fractional data using mechanistic models, e.g. Heinrich et al., 
Nat. Cell Biol., 15(10), 2013 and Kallenberger et al., Sci. Signal., 7(316), 2014. I think it would be 
good to discuss this work. It appears that the existing methods are also rather flexible but more 
complex and do not possess the same beauty and easy applicability.

2) The assumption that the mitochondria abundance is more or less constant seems to be rather 
important for the application. For this reason, I would suggest to improve Supplement Figure 2. In 
B and D, that the high population seems to drops below the control and it is unclear how the 
variability changes. To convince readers that the above assumption is correct, I would suggest to 
depict the full distributions at the individual time points after sorting.
(In additions, the lines shown in D might be removed. The parameterization is unclear and I have 
a hard time imaging that the best fit is shown.

3) The experimental data seem to provide merely information about the CCV in mitochondria 
density. Accordingly, the possibility of DEPICTIVE to select / rank the most important sources 
cannot be exploited. It would have been interesting to see this. One simple possibility would be to 
include forward and side scatter in the experimental data, two parameters which likely to be 
uninformative.

4) In the simulation test shown in Figur 3, x_i seems to be normally distributed. However, in the 
derivation it was stated that in experiments the distribution is more log-normal. It would be 
interesting to run the test in this setting. In this context, I was also wondering why the authors did 
not expand \kappa on page 6 in the Supplement directly with respect to log(x).

5) Supp. p.6: Are the subscript in the equation before Eq. 9 correct or should “m” be “\rho”? For 
the derivation of (17) some additional comments might be valuable.

6) Supp. p.7: I think it would be helpful to explain why the IC20 values was chosen.

7) Supp. Fig. 3 and later: Labeling seems to be inconsistent with text. “\pi()” is used instead of 
“p()”.

8) The mechanistic model presented in the section “Bax concentration dependence on 
mitochondria surface area” possesses several parameters and it is not really clear how well the 



parameters can be estimated from the available data.

In the context of reusability I was wondering whether the authors plan to release some software 
package. This would definitely boost the impact further and would allow other researchers to 
continue along this profitable route

I waive my right to anonymity,
Jan Hasenauer

Reviewer #3 (Remarks to the Author):

Meyer and colleagues study cell-to-cell variability to TRAIL-induced apoptosis in a statistical 
approach. Seemingly overwhelmed by the large body of Bax literature the authors missed a 
number of essential publications altogether. Previously, variable effective concentrations of the 
pro-apoptotic protein Bax at the mitochondria have been shown to determine the fractional cell 
death response (Todt et al., 2013 and Todt et al., 2015) and to correlate with cell survival of 
leukemia patients (Reichenbach et al., 2017). Inhibitors of anti-apoptotic Bcl-2 proteins directly 
inhibit the underlying mechanism of shuttling Bax between mitochondria and cytosol and therefore 
increase the diversity of cellular responses (Edlich et al., 2011 and Schellenberg et al., 2013). The 
approach of the manuscript is certainly interesting and corroborates previous findings.

The authors’ lack of insight into the Bax literature produces also statements like the suggestion 
that active caspase induces Bax accumulation and oligomerization on the mitochondria. This is 
incorrect. Another example is the use of membrane potential-dependent MitoTracker staining and 
their surprise upon loss of the staining during mitochondrial apoptosis (a well-characterized 
phenomenon with well-established alternatives suitable for staining mitochondria in apoptotic 
cells).

Interpreting the data in terms of Bax regulation would imply directly probing for Bax. Without Bax 
measurements on the mitochondria the manuscript suffers from over-interpretation. Under the 
chosen title one would expect to be informed about individual contributions by Bax, Bak and Bok 
or the contribution of death receptor-induced apoptosis by the receptor ligand TRAIL.

In sum, the statistical approach to cell-to-cell variability on Bax regulation presented in this 
manuscript supports a characterized phenomenon but lacks the previously provided mechanistic 
insight. The authors could contribute to the field by applying their method to the question, why 
cells become stress-resistant. Showing stress resistance caused by different concentrations and 
the interplay of different proteins on the mitochondria using this approach and confirming this 
under experimental conditions perhaps together with identifying genetic underpinning would have 
provided a giant leap forward in understanding apoptosis regulation.

Reviewer #4 (Remarks to the Author):

In this work the authors study the relationship between the cell-to-cell variability (CCV) in 
mitochondrial density and the fractional response to TRAIL (inducing apoptosis). They found that 
the cell response to TRAIL is in part dependent on mitochondrial density and that this phenomenon 
is cell-type dependent. Their findings were quantitatively evaluated using a statistical framework 
they developed to measure the impact of CCV on the cell response. The framework comprises a 
parameterization of a cumulative distribution function by fitting it to a Hill function, so the first and 
second moments of the distributions can be obtained. An expression for relative contributions of a 
specific component to total signal is then derived; with that they quantified the respective role of 



mitochondrial density on TRAIL response variability in Jurkat, MDA-MB-231 and HeLa cells. Using a 
coarse-grained model of apoptosis, they suggest a general mechanism implicating variable 
abundance of Bcl-2 family proteins at the mitochondria membrane.

The statistical approach would gain greatly if substantiated with other CCV sources within 
apoptosis signaling and comparisons/references to current statistical approaches used in this 
context.

An interesting observation is that mitochondrial density, not mass, is important; this could 
definitely mark a difference with the previous findings reported in HeLa cells (Márquez-Jurado et 
al. 2018), if these two metrics were comparatively assessed in the present study.

Major comments:

1. There is a misconception regarding the use of cycloheximide in Spencer’s study (Spencer et al. 
2009), which unfortunately diminishes the rational for the present study, especially when 
compared to the similar findings reported in Nature Communications this year (Márquez-Jurado et 
al. 2018). Cycloheximide inhibits de novo protein translation, so it prevents the de novo protein 
expression differences, but locks in the already existing differences in protein content between 
cells (it does not remove these differences). In addition, it does not inhibit protein degradation and 
its differences between cells. Therefore, the “temporal fluctuations in protein abundance” (li. 66) 
are still prevalent in cells treated with cycloheximide. And so, the remaining and minor fraction of 
unexplained depreciation in time of death correlation between sister cells is likely to be due to 
differences in key protein levels (see (Gaudet et al. 2012)). A very valuable experiment here would 
be to use the proposed statistical framework to evaluate and compare the other sources of CCV, 
including caspase-8 noise, etc…

2. The HeLa cells have been shown sensitive to TRAIL in other studies. The reported IC50 with the 
same HeLa cells and with the same TRAIL is slightly above 63ng/ml in Marquez-Jurado study 
(Márquez-Jurado et al. 2018) versus more than 300ng/ml in the present study. A possible 
difference is the apoptotic assay being used. It would be good to clarify this point in order to 
strengthen the findings made in MDA-MB-231 and Jurkat cells using the same apoptotic assay.

Minor comments:

1. line 1: the title should be more focused on the actual findings.
2. li 24: “has yet to be determined” should read “is still under investigation”: the (Márquez-Jurado 
et al. 2018) paper is one example.
3. li 30, 31: “we demonstrate that […] may increase” should read “our study suggests that […] 
may increase”.
4. li 62-67: should be re-written according to major comment #1
5. li 64 : “cyclohexamide” should read “cycloheximide”
6. li 89: “shared no MitoTracker population”. Fig 1B suggests that it does share some fraction…
7. li 294: “measuring […] regardless of TRAIL dose”. The cited study actually measures “as a 
function of” not “regardless of” TRAIL dose, but shows that it is independent.
8. li 313: “Conversely HeLa cells showed no mitochondrial density dependence”. Jacob et al. study 
(Jacob et al. 2016) strongly suggests that the mitochondrial density is correlated to cell death in 
HeLa cells, and Marquez-Jurado (Márquez-Jurado et al. 2018) shows that mitochondrial mass is 
correlated to cell death in HeLa cells. This difference should be discussed.
9. Supplementary notes: the parameters r, gamma and mu are fitted to qualitatively reproduce 
observations from Albeck’s study (Albeck et al. 2008), which does not correspond well with the 
experimental conditions described by the authors in Jurkat and MDA-MB-231 cells.
10. General: The novelty of their approach should be discussed and evaluated with other methods 



to parametrize and compare distributions.
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All changes from the previous version are indicated in blue in the manuscript. Supplemental 
information was re-written. 
 
Reviewer 1 
The problem of relating molecular and phenotypic data is very important. I congratulate the 
authors to a great contribution to the field. The method, DEPICTIVE, is novel and appealing, 
amongst others, due to its simplicity. 
We thank the reviewer for his enthusiasm in our work.   
 
There are some studies describing fractional data using mechanistic models, e.g. Heinrich et al., 
Nat. Cell Biol., 15(10), 2013 and Kallenberger et al., Sci. Signal., 7(316), 2014. I think it would 
be good to discuss this work. It appears that the existing methods are also rather flexible but 
more complex and do not possess the same beauty and easy applicability. 
We thank the reviewer for indicating these references, we now briefly discussed other 
approaches for describing fractional data as follows: 
 
“Also, previous methods have been developed to quantify how non-genetic CCV of protein 
levels influence the fractional responses of cell fate decision in cell populations during mitotic 
checkpoint signaling [Heinrich2013] and apoptosis [Kallenberger2014], but none takes 
advantage of the information available in a full dose response curve to perturbations.” 
 
The assumption that the mitochondria abundance is more or less constant seems to be rather 
important for the application. For this reason, I would suggest to improve Supplement Figure 2. 
In B and D, that the high population seems to drops below the control and it is unclear how the 
variability changes. To convince readers that the above assumption is correct, I would suggest 
to depict the full distributions at the individual time points after sorting.(In additions, the lines 
shown in D might be removed. The parameterization is unclear and I have a hard time imaging 
that the best fit is shown.)  
 
Thank you for this important criticism regarding the evidence supporting a foundational 
assumption in our manuscript. To address this concern we have completely reworked 
Supplemental Note 2.  First, we removed the single cell sorting experiments and instead present 
the average mitochondria decay dynamics.  Second, we have included an entirely new study 
dedicated to measuring the correlation time scale of mitochondria in single cells. In short, we 
find the following:  
First, we found that mitochondria degradation on average is slow relative to the time scale of our 
experiments.  Specifically, we find that for at a minimum of six hours, the average abundance of 
mitochondria remains unchanged (our experiment is performed at four hours). Only after 25 
hours, 50% of the mitochondria signal has degraded. Here is one panel from Supp. Fig.2 



Second, we measured an approximate correlation time-scale of the stochastic process 
responsible for mitochondria production and degradation. In this experiment we label 
mitochondria with two spectrally distinct labels, l1 (Mitotracker Green) and l2 (Mitotracker Red), 
at different times.  As such, any mitochondria present at time t0 will be labeled with l1, and at 
time t1 = t0 + τ these original mitochondria as well as any newly generated mitochondria will be 
labeled with l2.   In consequence, the correlation between l1 and l2 for different values of τ will be 
informative to the time-scale of the stochastic process responsible for generating and degrading 
mitochondria.  In short, we found that the correlation between l1 and l2 marginally decays by 
τ=11 hours and requires approximately 24 hours to fully decorrelate. 
Here is one panel from Supp. Fig.3: 

  
We feel that together the average dynamics and the correlation experiments support our 
assumption that mitochondria abundance does not change significantly over the time-scale of 
our dose response experiments.  We thank the reviewer for his recommendations, and for 
motivating us to clarify this important point.   
 

The experimental data seem to provide merely information about the CCV in mitochondria 
density. Accordingly, the possibility of DEPICTIVE to select / rank the most important sources 
cannot be exploited. It would have been interesting to see this. One simple possibility would be 
to include forward and side scatter in the experimental data, two parameters which likely to be 
uninformative. 
 
Indeed, showing our DEPICTIVE analysis on high dimensional single cell data would be a great 
demonstration of the methodology.  We thank the reviewer for his insight into using FSC-A and 
SSC-A channels for this purpose, as we have already collected these single cell measurements 
and expect that their corresponding variance explained is low. To demonstrate this we: 
 

1. Generalized the DEPICTIVE description in Supplementary Note 3 for analysis of high 
dimensional single cell data, 

2. Updated our DEPICTIVE python package for easy high dimensional analysis,  
3. Re-analyzed all of our experimental results and present mitochondria density and SSC-A 

density results for each experiment in supplementary figures 5-10 
a. Note that in the main-text Figure 1 we showed that FSC-A and MitoTracker 

measurements were correlated.  Consequently, we introduced “\rho”, the 
mitochondria density, as our variable of interest.  For consistency we applied 
DEPICTIVE analysis to SSC-A / FSC-A single cell measurement and omitted 
analysis of FSC-A channel alone. 



4. Updated our discussion of the calculation of variance explained in Supplementary Note 
3.2.1, and 

5. Created Supplementary Tables 1 to 5, that explicitly shows the variance explained by 
each observable for each experiment for simple comparative analysis. 

 
We thank the reviewer for his careful reading of our manuscript and his insightful and 
constructive recommendations for its improvement. 
 
 

In the simulation test shown in Figure 3, x_i seems to be normally distributed. However, in the 
derivation it was stated that in experiments the distribution is more log-normal. It would be 
interesting to run the test in this setting. In this context, I was also wondering why the authors 
did not expand \kappa on page 6 in the Supplement directly with respect to log(x). 
 
We now clarified in the Figure 3 legend and Supplementary Note 3.3.4 that the simulated 
variables represent the natural logarithm of abundances of each biological constituent.  
 
Also, the reviewer raises an interesting question when asking whether we should have 
expanded κ as expressed on Page 6 of the supplement, and copied below, 

     Eq. 1 
in terms of the log as opposed to linear variable.  Our rationale of expanding in terms of the 
linear variables are two fold. 
 
First, we expand Eq. 1 in terms of the linear variables on account that we understand the 
apoptotic signaling pathway using mass-action chemical kinetics.  Formally, these equations are 
constructed from the products of the linear scale variables, and consequently we assume that 
the function g is well behaved in terms of the linear scale molecular abundances.  Moreover, the 
application of mass-action chemical kinetics is not without precedent.  Huang and Ferrell’s 
seminal (Huang and Ferrell, PNAS 1996) work demonstrated that mass-action kinetic models 
could predict the response of the MAPK pathway in Xenopus extracts, and ever since these 
models have been successfully applied in studying the apoptotic response [Albeck et al. PLoS 
Biology 2008, Spencer et al. Nature 2009], Cancer research [Bouhaddou et al. PLoS Comp Bio 
2018], etc.  
 
Our second reason for expanding Eq. 1 in terms of the linear variables is out of mathematical 
transparency.  To see this, consider the higher order terms of the expansion in Eq. 1 with 
respect to the ith molecular species and for simplicity let g’ represent the first derivative with 
respect to the log variable, g’’ the second, etc., 
 

which we simplify, 
 

  Eq. 2 
 
Then if we were to expand Eq. 1 in terms of the log, 



 

               Eq. 3 
 
In our manuscript we assume that the fluctuations of molecular components are small with 
respect to the mean abundances (over a 4 hour time course in a single cell).  Under such a 
condition, it is easy to see from Eq. 2 that truncating the series to first order is appropriate, while 
more work is required to truncate the series in Eq 3. 
 
In conclusion, we hope that the reviewer appreciates our reasoning behind our formal 
expansion of the single cell sensitivities. 
 
 

Supp. p.6: Are the subscript in the equation before Eq. 9 correct or should “m” be “\rho”? For the 
derivation of (17) some additional comments might be valuable. 
Thank you for informing us of our error, indeed the subscripts in the equation prior to Eq. 9 were 
mistakenly set to “m” as opposed to “\rho”.  We hope that this error did not cause too much 
confusion in your original assessment of our manuscript.   
 
As noted in our response regarding the use of side-scatter measurements to test our method, 
we have rewritten these sections to be more general.   

1. Now, when discussing the variance of single cell sensitivities attributable to a single 
component, we no longer refer to “\rho” but component “j” and the corresponding 
random variable modeling its abundance among single cells “x_j”. 

2. In the development of the single cell dose response we refer to a set of observed 
components.  The corresponding values to this observed set are the coefficients 
encoded in a column kx , the log-scaled variances are now a covariance matrix C, and 
the Hill coefficient nx. 

We hope that this new formulation not only error free, but more transparent in terms of applying 
to new experimental measurements.  
We also detailed in Supplementary Note 3.3 the derivation of the equations for fitting the Hill 
model. 
 
Supp. p.7: I think it would be helpful to explain why the IC20 values was chosen. 
 
This threshold was chosen due to the variability in mitochondria staining across samples. With 
the new approach we now use IC15 instead. We added the following explanation to the 
supplement: 
 
“We chose the IC15 due to the variability in mitochondria staining across samples. With this 
approximate joint distribution we are able to apply our fitting protocol.”  
 
 
Supp. Fig. 3 and later: Labeling seems to be inconsistent with text. “\pi()” is used instead of 
“p()”. 
We thank the reviewer for finding this source of confusion for the reader.  As such, we have 
made the labels in figures consistent with those of the main-text.   
 



The mechanistic model presented in the section “Bax concentration dependence on 
mitochondria surface area” possesses several parameters and it is not really clear how well the 
parameters can be estimated from the available data. 
 
We thank the reviewer for identifying this important point, as it is often the case in mechanistic 
biological modeling that the number of model parameters far exceed that which can be inferred 
from the available data.  Indeed, our mechanistically inspired coarse-grained model is not an 
exception, and our approach to this challenge is multifaceted.  First, we make specific and 
physically inspired approximations allowing us to group parameters and unknowns into a 
smaller set of meta-parameters and express variables as dimensionless entities.  This strategy 
allowed us to reduce the original 19 kinetic parameters to 11 meta parameters.  In addition, we 
reduce the dynamic equations of the four distinct proteins - initiator caspase, effector caspase, 
Bax/Bak and Bcl-2 - and the distinct k-mers of Bax/Bak on the mitochondria surface to one 
dynamic variable and one algebraic variable.  Next, we perform semi-quantitative analysis to 
match the non-linear dynamic properties perceptible in bifurcation diagrams to the phenomena 
observed in our single cell measurements.  Lastly, is to infer a subset of parameters from pre-
existing single-cell temporal measurements of initiator and effector caspase activity.   
 
In terms of parameter inference from data we infer four meta-parameters from the single cell 
temporal measurements originally cited in Albeck et al.  These parameters are “yT” the effective 
total amount of initiator caspase (IC), “r” the effective rate of spontaneous generation of activate 
initiator caspase, “μ” the effective positive feedback local to the receptor and modeled as an 
autocatalytic reaction, and “γ” the effective positive feedback from the effector caspase.  First, 
we assume that the dynamics of the IC signal in the normalized temporal measurements 
becomes stationary after MOMP on account that all the IC molecules have been activated.  In 
consequence we estimate yT by taking the average IC measured in each cell at the last time 
point of the series.  We then infer the remaining three parameters by fitting our dynamic model 
to the temporal measurements.   
 
Indeed, even in this relatively simple case inferred parameters of biologically inspired nonlinear 
dynamic models can be difficult to estimate and in some cases lead to spurious results.  Upon 
review, we found that the profile likelihood, as documented in Raue et al., to be a good strategy 
for estimating parameter confidence intervals, and determining whether our reported values 
represent one of several possible solutions or their uncertainty is so large that our results are 
meaningless. 
 
We have appended Supplemental Note 6.4 titled “Inferring dynamic model parameters” with our 
results and display them below for your convenience.   The corresponding profile likelihood 
confirmed that the reported parameters are optimal and unique on the interval 5 times above 
and below their optimal value.  Moreover, from these profile likelihoods we could easily compute 
a 95% confidence interval for parameters γ and μ, but for r could only establish an upper-
bound.  While the Δχ2 for values of r below the optimal value of r never reaches the threshold 
required for 95% confidence, it is bounded by zero as negative parameter values of our model 
are unphysical.  In consequence, our estimation of these parameters seems reasonable for the 
application.  



 
 
 

In the context of reusability I was wondering whether the authors plan to release some software 
package. This would definitely boost the impact further and would allow other researchers to 
continue along this profitable route 
 
Yes, we have developed a python package for both the mechanistic mitochondria simulations 
and our DEPICTIVE strategy for estimating the phenotypic variance explained by biological 
constituents.  We plan to release the software pending acceptance and publication of our 
manuscript. 
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Reviewer 3 
Meyer and colleagues study cell-to-cell variability to TRAIL-induced apoptosis in a statistical 
approach. Seemingly overwhelmed by the large body of Bax literature the authors missed a 
number of essential publications altogether.  
 
To be sure, we first want to clarify that the main goal of this manuscript was not to exhaustively 
describe and model the extensive amount of literature regarding apoptosis, but to develop a 
coarse grained dynamic model to help interpret the sources of cell to cell variability in cell death. 
We tried to be careful citing adequate articles, indeed with shortcomings. For the particular case 
of Bax/Bak retro-translocation, we thank the reviewer for indicating the important phenomenon 
now cited in the manuscript. Given that our simplified mechanistic model assumes that 
mitochondria have only one membrane and the reactions are assumed to be at equilibrium, we 
consider that the specific retro-translocation caused by Bcl-xL is accounted for when we 
consider the equilibrium between cytoplasmic and mitochondrial Bax/Bak states (see also eq. 
21 in the supplementary materials). 
 
Previously, variable effective concentrations of the pro-apoptotic protein Bax at the mitochondria 
have been shown to determine the fractional cell death response (Todt et al., 2013 and Todt et 
al., 2015) and to correlate with cell survival of leukemia patients (Reichenbach et al., 2017).  
  
Although previous studies suggested that Bax/Bak accumulation at mitochondria leads to an 
increased predisposition to death by apoptosis [Todt et al], the interpretation of our results is 
that surviving cells with higher mitochondria density effectively dilute the concentration of 
mitochondria-associated Bax/Bak, thus affecting the proapoptotic activity of Bax/Bak localized at 
the mitochondria. We now provide further evidence that our interpretation is correct as surviving 
cells with higher mitochondria density levels do not have lower Bak levels as might be expected 
(see below for a full description of experiments in Supp. Fig. 15 and 16). 
 
Inhibitors of anti-apoptotic Bcl-2 proteins directly inhibit the underlying mechanism of shuttling 
Bax between mitochondria and cytosol and therefore increase the diversity of cellular responses 
(Edlich et al., 2011 and Schellenberg et al., 2013). The approach of the manuscript is certainly 
interesting and corroborates previous findings. 
 
We are glad that this Reviewer finds our results interesting, and we think that our observations 
regarding the combination of TRAIL and ABT263 not only corroborate previous findings, but 
also quantitatively explain the unmasking of the mitochondrial-density dependence in MDA-
MB231 cells survival, already present in Jurkat cells and altogether absent in HeLa cells. This 
shows that such combination can have different effects in different cell lines (see Figure 5). Our 
interpretation for this effect is in line with what this referee suggests in that different 
combinations of ‘BH3-only’ proteins lead to differences in the effects of their interactions with 
Bax/Bak that can lead to changes in their localization and the live/dead outcome in different cell 
lines. You can see this implemented in the fact that the main difference between the Jurkat and 
MDA-MB231 cell mathematical models is a decrease in the binding affinity between Bcl2 and 
Bax/Bak (see Supp. Table 6). In support of these results, we have added new supplemental 
data to the manuscript. Supplemental Figure 14 (see below) shows Western immunoblots of 
whole cell lysates showing that Bax and Bak are predominantly expressed in MDA-MB231 cells, 
while only Bak is present in Jurkat (also previously observed in [Brimmel 1998]). Our data 
further suggests that Bcl-2 is mostly expressed in Jurkat cells, while Bcl-xL is the main anti-
apoptotic Bcl-2-family member in MDA-MB231 cells.  
Here is Supp. Fig.14:  



 

 
The authors’ lack of insight into the Bax literature produces also statements like the suggestion 
that active caspase induces Bax accumulation and oligomerization on the mitochondria. This is 
incorrect.  
 
We again apologize for taking too many shortcuts when describing apoptosis and appreciate 
this knowledgeable comment from the Reviewer and modified the text to reflect a more detailed 
mechanistic view of TRAIL-induced apoptosis, in line with established literature. The revised 
section of the manuscript is pasted below for convenience:  
 
“During extrinsic apoptosis, TRAIL stimulates cell death by binding to its cognate death 
receptors on the cell surface forming a complex that activates Caspase 8 (Figure 1A), the so-
called initiator caspase (IC). Active IC activates pro-apoptotic BH3-only proteins, which, directly 
or indirectly, activate pro-apoptotic Bcl-2 family proteins Bax/Bak. Active Bax/Bak can commit a 
cell to apoptosis by translocating from the cytosol to the outer mitochondrial membrane where 
they oligomerize and form pores [22, 23], which allow for the diffusion of pro-apoptotic 
molecules from the intermembrane space of the mitochondria into the cytosol [24, 25]. The pro-
apoptotic activities of Bax/Bak are counteracted by pro-survival Bcl-2 proteins such as Bcl-xL, 
which constantly retro-translocates Bax/Bak from the mitochondria back into the cytosol [Edlich 
et al., 2011 and Schellenberg et al., 2013], thus protecting cells from committing to apoptosis by 
shifting relative subcellular localization of Bax/Bak [Todt et al 2013, Todt et al 2015]. “ 
 
Another example is the use of membrane potential-dependent MitoTracker staining and their 
surprise upon loss of the staining during mitochondrial apoptosis (a well-characterized 
phenomenon with well-established alternatives suitable for staining mitochondria in apoptotic 
cells). 
 It is unfortunate that the Reviewer interprets as surprise our decision to explicitly state that 
MitoTracker deep red is a voltage dependent dye. We did it so that readers not familiarized with 



the field, and given the wide audience of this publication, may understand the rationale for our 
analysis, heavily dependent on this indeed well-documented fact. We are also familiar with 
alternatives (see usage of voltage-independent MitoTracker green in Supp. Note 2), but given 
the importance of obtaining a robust measure of mitochondria density, we decided not to use 
the voltage-independent MitoTracker dyes.  
 
Interpreting the data in terms of Bax regulation would imply directly probing for Bax. Without Bax 
measurements on the mitochondria the manuscript suffers from over-interpretation.  
We agree with the Reviewer that probing for Bax/Bak in cells exposed to different 
concentrations of TRAIL would strengthen our interpretation of the mitochondrial effect we 
observed. To address the Reviewer’s point, we performed additional experiments that now 
provide in both cell lines concomitant measurements of mitochondria levels by FACS and 
relative Bak levels in the remaining fraction of surviving cells measured by Western blot (see 
Supp. Fig. 15 and 16). We chose to measure Bak which is expressed in both MDA-MDB231 
and Jurkat cells (see Supp. Fig. 14) and also because Bak localization correlates with 
mitochondria-associated Bax [Reichenbach et al 2017, Korsmeyer et al 2000].   
 
Briefly, cells were stained with MitoTracker, followed by treatment with 7 doses of TRAIL for 4h. 
Then, cells were stained with fluorescently labeled Annexin V, and the population of live cells 
were sorted by FACS and collected to generate whole cell lysates for Western blot. MitoTracker 
levels measured during FACS collection were used to compute the probability distribution of 
mitochondria density for each dose of TRAIL, and Western blots were probed for Bak levels and 
beta Actin, which was used as control to normalize Bak signal across all samples [Supp. Fig. 
15]. In order to make a meaningful comparison of the relative contributions of mitochondria and 
Bak levels to cell death, we computed the averages of mitochondria density in surviving cells 
measured by FACS and plotted them alongside with the average signal of normalized Bak/Actin 
levels measured by Western blot, for each fraction of cells alive caused by increasing doses of 
TRAIL (see Supp. Fig.15 and 16).  
Here 2 panels from Supp. Fig.15 for Jurkat cells: 

 
In line with our results, cells that survived exposure to increasing doses of TRAIL exhibited 
increasingly higher mitochondria density (see Supp. Fig.15 and 16). If as we argue, 
mitochondrial density variability is a significant driver of stochastic cell survival, the average 
signal of normalized Bak would be depicted as a flat line across all TRAIL doses. In contrast, if 
Bak was the main factor driving fractional killing, then we would expect surviving cells to show 
decreased levels of Bak. We found that relative Bak levels were flat for both Jurkat and MDA-
MDB-231 cells (see Supp. Fig.15 and 16) except for a highly variable increase at higher doses 
of TRAIL for Jurkat cells. In summary, we think that mitochondria density being the main driver 



for cell survival not only corroborates but is complementary to the results by Todt et al where 
Bax/Bak mitochondrial localization is the main driver for cell death. 
Here are 2 panels from Supp. Fig.16 for MDA-MDB-231 cells: 

 
 
Under the chosen title one would expect to be informed about individual contributions by Bax, 
Bak and Bok or the contribution of death receptor-induced apoptosis by the receptor ligand 
TRAIL. 
We thank the reviewer for this comment and agree that controlling for the role of pro-apoptotic 
Bcl-2 proteins is necessary as our method computes the mitochondria-explained variance by 
averaging over each other contributing factor, hence our measurements represent an upper 
bound, given that correlations in proteins and mitochondria density will diminish the unique 
influence of mitochondria (see next reply for further discussion on this point). We already 
described on the previous paragraph measurements regarding the influence of Bax/Bak. 
Furthermore, to our knowledge, the existing Bok literature suggests that expression of Bok is 
tissue-specific, mostly limited to testis, ovary, and uterus [Hsu et al 1997]. In contrast, 
expression of Bax and Bak is known to be widespread in mammalian tissues [Wei et al 
2001].  Bok can directly cause MOMP upon dysregulation of ER-associated degradation 
pathway components, and Bok stability is regulated by the ERAD pathway rather than BCL-2 
family members [Llambi et al 2016]. Previous studies suggest that the role of Bok in cell death is 
mostly limited to ER-related stress, where it is targeted for degradation by the proteasome. 
Thus, studying the contribution of Bok to cell death by apoptosis is beyond the scope of this 
manuscript, as is the death receptor whose contribution has already been studied by Gaudet et 
al. Because we believe to have proven that mitochondrial density is a large contributor to cell to 
cell variability in cell survival we thought the current title truly reflected that. However, to address 
the Reviewer’s concern, we could modify the title to “Mitochondrial origins of fractional control in 
regulated cell death”.  
 

In sum, the statistical approach to cell-to-cell variability on Bax regulation presented in this 
manuscript supports a characterized phenomenon but lacks the previously provided 
mechanistic insight. 
 
We thank the Reviewer for this insightful comment and provide further clarification on our 
perspective. We understand the importance of the detailed mechanisms highlighted by the 
Reviewer about the sequence of all the individual steps taking place during apoptosis. Previous 
studies have captured the high variability of the outcome of TRAIL treatment by measuring the 
concentrations of multiple proteins in the apoptosis pathway and modeling each individual step 
and interplay between them [Albeck et al 2008, Marquez-Jurado et al 2018]. However, these 



approaches failed to identify one single factor driving the divergence in cell fate and attributed 
the variability in cell death to cell-to-cell differences in the levels of multiple individual proteins in 
the pathway.  
To overcome these challenges, we developed a new method, namely DEPICTIVE, that 
bypasses the need for measurements of multiple individual proteins in the apoptosis pathway 
machinery, and still pinpoints some of the high variability in fractional killing associated with a 
single source, the mitochondrial density. In our model we assessed the initial state of a cell in 
the live/death phase plane based upon one single parameter, the mitochondria density, and 
predicted if and when that cell transitioned to another state (from live to dead) in response to 
TRAIL. Thus, we believe that our innovative systematic and quantitative approach is 
complementary to existing models, provides a conceptual advance to the understanding of CCV 
in regulated cell death through DEPICTIVE, and can be applied to any other discrete system in 
the absence of mechanistic insights. 
 
The authors could contribute to the field by applying their method to the question, why cells 
become stress-resistant. Showing stress resistance caused by different concentrations and the 
interplay of different proteins on the mitochondria using this approach and confirming this under 
experimental conditions perhaps together with identifying genetic underpinning would have 
provided a giant leap forward in understanding apoptosis regulation. 
 
We agree that the Reviewer brings up a highly interesting question hovering the cell death field, 
and we believe that our method could potentially contribute significantly to identifying and 
ranking the sources of variability at play when cells become stress-resistant. Studies by 
Flusberg et al and others have tackled this question and even attempted to provide an 
interpretation based on gene expression data that suggested that sustained activation of innate 
immunity factors might correlate with emergence of drug resistance. However, we believe 
further exploration of that question is beyond the scope of our current manuscript. 
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Reviewer 4 
The statistical approach would gain greatly if substantiated with other CCV sources within 
apoptosis signaling and comparisons/references to current statistical approaches used in this 
context.  
We thank the Reviewer for this suggestion. Previous studies have captured the high variability 
of the outcome of TRAIL treatment by measuring the concentrations of multiple proteins in the 
apoptosis pathway and modeling multiple individual steps leading to apoptosis [Albeck et al 
2008, Marquez-Jurado et al 2018]. However, those approaches failed to identify one single 
factor driving cell fate and attributed the variability in cell death to cell-to-cell differences in the 
levels of multiple individual proteins in the pathway. In this manuscript we have found that 
mitochondria density is a single factor that explains by itself more than 30% of cell-to-cell 
variability to TRAIL-induced apoptosis. Probing for the other sources of CCV that this reviewer 
suggests is equivalent to performing a negative control and thus we have added new supporting 
evidence to our manuscript showing that when applying DEPICTIVE to experimental 
measurements of FACS Side Scatter values (SSC), the variance explained is as expected 
minimal (see Supplementary Table 1 and also view response to Reviewer 1).  
 

An interesting observation is that mitochondrial density, not mass, is important; this could 
definitely mark a difference with the previous findings reported in HeLa cells (Márquez-Jurado et 
al. 2018), if these two metrics were comparatively assessed in the present study.  



As insightfully observed by the Reviewer, Marquez-Jurado et al interpret fractional killing as a 
function of mitotracker mass, we initially performed our analysis using mitochondrial mass but 
given that mass and cell size are correlated ~0.5 (see Fig.1D & G), we preferred to exclude 
effects due to cell size and used mitochondrial density instead. Still, given the relatively high 
correlation between cell size and mitochondrial mass, the effect we observe in Jurkat and MDA-
MB-231 cells would not be reversed to match Marquez-Jurado et al observations in HeLa cells if 
these were interchanged. Indeed, our interpretation is that mitochondrial-associated Bax/Bak 
molecules also have a lower likelihood to form pores on a larger mitochondria surface area 
which we think is proportional to mitochondrial density, not mass, exchanging mass and density 
does not invert its tendency. However, it is possible that Marquez-Jurado et al observations 
could be highly modified when considering mitochondrial density and not mass given that it is 
known that gene expression levels can change with cell size (see below for a full discussion 
about the Marquez-Jurado et al article).  
 
Major comments 
There is a misconception regarding the use of cycloheximide in Spencer’s study (Spencer et al. 
2009), which unfortunately diminishes the rationale for the present study, especially when 
compared to the similar findings reported in Nature Communications this year (Márquez-Jurado 
et al. 2018). Cycloheximide inhibits de novo protein translation, so it prevents the de novo 
protein expression differences, but locks in the already existing differences in protein content 
between cells (it does not remove these differences). In addition, it does not inhibit protein 
degradation and its differences between cells. Therefore, the “temporal fluctuations in protein 
abundance” (li. 66) are still prevalent in cells treated with cycloheximide. And so, the remaining 
and minor fraction of unexplained depreciation in time of death correlation between sister cells 
is likely to be due to differences in key protein levels (see (Gaudet et al. 2012)). A very valuable 
experiment here would be to use the proposed statistical framework to evaluate and compare 
the other sources of CCV, including caspase-8 noise, etc… 
 
We don’t think our interpretation of the decay in correlation between sister cells described by 
Spencer et al. is a crucial point of our manuscript as we use it only as a minor argument when 
discussing the results of Marquez-Jurado et al. Indeed, we came to the conclusion that 
Marquez-Jurado et al are measuring a different phenomenon, namely mitochondrial content in 
HeLa cells that died. If this reviewer still thinks this is an important point we are willing to edit out 
this paragraph.  
 
The HeLa cells have been shown sensitive to TRAIL in other studies. The reported IC50 with 
the same HeLa cells and with the same TRAIL is slightly above 63ng/ml in Marquez-Jurado 
study (Márquez-Jurado et al. 2018) versus more than 300ng/ml in the present study. A possible 
difference is the apoptotic assay being used. It would be good to clarify this point in order to 
strengthen the findings made in MDA-MB-231 and Jurkat cells using the same apoptotic assay. 
 
We thank the Reviewer for this comment and insightful suggestion and now we provide further 
clarification on our perspective (also please refer to Supp. Note 5). The flow cytometry apoptotic 
assay we use in our study is widely established in the cell death field and is featured in a 
number of publications as a standard assay for determining the IC50 of various death-inducing 
agents [Rieger et al 2011, Crowley et al 2015]. However, we believe there are several other 
differences between our apoptotic assays that can justify the differences in the observed 
sensitivity of cells to TRAIL.  
First, the TRAIL used in the Marquez-Jurado et al and the Spencer et al studies is not the same 
that we used in our study. As properly referenced in our Materials and Methods, we used 
Superkiller TRAIL, which has been shown to significantly improve trimerization and activation of 



death receptors TRAIL-R1 and -R2 on the cell surface and triggering the assembly of the death-
inducing signaling complex (DISC) by effectively mimicking the clustering of those receptors 
upon binding of natural death-inducing stimuli [Johnstone et al 2008, Mandal et al 2014, Naimia 
et al 2018]. In those studies, TRAIL was used in combination with cycloheximide to suppress 
the activation of parallel translation-dependent survival signals via non-apoptosis-inducing 
receptors [Falschlehner et al 2007, Hellwig et al 2008], which as shown in Spencer et al 
Supplementary Figure 4 increases sensitivity to TRAIL, consistent with previous reports [Wajant 
et al 2000, Wang et al 2008] 
 
Second, it is widely known that the IC50 of TRAIL is a function of time [Thomas and Hersey 
1998, Zhang et al 2005, Trivedi and Mishra 2015]. In the Marquez-Jurado assay, cells were 
treated with TRAIL for 24h, while in our study we treated cells for 4h, which is under the 
timescale for natural mitochondria generation and turnover dynamics to interfere with the 
effective abundance of mitochondria in a cell during the time course of the experiment. As 
shown in our Supplementary Note 2, mitochondria density does not change significantly within 
4h, but at 24h it is different than at time zero, likely due to cell division, mitogenesis, 
mitochondria turnover, and remodeling of mitochondria network through fission and fusion 
events. Notably, none of the above-mentioned studies has taken mitochondria dynamics into 
account, which we believe might be at the source of some of the discrepancies. 
 
Third, in contrast to the other models that extracted IC50 values from the absolute coordinates 
of fractional response to TRAIL, in our model we computed the effective IC50 of TRAIL by using 
the maximum amplitude of the cell death response to TRAIL, which we believe reflects the 
effective outcome of TRAIL signaling. The difference in IC50 values between our studies is 
simply a consequence of our model taking into account the TRAIL signal as a function of the 
final outcome, in a way that captures the entire dynamics of the cell response as a whole. 
Indeed, when we calculate TRAIL IC50 for Hela cells as done by Marquez-Jurado, we obtain an 
IC50 ~80ng/ml. 
 
Fourth, as pointed out by the Reviewer, HeLa cells are in fact sensitive to TRAIL. However, as 
shown in Figure 1 of Marquez-Jurado as well in our Supplementary Figure 11, treatment of 
HeLa cells with maximum dose of TRAIL incurs in a maximum cell death fraction of 
approximately 50% in all studies alike. Perhaps this is indicative of the contribution of other 
biological mechanisms of death alternative to extrinsically regulated apoptosis. Previous studies 
have shown that HeLa cells do not express Parkin [Denison et al 2003, Pawlyk et al 2003] and 
by lacking mitophagy machinery their response to death-inducing ligands will be affected, an 
interesting phenomenon that is beyond the scope of this study. 
 
Finally, and most importantly, Marquez-Jurado et al. are able to use single cell tracking to link a 
cell’s mitochondria abundance at time 0 with its fate at 24 hours. With this experimental design 
they were able measure the mitochondria abundances for cells that remained alive and those 
that transitioned to the dead state. In Figure 2 of their manuscript they show that the average 
mitochondria abundance for cells that transition from live to dead decreases with TRAIL. 
Moreover, by qualitative inspection the mean mitochondria abundance among the live cells 
remains relatively constant, just as we measured in HeLa cells (see Sup.Fig.11 and Sup Note 
5). Indeed, as TRAIL increases, the average mitochondria abundance of live and dead cells 
converges. While a truly interesting insight, our experimental design fundamentally cannot 
measure the phenomena they report. If, we were able to measure the mitochondria abundance 
of the cells that transitioned from live to dead states, perhaps we would have come to the 
identical conclusion for the HeLa cell experiment. In consequence, we believe that our results 
and those of Marquez-Jurado et al. complement one another. 



 
 
 

Minor Comments 
line 1: the title should be more focused on the actual findings. 
We changed the title to the more specific “Mitochondrial origins of fractional control in regulated 
cell death”.  
 
li 24: “has yet to be determined” should read “is still under investigation”: the (Márquez-Jurado 
et al. 2018) paper is one example. 
We changed as suggested by this reviewer. 
 
li 30, 31: “we demonstrate that […] may increase” should read “our study suggests that […] may 
increase”. 
We changed as suggested by this reviewer. 
 

 li 62-67: should be re-written according to major comment #1 
 
li 64 : “cyclohexamide” should read “cycloheximide” 
We changed as suggested by this reviewer. 
 
li 89: “shared no MitoTracker population”. Fig 1B suggests that it does share some fraction… 
We changed to “shared almost no MitoTracker population” 
 
li 294: “measuring […] regardless of TRAIL dose”. The cited study actually measures “as a 
function of” not “regardless of” TRAIL dose, but shows that it is independent. 
We changed as suggested by this reviewer to “as a function of of TRAIL dose, but show that the 
effect is independent of the dose” 
 
li 313: “Conversely HeLa cells showed no mitochondrial density dependence”. Jacob et al. study 
(Jacob et al. 2016) strongly suggests that the mitochondrial density is correlated to cell death in 
HeLa cells, and Marquez-Jurado (Márquez-Jurado et al. 2018) shows that mitochondrial mass 
is correlated to cell death in HeLa cells. This difference should be discussed. 
We discussed the differences between Marquez-Jurado et al on a major comment above, briefly 
as shown in Figure 2A of their manuscript, the mitochondrial dependency they observe across 
TRAIL doses is for death cells as in live cells mitochondria levels seem to be constant as 
observed in our experiments (see Sup. Note 5 and Sup.Fig 11). Regarding Jacob et al, their 
study does not measure mitochondria density, but models its effects on the fast propagation of 
internal waves of MOMP. However, in their model, mitochondria density has opposite effects on 
tBid and ROS waves and its overall effect/dependencies on cell death is far from clear.  
 
Supplementary notes: the parameters r, gamma and mu are fitted to qualitatively reproduce 
observations from Albeck’s study (Albeck et al. 2008), which does not correspond well with the 
experimental conditions described by the authors in Jurkat and MDA-MB-231 cells. 
As there are no measurements for the dynamics of Initiator and effector caspases in the cell 
lines we used, we assumed that the general shape of the dynamics obtained through 
quantitative fits are the best proxy available. 
 
General: The novelty of their approach should be discussed and evaluated with other methods 
to parametrize and compare distributions. 



The detailed application of our DEPICTIVE approach to other data can be another paper in itself 
and consequently is outside the scope of this manuscript. 
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REVIEWERS' COMMENTS:

Reviewer #1 (Remarks to the Author):

In the revised version of the manuscript, the authors addressed all my comments. I appreciate the 
additional work, in particular the application of DEPICTIVE to higher dimensional data 
(mitochondria density and SSC-A / FSC-A). The results of this are interesting and indicate the 
relevance of mitochondria density. However, the results also show that in certain cases (e.g. Table 
4 and 5), SSC-A / FSC-A can explain a higher portion of the variance than the mitochondria 
density. Therefore, I suggest as a minor revision that the authors discuss this.

In addition, I would like to point out that the profile likelihoods show that the parameter r cannot 
be inferred reliable. It is practically non-identifiable as the statistical threshold is not exceeded for 
values below the optimum. Accordingly, the confidence interval for r is unbounded below. While 
this should not be critical for the the authors’ results, I ask them to clarify this. Similarly, I would 
ask the authors to remove that statement that profile likelihoods address the problem of irregular 
likelihoods, as profile likelihoods are actually an analysis tool.

Reviewer #3 (Remarks to the Author):

The authors have addressed my concerns with a substantial effort to strengthen their case. 
Although several issues with presented data and provided discussion remain unresolved, I believe 
none of these issues undermines their finding as a whole. Therefore, I recommend accepting this 
manuscript for publication in the interest of a concise reviewing process.

Reviewer #4 (Remarks to the Author):

Overall the study gains in clarity when read with the actual responses provided in the rebuttal. 
Therefore, it is necessary to include all the newly discussed points in the manuscript, as well as the 
proposed edits that have not been made yet, namely:

1. Discuss the first two general comments (“other sources of CCV” and “density vs. mass”) in the 
discussion.
2. Edit out paragraph as proposed in response to Major comment 1
3. Add the explanation for IC50 differences of Major Comment 2 (perhaps in Supplemental 
materials)
4. The response to the “minor point on li 313” and the “Supplementary notes”, as they both also 
adds in clarity.  



Reviewer 1

In the revised version of the manuscript, the authors addressed all my comments. I appreciate 
the additional work, in particular the application of DEPICTIVE to higher dimensional data 
(mitochondria density and SSC-A / FSC-A). The results of this are interesting and indicate the 
relevance of mitochondria density. However, the results also show that in certain cases (e.g. 
Table 4 and 5), SSC-A / FSC-A can explain a higher portion of the variance than the 
mitochondria density. Therefore, I suggest as a minor revision that the authors discuss this.

We added in the discussion the following sentence: 

Remarkably, Bcl-2 inhibition alone increased the variance of sensitivities attributable to 
mitochondria density from ~0% to between 10% and 25% (Figure 6F), although for the lower 
value the variance attributed to the internal SSC control was barely lower (see Supplementary 
Note 4.2 Supplementary Tables 2,3 and 4).

In addition, I would like to point out that the profile likelihoods show that the parameter r cannot 
be inferred reliable. It is practically non-identifiable as the statistical threshold is not exceeded 
for values below the optimum. Accordingly, the confidence interval for r is unbounded below. 
While this should not be critical for the the authors’ results, I ask them to clarify this.

We added the following explanation: 

Although the profile likelihood for r is practically non-identifiable as very shallow and 
unbounded below, given that for the biological interpretation of the model we were only 
interested in positive values, the origin was considered as a lower bound. 

Similarly, I would ask the authors to remove that statement that profile likelihoods address the 
problem of irregular likelihoods, as profile likelihoods are actually an analysis tool. 

We replaced: 

“One solution to this problem” 

with

One way to analyze the extent of the log-likelihood function irregularities 

Reviewer 3

The authors have addressed my concerns with a substantial effort to strengthen their case. 
Although several issues with presented data and provided discussion remain unresolved, I 
believe none of these issues undermines their finding as a whole. Therefore, I recommend 



accepting this manuscript for publication in the interest of a concise reviewing process.

No further changes are requested by this reviewer 

Reviewer 4

Overall the study gains in clarity when read with the actual responses provided in the rebuttal. 
Therefore, it is necessary to include all the newly discussed points in the manuscript, as well as 
the proposed edits that have not been made yet, namely: 

1. Discuss the first two general comments (“other sources of CCV” and “density vs. mass”) in 
the discussion. 

As suggested by this reviewer we added the following in the results section: 

while less than ~2\% is attributed to side scatter (SSC) that functions as an internal control. 

And to the discussion:

In particular, it is possible that Marquez-Jurado observations could be highly modified when 
considering mitochondrial density and not mass given that it is known that gene expression 
levels can change with cell size. 

2. Edit out paragraph as proposed in response to Major comment 1 

The paragraph has now been edited out as suggested by this reviewer. 

3. Add the explanation for IC50 differences of Major Comment 2 (perhaps in Supplemental 
materials) 

We added the suggested explanation to the supplementary methods section related to Hela cells. 

The apparent 5-fold higher IC50 we report has to do with the much shorter 4 hour time-span of 
our experiment and that we computed the effective TRAIL IC50 by using the maximum 
amplitude of the cell death response to TRAIL, which we believe reflects the effective outcome 
of TRAIL signaling. Indeed, when we calculate relative TRAIL IC50 for Hela cells as done by 
Marquez- Jurado et al., we obtain a much closer IC50 value around 80ng/ml.  

4. The response to the “minor point on li 313” and the “Supplementary notes”, as they both also 
adds in clarity. 
 
Minor point on li 313 was included in the discussion as stated in 1. 
 
As suggested by this reviewer we added these points to the supplementary methods section. 



To constrain cell type specific parameter sets for our dynamic model of apoptosis we 
corroborated the predicted dynamics with previously published data as the best proxy available 
given there are no measurements for the dynamics of Initiator and effector caspases in the cell 
lines we used. Specifically, we fit the parameters r, , and  to temporal single cell 
measurements of a reporter of initiator caspase activity (IC-RP) published in Albeck et al. 2008.  
 


